Asymmetric Synthesis of Spiro-structural 2, 3-Dihydrobenzofurans via Bifunctional Phosphonium Salt-promoted [4 + 1] Cyclization of *ortho*-Quinone Methides with α-Bromoketones

Song Zhang,^{‡a} Xiaojun Yu,^{‡a,c} Jianke Pan,^a Chunhui Jiang,^{*a,b} Hongsu Zhang,^a Tianli Wang^{*a}

^a Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road, Chengdu 610064 P. R. China. *E-mail:* <u>wangtl@scu.edu.cn</u>

^b School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003 P. R. China. E-amil: chemjiang@just.edu.cn

^cDepartment of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China

‡ S. Zhang and X. Yu contributed equally.

1.	General Information	2
2.	Optimization of Reaction Conditions	3
3.	Preparation of Catalysts	6
4.	General Procedure for Asymmetric [4+1] Reaction	11
5.	Scale-up Synthesis and Synthetic Elaboration of Product	46
6.	Mechanism Studies and Proposed Transition State Models	48
7.	Crystal Structures of 3m	50
8.	References	-52
9.	NMR Spectra of Products	53

1. General Information

All the starting materials were obtained from commercial sources and used without further purification unless otherwise stated. ¹H and ¹³C NMR spectra were recorded at ambient temperature in CDCl₃ on a Bruker Advance (400 MHz) spectrometer. The chemical shifts are reported in parts permillion (ppm) relative to $CDCl_3(\delta = 7.26)$ for ¹H NMR and relative to the central resonances of CDCl₃(δ = 77.16) for ¹³C NMR; Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dt (doublet of triplet), td (triplet of doublet), br s (broad singlet). Coupling constants (J) were reported in Hertz (Hz). All high resolution mass (ESI-MS) were obtained on Thermo LTQ mass spectrometer. For thin layer chromatography (TLC) was performed using commercially prepared and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine, or ceric ammonium molybdate followed by heating on a hot plate. Flash chromatographic separations were performed on commercially prepared 200-300 mesh silicagel. Enantiomeric excess was determined by HPLC analysis using chiral column described below in detail. Optical rotations were measured with RUDOLPH research analytic automatic polarimeter.

The catalysts **P1-P7** used in this study were prepared following previously reported procedure.^[1-4] All *ortho*-quinone methides were synthesized following the methods reported in the literature.^[5] Except for α -bromoketones **2q** and **2t** were purchased and used without further purification, other α -bromoketones were synthesized following the methods reported in the literature.^[6] The absolute configurations of cycloaddition products were assigned by X-ray crystallographic analysis of the single crystal of **3m** (Figure *S2*).

2. Optimization of Reaction Conditions

Scheme S1: Chiral phosphonium salt catalysts used in this study. (TBDPS = *tert*-butyldiphenylsilyl, Ts = 4-toluenesulfonyl)

A. Optimization of reaction conditions for the asymmetric [4 + 1] cycloaddition of *ortho*-quinone methides with α-bromoketones

Table S1: Asymmetric [4+1] cycloaddition of *ortho*-quinone methide **1a** with α -bromoketone **2a** catalyzed by different chiral phosphonium salts in DCM.^[a]

	PMP + 2	O Br O DCM, RT, >20:1 o a	I %) PMF equiv.) 12 h dr 3a	
Entry	Catalyst	Base (equiv.)	Yield (%) ^b	Ee (%) ^c
1	P1	$Cs_2CO_3(4.0)$	52	2
2	P2	$Cs_2CO_3(4.0)$	n.r	-
3	P3	$Cs_2CO_3(4.0)$	63	-3
4	P4	$Cs_2CO_3(4.0)$	65	-4
5	P5	$Cs_2CO_3(4.0)$	72	30
6	P6	$Cs_2CO_3(4.0)$	68	9

7	P7	$Cs_2CO_3(4.0)$	64	7
8	P8	$Cs_2CO_3(4.0)$	69	11
9	P9	$Cs_2CO_3(4.0)$	71	65
10	P10	$Cs_2CO_3(4.0)$	53	67
11	P11	$Cs_2CO_3(4.0)$	78	79

[a] Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), **P** (0.01 mmol), Cs_2CO_3 (4.0 equiv.), DCM (1.0 mL) were stirred for 12 h at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S2: Asymmetric [4+1] cycloaddition of *ortho*-quinone methide **1a** with α -bromoketone **2a** catalyzed by **P11** in DCM: screening of the bases.^[a]

Entry	Base (x equiv.)	<i>t</i> [h]	Yield [%] ^[b]	<i>ee</i> [%] ^[c]
1	Na ₂ CO ₃ (4.0)	12	n.r	-
2	$K_2CO_3(4.0)$	12	38	78
3	$K_{3}PO_{4}(4.0)$	12	43	80
4	K ₃ PO ₄ .3H ₂ O (4.0)	12	47	78
5	K ₃ PO ₄ .7H ₂ O (4.0)	12	36	74
6	KOH (4.0)	12	74	2
7	CsOH (4.0)	12	73	-3
8	Cs ₂ CO ₃ (1.0)	12	54	77
9	Cs ₂ CO ₃ (2.0)	12	67	76
10	Cs ₂ CO ₃ (6.0)	12	77	74
11	Cs ₂ CO ₃ (8.0)	12	78	78

[a] Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), **P11** (0.01 mmol), Base (x equiv.) in DCM (1.0 mL) were stirred for 12 h at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S3: Asymmetric [4+1] cycloaddition of *ortho*-quinone methide **1a** with α -bromoketone **2a** catalyzed by **P11**: screening solvents and temperature.^[a]

Entry	Temperature (°C)	Solvent	<i>t</i> [h]	Yield [%] ^[b]	<i>ee</i> [%] ^[c]
1	r.t	DCE	12	71	40
2	r.t	CHCl ₃	12	72	74
3	r.t	PE	12	28	24
4	r.t	n-Hexane	12	23	18
5	r.t	(Et) ₂ O	12	58	70
6	r.t	Dioxane	12	69	40
7	r.t	Toluene	12	74	64
8	r.t	Xylene	12	70	65
9	0	DCM	24	82	87
10	-10	DCM	24	80	90
11	-20	DCM	48	87	94
12	-30	DCM	56	68	87

[a] Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), **P11** (0.01 mmol), Cs_2CO_3 (4.0 equiv.) in solvent (1.0 mL) were stirred for 12 h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S4: Asymmetric [4+1] cycloaddition of *ortho*-quinone methide **1a** with α -bromoketone **2a** catalyzed by **P11**: screening catalyst loading.^[a]

Entry	Catalyst(X mol %)	<i>t</i> [h]	Yield [%] ^[b]	<i>ee</i> [%] ^[c]
1	2.5%	48	85	82
2	5%	48	86	94
3	10%	48	87	94

[a] Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), **P11** (0.01 mmol), Cs₂CO₃ (4.0 equiv.) in solvent (1.0 mL) were stirred for 12 h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

3. Preparation of Catalysts

A. General procedure for preparation of P1-8:

To a solution of phosphine **P1a** (0.1 mmol) in CH_2Cl_2 (1 mL) the methyl iodide solution (0.2 mL, 2.0 M in CH_2Cl_2) was slowly added and the mixture was allowed to

stir at room temperature for 2 h. The reaction crude mixture was directly purified by flash chromatography dichloromethane/methanol = 20/1 to afford the desired chiral phosphonium salt **P1** as a yellow solid (93% yield). Other phosphonium salts **P2**, **P3**, **P4**, **P5**, **P6**, **P7** and **P8** were prepared according to the above similar procedure by using the corresponding phosphines as reactants respectively.^[2] Furthermore, the phosphonium salts **P9**, **P10** and **P11** were synthesized following the above similar procedure just by using corresponding phosphines and benzyl bromides as starting reagents.

The catalyst **P1**, **P2**, **P3**, **P4**, **P5**, **P6** and **P7** are known compounds and their characterization data were in agreement with those reported in the literature^[2-4], Unknown compounds **P8**, **P9**, **P10** and **P11** were fully characterized.

((2S,3R)-2-(3,5-bis(trifluoromethyl)benzamido)-3-((tert-butyldiphenylsilyl)oxy)b utyl)(methyl)diphenylphosphonium iodide (P8)

A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (dd, J = 16.4, 6.4 Hz, 1H), 8.41 (d, J = 6.3 Hz, 1H), 7.92 (d, J = 3.2 Hz, 1H), 7.87 (dd, J = 13.1, 8.1 Hz, 2H), 7.78–7.71 (m, 2H), 7.62 (d, J = 7.1 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.52-7.48 (m, 4H), 7.42–7.31 (m, 6H), 4.88-4.82 (m, 2H), 4.27–4.24 (m, 1H), 3.22 (t, J = 15.1 Hz, 1H), 2.65 (d, J = 13.8 Hz, 3H), 1.29 (t, J = 5.5 Hz, 3H), 1.07 (d, J = 2.4 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 164.31 (d, J = 3.9 Hz), 135.74 (d, J = 10.1 Hz), 134.93 (dd, J = 17.3, 2.9 Hz), 134.51 (d, J = 1.8 Hz), 133.28 (d, J = 7.3 Hz), 132.60 (t, J = 9.8 Hz), 131.69 (dd, J = 33.7, 4.3 Hz), 130.34 (t, J = 12.3 Hz), 130.13 (d, J = 4.1 Hz), 128.72 (d, J = 2.2 Hz), 127.95 (d, J = 12.2 Hz), 125.3 (d, J = 7.9 Hz), 123.04 (q, J = 218.8 Hz), 70.47 (d, J = 13.3 Hz), 50.05 (d, J = 4.8 Hz), 27.16, 19.37, 18.45, 9.12, 8.58.³¹P NMR (162 MHz, CDCl₃) δ 22.93; HRMS (ESI) *m*/*z* calcd for C₄₂H₄₃F₆NO₂PSi [M - I]⁺ = 766.2699, found = 766.2695.

(S)-benzyl(2-(3,5-bis(trifluoromethyl)benzamido)propyl)diphenylphosphonium bromide (P9)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 9.38 (dd, J = 19.4, 8.2 Hz, 1H), 8.27 (d, J = 10.7 Hz, 2H), 7.87-7.82 (m, 3H), 7.62–7.56 (m, 2H), 7.49 (t, J = 7.7 Hz, 1H), 7.46 – 7.29 (m, 6H), 7.42-7.32 (m, 5H), 7.19-7.06 (m, 3H),6.91 (t, J = 6.8 Hz, 2H), 4.88 (s, 1H), 4.74 (dd, J = 14.8, 6.1 Hz, 2H), 4.59–4.46 (m, 2H), 2.98 (t, J = 13.8 Hz, 1H), 1.58 (t, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.54 (d, J = 5.8 Hz), 134.60 (d, J = 1.3 Hz), 134.23, 133.51 (dd, J = 29.4, 9.3 Hz), 131.19 (dd, J = 33.5, 6.9 Hz), 130.34 (d, J = 5.1 Hz), 129.76 (dd, J = 12.3, 3.7 Hz), 129.17 (t, J = 3.4 Hz), 128.62 (d, J = 3.8 Hz), 117.71 (q, J = 81.3 Hz), 41.36 (t, J = 4.7 Hz), 29.22 (dd, J = 45.5, 5.7 Hz), 25.95 (dd, J = 47.7, 10.3 Hz), 23.14 (d, J = 14.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.25; HRMS (ESI) *m*/*z* calcd for C₃₁H₂₇F₆NOP [M - Br]⁺ = 574.1729, found = 574.1728.

(S)-(2-(3,5-bis(trifluoromethyl)benzamido)propyl)(4-fluorobenzyl)diphenylphosp honium bromide (P10)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, J = 7.9 Hz, 1H), 8.30 (s, 2H), 7.87–7.81 (m, 3H), 7.68 (dd, J = 12.2, 7.6 Hz, 2H), 7.53 (t, J = 7.1 Hz, 1H), 7.45 (td, J = 7.6, 3.3 Hz, 2H), 7.39 (d, J = 1.9 Hz, 3H), 6.95-6.92 (m, 2H), 6.78 (t, J = 8.4 Hz, 2H), 5.00 (t, J = 14.9 Hz, 1H), 4.91-4.77 (m, 2H), 4.70-4.60 (m, 1H), 3.09 (t, J = 13.9 Hz, 1H), 1.63 (dd, J = 6.2, 2.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.72, 134.67, 134.61 (dd, J = 33.5, 3.0 Hz), 133.69 (dd, J = 15.5, 9.4 Hz), 132.25 (dd, J = 1.20 Hz, 12 Hz, 12 Hz, 13 Hz, 14 Hz, 14

8.1, 5.5 Hz), 131.40 (d, J = 33.6 Hz), 129.96 (dd, J = 12.3, 5.3 Hz), 128.45 (d, J = 2.7 Hz), 124.85 (t, J = 3.6 Hz), 123.2 (d, J = 271.3 Hz), 122.87 (dd, J = 8.3, 3.3 Hz), 117.6 (q, J = 72.5 Hz), 116.29 (dd, J = 21.6, 3.1 Hz), 41.84 (d, J = 5.1 Hz), 28.57 (d, J = 46.2 Hz), 26.03 (d, J = 49.7 Hz), 23.13 (d, J = 15.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.60; HRMS (ESI) *m*/*z* calcd for C₃₁H₂₆F₇NOP [M - Br]⁺ = 592.1635, found = 592.1634.

<u>(S)-(2-(3,5-bis(trifluoromethyl)benzamido)propyl)(3,5-bis(trifluoromethyl)benzyl</u>))diphenylphosphonium bromide (P11)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, J = 8.2 Hz, 1H), 8.23 (s, 1H), 7.98–7.89 (m, 2H), 7.85 (s, 1H), 7.74 (dd, J = 12.3, 7.7 Hz, 2H), 7.58 (s, 1H), 7.53 (t, J = 7.3 Hz, 1H), 7.48 – 7.38 (m, 2H), 7.35 (s, 2H), 5.49 (t, J = 15.0 Hz, 1H), 5.28 (t, J = 15.3 Hz, 1H), 4.83 (t, J = 7.1 Hz, 1H), 4.52-4.38 (m, 1H), 3.70 (t, J = 14.1 Hz, 1H), 2.75 (s, 1H), 1.64 (d, J = 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.75, 135.04 (d, J = 2.7 Hz), 134.73 (d, J = 3.8 Hz), 133.85 (dd, J = 28.1, 9.7 Hz), 132.11 (dd, J = 33.6, 3.0 Hz), 131.41 (q, J = 25.2 Hz), 130.62 (d, J = 2.3 Hz), 130.04 (dd, J = 12.5, 6.8 Hz), 128.33 (d, J = 1.9 Hz), 126.89 (d, J = 56.1 Hz), 124.79 (t, J = 3.7 Hz), 122.82 (q, J = 56.0 Hz), 122.06 (d, J = 3.3 Hz), 118.75 (d, J = 56.2 Hz), 116.36 (q, J = 77.2 Hz), 41.87 (d, J = 5.2 Hz), 29.24 (d, J = 46.1 Hz), 27.51 (d, J = 48.6 Hz), 22.93 (d, J = 15.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 24.89; HRMS (ESI) *m*/*z* calcd for C₃₃H₂₅F₁₂NOP [M - Br]⁺ = 710.1477, found = 710.1474.

B. Preparation of phosphonium salts P11'

To the solution of **P11'-A**^[7] (102.9 mg, 0.4 mmol) in DCM (5 mL), 3,5-bis(trifluoromethyl)benzoyl chloride (132.7 mg, 0.48 mmol) dissolved in DCM (2 mL) was added in at 0 °C, after that the resulting mixture was warmed to room temperature and stired for 1 h. Water (2 mL) was added and the organic layer was separated. The aqueous phase was extracted with DCM. The combined organic layers was washed with brine and dried over Na₂SO₄. Solvent was removed under reduced pressure and the residue was purified column chromatography on silica gel using petrolem ether/ethyl acetate (10:1) as an eluent to afford **P11'-B** (108.1 mg, 54% yield) as a white solid.

To the solution of **P11'-B** (49.7 mg, 0.1 mmol) in toluene (3 mL), 3,5-di(trifluoromethyl)benzyl bromide (37.0 mg, 0.12 mmol) was directly added in, then the solution was refluxed for 8 h. The resulting solution was cooled to room temperature and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to methanol) to afford the desired chiral phosphonium salt **P11'** (52.1 mg, 72% yield).

(S)-(3,5-bis(trifluoromethyl)benzyl)(2-(N-methyl-3,5-bis(trifluoromethyl)benzami do)propyl)diphenylphosphonium bromide (P11')

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 12.2, 7.8 Hz, 2H), 8.08 (dd, J = 12.5, 7.9 Hz, 2H), 7.81 (m, 2H), 7.71 (m, 3H), 7.57 (m, 3H), 7.21 (s, 2H), 5.72 (t,

J = 15.0 Hz, 1H), 5.38 (t, J = 15.4 Hz, 1H), 5.13 (m, 1H), 4.87 (m, 1H), 4.00 (td, J = 14.4, 2.3 Hz, 1H), 2.94 (s, 3H), 1.39 (d, J = 6.6 Hz, 3H), 1.26–1.20 (td, J = 7.2, 0.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.61, 137.23, 135.30 (dd, J = 26.6, 2.9 Hz), 134.30 (dd, J = 49.0, 9.5 Hz), 131.89 (dd, J = 33.6, 3.3 Hz), 131.82 (d, J = 33.7 Hz), 131.33 (d, J = 8.6 Hz), 130.61, 120.27 (dd, J = 18.4, 12.4 Hz), 127.37(d, J = 2.8 Hz), 123.79, 122.67 (q, J = 271.5 Hz), 122.65 (q, J = 271.5 Hz), 121.86, 115.62 (dd, J = 86.1, 82.0 Hz), 45.16(d, J = 3.8 Hz), 32.96, 31.41 (d, J = 46.9 Hz), 26.45(d, J = 47.5 Hz), 20.52 (d, J = 13.6 Hz) ³¹P NMR (162 MHz, CDCl₃) δ 26.75; (ESI) m/z calcd for C₃₄H₂₇BrF₁₂NOP [M - Br]⁺ = 724.1633, found = 724.1606.

4. General Procedure for Asymmetric [4+1] Reaction

To a round bottle flask with a magnetic stirring bar were added *ortho*-quinone methids **1** (0.2 mmol), α -bromoketones **2** (0.24 mmol), phosphonium salt **P11** (7.9 mg, 0.01 mmol) and Cs₂CO₃ (260.6 mg, 0.8 mmol), followed by the addition of dry DCM (2.0 mL). The reaction mixture was stirred at -20 °C for 48-96 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1 to 10:1) to afford product **3**.

(3'S,7S)-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6,3'-chrom an]-4'-one (3a)

A white solid; 87% yield; $[\alpha]^{25}{}_{D} = +129.5$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 7.6, 1.5 Hz, 1H), 7.51 (tt, J = 7.4, 0.9 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.3 Hz, 2H), 6.50 (s, 1H), 6.47 (s, 1H), 5.91 (dd, J = 15.8, 1.0 Hz, 2H), 5.19 (s, 1H), 4.26 (d, J = 12.9 Hz, 2H), 3.85(d, J = 12.9 Hz, 2H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃); δ 187.52, 161.07, 159.41, 152.63, 148.25, 142.89, 136.63, 130.37, 129.19, 128.43, 121.96, 120.33, 119.204, 118.00, 114.21, 105.33, 101.56, 93.53, 86.56, 70.91, 55.41, 49.31, HRMS (ESI⁺): calcd for C₂₄H₁₈O₆ [M+Na]⁺ = 425.1001, found = 425.0973; The ee value was 94%, t_R (minor) = 10.4 min, t_R (major) = 12.2 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 85/15, flow rate = 1.0 mL/min).

Racemic 3a

Chromatogram D:\HPLC-Data\ZS\644\ZSR644-1-06-85-15-1.0-IC-100min.lcd

Enantiomerically enriched 3a

(3'S,7S)-6'-fluoro-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6, 3'-chroman]-4'-one (3b)

A white solid; 84% yield; $[\alpha]^{25}_{D} = +89.0$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, J = 8.1, 3.2 Hz, 1H), 7.23 (m, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.93 (dd, J =9.1, 4.2 Hz, 1H), 6.84 (d, J = 8.8 Hz, 2H), 6.50 (s, 1H), 6.46 (s, 1H), 5.91 (dd, J =15.3, 1.0 Hz, 2H), 5.18 (s, 1H), 4.24 (d, J = 13.0 Hz, 1H), 3.82 (d, J = 13.0 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.77, 159.46, 158.80, 157.37 (d, J =1.5 Hz), 156.39, 152.42, 148.32, 143.01, 130.34, 128.96, 124.27, 120.23, 119.75 (d, J =7.4 Hz), 119.62(d, J = 6.6 Hz), 114.26, 113.23, 112.99, 105.30, 101.60, 93.53, 86.23,71.13, 55.42, 49.22; HRMS (ESI⁺): calcd for C₂₄H₁₇O₆F [M+Na]⁺ = 443.0907, found = 443.0891; The ee value was 94%, t_R (minor) = 9.1 min, t_R (major) = 10.9 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 85/15, flow rate = 1.0 mL/min).

Racemic 3b

Enantiomerically enriched 3b

(3'S,7S)-6'-chloro-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6 ,3'-chroman]-4'-one (3c)

A white solid; 83% yield; $[\alpha]^{25}{}_{D} = +135.5$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 2.5 Hz, 1H), 7.43 (dd, J = 8.9, 2.6 Hz, 1H), 6.97 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.9 Hz, 1H), 6.82 (d, J = 8.6 Hz, 2H), 6.48 (s, 1H), 6.44 (s, 1H), 5.90 (dd, J = 14.8, 1.2 Hz, 2H), 5.16 (s, 1H), 4.23 (d, J = 13.0 Hz, 1H), 3.81 (d, J = 13.0 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃); δ 186.41, 159.52, 159.49, 152.39, 148.33, 143.04, 136.50, 130.33, 128.90, 127.55, 127.50, 120.16, 120.04, 119.74, 114.28, 105.30, 101.62, 93.53, 86.20, 70.08, 55.42, 49.20; HRMS (ESI⁺): calcd for C₂₄H₁₇O₆Cl [M+Na]⁺ = 459.0611, found = 459.0589; The ee value was 94%, t_R (minor) = 10.1 min, t_R (major) = 11.9 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 85/15, flow rate = 1.0 mL/min).

Racemic 3c

Enantiomerically enriched 3c

(3'S,7S)-6'-bromo-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6 ,3'-chroman]-4'-one (3d)

A white solid; 81% yield; $[\alpha]^{25}_{D} = +105.8$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 2.0, 0.5 Hz, 1H), 7.58 (ddd, J = 8.7, 2.5, 0.5 Hz, 1H), 6.98 (d, J = 8.6Hz, 2H), 6.87 (d, J = 4 Hz, 2H), 6.84 (d, J = 4 Hz, 1H), 6.50 (s, 1H), 6.45 (s, 1H), 5.92 (dd, J = 15.1, 2 Hz, 2H), 5.17 (s, 1H), 4.25 (d, J = 13.0 Hz, 1H), 3.83 (d, J = 13.0Hz, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl3); δ 186.28, 159.95, 159.49, 152.39, 148.34, 143.04, 139.25, 130.67, 130.33, 128.88, 120.55, 120.15, 120.07, 114.59, 114.28, 105.30, 101.62, 93.53, 86.16, 71.05, 55.42, 49.20; HRMS (ESI⁺): calcd for C₂₄H₁₇O₆Br [M+Na]⁺ = 503.0106, found = 503.0094; The ee value was 94%, t_R (minor) = 10.9 min, t_R (major) = 12.4 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 85/15, flow rate = 1.0 mL/min).

Racemic 3d

Enantiomerically enriched 3d

(3'S,7S)-7-(4-methoxyphenyl)-6'-methyl-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6,3'-chroman]-4'-one (3e)

A white solid; 85% yield; $[\alpha]^{25}{}_{D} = +107.0$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 1.4 Hz, 1H), 7.32 (dd, J = 8.6, 2.2 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 3.1 Hz, 2H), 6.83 (d, J = 3.4 Hz, 1H), 6.50 (s, 1H), 6.46 (s, 1H), 5.91 (dd, J = 15.3, 1.3 Hz, 2H), 5.18 (s, 1H), 4.23 (d, J = 12.8 Hz, 1H), 3.83 (d, J = 13.8 Hz, 1H), 3.79 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.69, 159.37, 159.15, 152.66, 148.22, 142.84, 137.83, 131.45, 130.36, 129.26, 127.84, 120.35, 118.78, 117.80, 114.17, 105.34, 101.54, 93.52, 86.63, 70.86, 55.41, 49.35, 20.56; HRMS (ESI⁺): calcd for C₂₅H₂₀O₆ [M+Na]⁺ = 439.1158, found = 439.1127; The ee value was 97%, t_R (minor) = 20.2 min, t_R (major) = 29.7 min (Chiralcel IB, $\lambda = 254$ nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Racemic 3e

1 D:\HPLC-Data\ZS\660\ZS-R660-2-02-95-5-0.5-IB-100min.lcdD:\HPLC-Data\ZS\660\ZS-R660-2-02-95-5-0.5 mAU

Enantiomerically enriched 3e

(3'S,7S)-6'-methoxy-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran -6,3'-chroman]-4'-one (3f)

A white solid; 86% yield; $[\alpha]^{25}_{D} = +64.3$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 3.2 Hz, 1H), 7.12 (dd, J = 9.1, 3.2 Hz, 1H), 7.00 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 9.0 Hz, 1H), 6.84 (d, J = 8.8 Hz, 2H), 6.51 (s, 1H), 6.47 (s, 1H), 5.91 (dd, J = 15.3, 1.3 Hz, 2H), 5.19 (s, 1H), 4.22 (d, J = 12.8 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.78 (d, J = 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 187.49, 159.40, 155.88, 154.54, 152.61, 148.24, 142.87, 130.36, 129.18, 126.23, 120.35, 119.37, 118.96, 114.19, 108.25, 105.33, 101.56, 93.54, 86.54, 71.02, 55.96, 55.41, 49.35; HRMS (ESI⁺): [M+Na]⁺ = 455.1107, found = 455.1081; The ee value was 91%, t_R (minor) = 27.2 min, t_R (major) = 40.3 min (Chiralcel IB, $\lambda = 254$ nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min). Chromatogram D:\HPLC-Data\ZS\661\ZS-R661-2RACE-95-5-0.5-IB-100min.lcd

Racemic 3f

Enantiomerically enriched 3f

A white solid; 85% yield; $[\alpha]^{25}_{D} = +112.0$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 2.3 Hz, 1H), 7.52 (dd, J = 8.6, 2.4 Hz, 1H), 6.95 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.6 Hz, 1H), 6.80 (d, J = 8.8 Hz, 2H), 6.46 (s, 1H), 6.42 (s, 1H), 5.88 (dd, J = 14.9, 1.2 Hz,2H), 5.16 (s, 1H), 4.45 (s, 2H), 4.22 (d, J = 12.9 Hz, 2H), 3.79 (d, J = 13.0 Hz, 2H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.91, 160.95, 159.47, 152.47, 148.31, 142.99, 137.45, 131.63, 130.35, 128.99, 128.58, 120.23, 119.06, 118.93, 114.27, 105.33, 101.61, 93.55, 86.36, 71.10, 55.44, 49.18, 32.60; HRMS (ESI⁺): calcd for C₂₄H₁₇O₆Br [M+Na]⁺ = 517.0263, found = 517.0239; The ee value was 94%, t_R (minor) = 13.8 min, t_R (major) = 16.9 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 85/15, flow rate = 1.0 mL/min).

Racemic 3g

Enantiomerically enriched 3g

(3'S,7S)-7'-bromo-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6

<u>,3'-chroman]-4'-one (3h)</u>

A white solid; 88% yield; $[\alpha]^{25}_{D} = +98.5$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.4 Hz, 1H), 7.21 (dd, J = 8.4, 1.8 Hz, 1H), 7.16 (d, J = 1.7 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.50 (s, 1H), 6.45 (s, 1H), 5.91 (dd, J = 15.8, 1.3 Hz, 2H), 5.17 (s, 1H), 4.25 (d, J = 12.9 Hz, 1H), 3.84 (d, J = 12.9 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃); δ 186.70, 161.20, 159.47, 152.44, 148.32, 143.00, 131.25, 130.33, 129.60, 128.93, 125.65, 121.16, 120.19, 118.13, 114.27, 105.31, 101.60, 93.52, 86.30, 71.22, 55.42, 49.18; HRMS (ESI⁺): calcd for C₂₄H₁₇BrO₆ [M+Na]⁺ = 503.0106, found = 503.0085; The ee value was 94%, t_R (major) = 18.5 min, t_R (minor) = 26.2 min (Chiralcel IF, $\lambda = 254$ nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Enantiomerically enriched 3h

A white solid; 78% yield; $[\alpha]^{25}_{D} = +26.5$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 7.8, 1.1 Hz, 1H), 7.50 (td, J = 7.5, 1.4 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.02 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 6.50 (s, 1H), 6.43 (s, 1H), 5.89 (dd, J = 16.2, 1.3 Hz, 2H), 5.14 (s, 1H), 3.79 (s, 3H), 3.16 (m, 1H), 2.72 (dt, J = 17.3, 5.2 Hz, 1H), 2.13 (m, J = 14.3, 5.1 Hz, 1H), 1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.96, 159.03, 152.74, 147.90, 143.78, 142.37, 133.94, 131.34, 131.04, 130.57, 128.89, 128.78, 126.98, 121.63, 113.97, 105.59, 101.37, 93.25, 90.98, 55.40, 50.50, 30.79, 25.50; HRMS (ESI⁺): calcd for C₂₅H₂₀O₅ [M+Na]⁺ = 423.1208, found = 423.1186; The ee value was 82%, t_R (minor) = 12.6 min, t_R (major) = 15.7 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 85/15, flow rate = 1.0 mL/min).

Racemic 3i

Enantiomerically enriched 3i

(2'R,7S)-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6,2'-inden] -1'(3'H)-one (3j)

A white solid; 83% yield; $[\alpha]^{25}{}_{D} = -2.3$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (td, J = 6.9, 1.1 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.26 (t, J = 7.4 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 6.63 (d, J = 8.7 Hz, 2H), 6.56 (s, 1H), 6.47 (s, 1H), 5.94 (dd, J = 6.8, 1.2 Hz, 2H), 4.69 (s, 1H), 3.70 (s, 3H), 3.61 (q, J =15.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃); δ 200.72, 159.01, 154.77, 148.76, 148.19, 142.46, 135.53, 135.49, 130.07, 129.37, 128.21, 126.35, 124.40, 120.12, 113.66, 105.26, 101.50, 96.20, 93.59, 59.50, 55.26, 42.05; The ee value was 93%, t_R (major) = 29.6 min, t_R (minor) = 31.5 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3j

Enantiomerically enriched 3j

A white solid; 88% yield; $[\alpha]^{25}{}_{D} = -26.8$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 8.1, 2.1 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 6.83 (d, J = 8.7 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 6.55 (s, 1H), 6.46 (s, 1H), 5.94 (dd, J = 6.2, 1.3 Hz, 2H), 4.70 (s, 1H), 3.72 (s, 3H), 3.59 (q, J = 13.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃); δ 199.66, 159.16, 154.59, 148.25, 146.88, 142.56, 136.81, 135.49, 134.46, 130.04, 128.88, 127.60, 124.07, 119.91, 113.81, 105.21, 101.54, 96.35, 93.56, 59.47, 55.29, 41.41; HRMS (ESI⁺): calcd for C₂₄H₁₇ClO₅ [M+Na]⁺ = 443.0662, found = 443.0645; The ee value was 87%, t_R (minor) = 40.1 min, t_R (major) = 46.4 min (Chiralcel IB, $\lambda = 254$ nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Racemic 3k

Enantiomerically enriched 3k

(2'R,7S)-5'-chloro-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6 ,2'-inden]-1'(3'H)-one (31)

A white solid; 80% yield; $[\alpha]^{25}{}_{D} = +41.0$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.23 (dd, J = 8.2, 1.6 Hz, 1H), 6.83 (d, J = 8.7 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 6.55 (s, 1H), 6.46 (s, 1H), 5.94 (dd, J = 6.7, 1.3 Hz, 2H), 4.70 (s, 1H), 3.71 (s, 3H), 3.61 (q, J = 16.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.60, 159.31, 154.83, 150.45, 148.46, 142.75, 142.21, 134.03, 130.28, 129.22, 129.15, 126.76, 125.71, 120.11, 113.96, 105.41, 101.73, 96.20, 93.75, 59.67, 55.46, 41.83; HRMS (ESI⁺): calcd for C₂₄H₁₇ClO₅ [M+Na]⁺ = 443.0662, found = 443.0640; The ee value was 95%, t_R (minor) = 36.6 min, t_R (major) = 40.4 min (Chiralcel IB, $\lambda = 254$ nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Enantiomerically enriched 31

(2'R,7S)-7-(4-methoxyphenyl)-5'-methyl-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6,2'-inden]-1'(3'H)-one (3m)

A white solid; 86% yield; $[\alpha]^{25}_{D} = +22.8$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 7.8 Hz, 1H), 7.22 (s, 1H), 7.07 (d, J = 7.8 Hz, 1H), 6.88–6.79 (m, 2H), 6.69–6.61 (m, 2H), 6.55 (s, 1H), 6.47 (s, 1H), 5.94 (dd, J = 6.8, 1.3 Hz, 2H), 4.66 (s, 1H), 3.71 (s, 3H), 3.55 (q, J = 16.6 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃); δ 200.04, 158.95, 154.78, 149.22, 148.14, 146.88, 142.39, 133.16, 130.08, 129.51, 129.44, 126.73, 124.29, 120.23, 113.63, 105.27, 101.47, 96.25, 93.57, 59.46, 55.25, 42.02, 22.37; HRMS (ESI⁺): calcd for C₂₅H₂₀O₅ [M+Na]⁺ = 423.1208, found = 423.1189; The ee value was 96%, t_R (minor) = 37.9 min, t_R (major) = 40.9 min (Chiralcel IB, $\lambda = 254$ nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Racemic 3m

Chromatogram D:\HPLC-Data\ZS\671\ZS-R671-2-04-95-5-0.5-IB-100min.lcd

Enantiomerically enriched 3m

(2'R,7S)-5'-methoxy-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofura n-6,2'-inden]-1'(3'H)-one (3n)

A white solid; 83% yield; $[\alpha]^{25}{}_{D} = +31.5$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.5 Hz, 1H), 6.86 (d, J = 2.2 Hz, 2H), 6.84 (s, 1H), 6.79 (dd, J = 8.6, 1.7 Hz, 1H), 6.65 (d, J = 8.6 Hz, 2H), 6.55 (s, 1H), 6.47 (s, 1H), 5.92 (dd, J = 6.7, 1.2 Hz, 2H), 4.67 (s, 1H), 3.88 (s, 3H), 3.71 (s, 3H), 3.54 (t, J = 17.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.55, 165.91, 158.96, 151.74, 142.35, 130.11, 129.45, 128.59, 126.32, 120.27, 115.85, 113.62, 109.82, 105.26, 101.47, 96.12, 93.55, 59.35, 55.82, 55.25, 42.24; HRMS (ESI⁺): calcd for C₂₅H₂₀O₆ [M+Na]⁺ = 439.1158, found = 439.1135; The ee value was 86%, t_R (major) = 49.5 min, t_R (minor) = 59.8 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 85/15, flow rate = 1.0 mL/min).

Racemic 3n

Enantiomerically enriched 3n

(2'R,7S)-4'-chloro-7-(4-methoxyphenyl)-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6 ,2'-inden]-1'(3'H)-one (30)

A white solid; 86% yield; $[\alpha]^{25}{}_{D} = +7.0$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 7.4 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 6.85 (d, J =8.6 Hz, 2H), 6.65 (d, J = 8.6 Hz, 2H), 6.56 (s, 1H), 6.48 (s, 1H), 5.95 (d, J = 6.8 Hz, 2H), 4.74 (s, 1H), 3.71 (s, 3H), 3.62 (q, J = 13.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.26, 159.13, 154.64, 148.28, 146.67, 142.59, 135.10, 132.47, 130.08, 129.68, 128.86, 122.57, 119.90, 113.80, 105.24, 101.56, 95.82, 93.62, 59.38, 55.28, 40.65; HRMS (ESI⁺): calcd for C₂₄H₁₇ClO₅ [M+Na]⁺ = 443.0662, found = 443.0642; The ee value was 93%, t_R (major) = 19.2 min, t_R (minor) = 21.7 min (Chiralcel IC, $\lambda =$ 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 30

Enantiomerically enriched 30

(2'R,7S)-7-(4-methoxyphenyl)-4'-methyl-7H-spiro[[1,3]dioxolo[4,5-f]benzofuran-6,2'-inden]-1'(3'H)-one (3p)

A white solid; 87% yield; $[\alpha]^{25}_{D} = -3.5$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 7.2 Hz, 1H), 7.24 (d, J = 9.5 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H), 6.83 (d, J =8.7 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 6.56 (s, 1H), 6.49 (s, 1H), 5.94 (dd, J = 6.7, 1.3 Hz, 2H), 4.66 (s, 1H), 3.71 (s, 3H), 3.50 (d, J = 1.8 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.86, 158.99, 154.73, 148.16, 147.77, 142.44, 136.04, 135.48, 135.27, 130.05, 129.41, 128.28, 121.80, 120.23, 113.67, 105.28, 101.49, 96.04, 93.62, 59.48, 55.23, 40.81, 17.99; HRMS (ESI⁺): calcd for C₂₅H₂₀O₅ [M+Na]⁺ = 423.1208, found = 423.1175; The ee value was 95%, t_R (major) = 35.6 min, t_R (minor) = 40.4 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 90/10, flowrate = 1.0 mL/min).

Racemic 3p

Enantiomerically enriched 3p

((6R,7S)-7-(4-methoxyphenyl)-6,7-dihydro-[1,3]dioxolo[4,5-f]benzofuran-6-yl)(ph enyl)methanone (3q)

A white solid; 85% yield; $[\alpha]^{25}{}_{D}$ = +58.5 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.60 (tt, *J* = 7.4, 1.2 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.14 (d, *J* = 8. 7 Hz, 2H), 6.87 (d, *J* = 8. 7 Hz, 2H), 6.55 (s, 1H), 6.42 (s, 1H), 5.89 (dd, *J* = 8.5, 1.3 Hz, 1H), 5.76 (d, *J* = 6.2 Hz, 1H), 4.78 (d, *J* = 6.2 Hz, 1H), 3.81 (s, 2H). ¹³C NMR (100 MHz, CDCl₃); δ 194.98, 159.08, 153.74, 148.12, 142.60, 134.51, 134.40, 133.92, 129.37, 129.17, 128.82, 120.55, 114.46, 105.09, 101.49, 93.36, 91.62, 55.45, 50.59; HRMS (ESI⁺): calcd for C₂₄H₁₇O₆Br [M+Na]⁺ = 397.1052, found = 397.1023; The ee value was 87%, t_R (minor) = 20.3 min, t_R (major) = 25.7 min (Chiralcel IB, λ = 254 nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Racemic 3q
m٧

Enantiomerically enriched **3q**

((6R,7S)-7-(4-methoxyphenyl)-6,7-dihydro-[1,3]dioxolo[4,5-f]benzofuran-6-yl)(na phthalen-2-yl)methanone (3r)

A white solid; 89% yield; $[\alpha]^{25}{}_{D} = +24.8$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.02 (dd, J = 8.6, 1.7 Hz, 1H), 7.89 (t, J = 8.0 Hz, 2H), 7.82 (d, J = 8.1Hz, 1H), 7.62 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.54 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.17 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.58 (s, 1H), 6.43 (s, 1H), 5.92 (d, J = 4.6 Hz, 1H), 5.90 (dd, J = 9.4, 1.3 Hz, 2H), 4.83 (d, J = 6.4 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃); δ 194.91, 159.18, 153.88, 148.18, 142.65, 136.12, 134.60, 132.47, 131.68, 131.65, 129.87, 129.35, 129.05, 128.74, 127.96, 127.03, 124.57, 120.58, 114.53, 105.13, 101.51, 93.41, 91.84, 55.50, 50.97; HRMS (ESI⁺): calcd for C₂₇H₂₀O₅ [M+Na]⁺ = 447.1208, found = 447.1189; The ee value was 86%, t_R (minor) = 29.5 min, t_R (major) = 34.4 min (Chiralcel IB, $\lambda = 254$ nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Racemic 3r

Enantiomerically enriched 3r

phenyl((6R,7S)-7-((E)-styryl)-6,7-dihydro-[1,3]dioxolo[4,5-f]benzofuran-6-yl)met hanone (3s)

A white solid; 91% yield; $[\alpha]^{25}_{D} = +39.0$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 7.2, 1.4 Hz, 2H), 7.61 (tt, J = 7.4, 1.2 Hz, 1H), 7.49 (t, J = 7.9 Hz, 2H), 7.38 (d, J = 7.0 Hz, 2H), 7.33 (t, J = 7.1 Hz, 2H), 7.27 (m, 1H), 6.59 (s, 1H), 6.53 (d, J = 15.7 Hz, 1H), 6.52 (s, 1H), 6.34 (dd, J = 15.6, 8.7 Hz, 1H), 5.91 (dd, J = 7.6, 1.3Hz, 2H), 5.73 (d, J = 6.4 Hz, 1H), 4.43 (dd, J = 8.6, 6.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.91, 153.61, 148.33, 142.53, 136.50, 134.43, 133.98, 132.72, 129.38, 128.93, 128.88, 128.80, 128.07, 126.61, 118.82, 105.15, 101.55, 93.59, 89.10, 49.58; HRMS (ESI⁺): calcd for C₂₄H₁₈O₄ [M+Na]⁺ = 393.1103, found = 393.1070; The ee value was 80%, t_R (minor) = 21.9 min, t_R (major) = 28.1 min (Chiralcel IB, $\lambda = 254$ nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Racemic 3s

Enantiomerically enriched 3s

naphthalen-2-yl((6R,7S)-7-((E)-styryl)-6,7-dihydro-[1,3]dioxolo[4,5-f]benzofuran -6-yl)methanone (3t)

A white solid 92% yield; $[\alpha]^{25}{}_{D} = +21.5$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.09 (dd, J = 8.6, 1.7 Hz, 1H), 7.95–7.88 (m, 3H), 7.66–7.60 (m, 1H), 7.58–7.52 (m, 1H), 7.41–7.36 (m, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.30 – 7.26 (m, 1H), 6.63–6.53 (m, 3H), 6.45–6.37 (m, 3H), 5.92 (dd, J = 8.4, 1.2 Hz, 2H), 5.88 (d, J = 6.3Hz, 1H), 4.50 (dd, J = 8.5, 6.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 195.16, 153.88, 148.48, 142.60, 136.24, 135.93, 133.32, 132.72, 132.58, 130.09, 129.76, 128.93, 128.89, 128.43, 127.97, 127.75, 127.08, 126.55, 126.46, 123.98, 119.18, 105.15, 101.57, 93.95, 88.01, 50.36; HRMS (ESI⁺): calcd for C₂₈H₂₀O₄ [M+Na]⁺ = 443.1259, found = 443.1260; The ee value was 90%, t_R (minor) = 19.8 min, t_R (major) = 23.8 min (Chiralcel IB, λ = 254 nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Racemic 3t

(3S,7'S)-7'-(2-methoxyphenyl)-6-methyl-7'H-spiro[chromane-3,6'-[1,3]dioxolo[4, 5-f]benzofuran]-4-one (3u)

A white solid; 90% yield; $[\alpha]^{25}{}_{D} = +57.0$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 1.4 Hz, 1H), 7.31 (m, 2H), 6.91 (m, 2H), 6.83 (m, 2H), 6.53 (s, 1H), 6.45 (s, 1H), 5.92 (dd, J = 18.1, 1.2 Hz, 2H), 5.64 (s, 1H), 4.11 (d, J = 12.6 Hz, 1H), 3.90 (d, J = 12.6 Hz, 1H), 3.63 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃); δ 187.30, 159.27, 157.43, 153.07, 148.09, 142.71, 137.40, 131.29, 129.99, 129.03, 127.93, 126.13, 120.82, 119.39, 119.00, 117.73, 110.15, 105.62, 101.50, 93.43, 86.46, 70.82, 55.25, 43.20, 20.58; HRMS (ESI⁺): calcd for C₂₅H₂₀O₆ [M+Na]⁺ = 439.1158, found = 439.1133; The ee value was 85%, t_R (minor) = 15.5 min, t_R (major) = 20.2 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3u

Enantioniericany enricided 30

(3S,7'S)-7'-(2,4-dimethoxyphenyl)-6-methyl-7'H-spiro[chromane-3,6'-[1,3]dioxol o[4,5-f]benzofuran]-4-one (3v)

A white solid 93% yield; $[\alpha]^{25}_{D} = +36.8$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 1.3 Hz, 1H), 7.30 (dd, J = 8.5, 2.2 Hz, 1H), 6.82 (m, 2H), 6.52 (s, 1H), 6.44 (s, 1H), 6.41 (s, 1H), 5.91 (dd, J = 18.2, 1.0 Hz, 2H), 5.53 (s, 1H), 4.12 (d, J =12.6 Hz, 1H), 3.90 (d, J = 12.6 Hz, 1H), 3.80 (s, 3H), 3.60 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.58, 160.59, 159.32, 158.45, 153.02, 148.03, 142.69, 137.36, 131.25, 130.52, 127.91, 119.03, 118.53, 117.72, 105.60, 104.34, 101.48, 98.28, 93.39, 86.50, 70.81, 55.51, 55.28, 42.88, 20.57; HRMS (ESI⁺): calcd for C₂₆H₂₂O₇ [M+Na]⁺ = 469.1263, found = 469.1241; The ee value was 88%, t_R (minor) = 20.6 min, t_R (major) = 31.2 min (Chiralcel IC, $\lambda = 254$ nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Chromatogram D:\HPLC-Data\ZS\680\06-90-10-1.0-IC-100min-ZS-R680RACE.lcd

Racemic 3v

Enantiomerically enriched 3v

(1R,7'S)-7'-(4-methoxyphenyl)-7'H-spiro[cyclohexane-1,6'-[1,3]dioxolo[4,5-f]ben zofuran]-2-one (3w)

A white oil; 88% yield; $[\alpha]^{25}_{D} = +38.4$ (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 6.46 (s, 1H), 6.45 (s, 1H), 5.88 (d, J = 13.5 Hz, 2H), 5.11 (s, 1H), 3.78 (s, 3H), 2.98 (td, J = 12.6, 5.8 Hz, 1H), 2.47 (dt, J = 12.9, 3.7 Hz, 1H), 2.08–1.52 (m, 5H), 1.21–1.09 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 208.19, 159.05, 152.53, 147.98, 142.53, 131.37, 130.86, 121.59, 114.04, 105.90, 101.53, 95.05, 93.24, 55.56, 48.84, 39.28, 36.39, 27.84, 21.69; HRMS (ESI⁺): calcd for C₂₁H₂₀O₅ [M+Na]⁺ = 375.1208, found = 375.1209; The ee value was 76%, t_R (minor) = 15.0 min, t_R (major) = 17.8 min (Chiralcel IB, $\lambda = 254$ nm, hexane/2-propanol =95/5, flow rate = 0.5 mL/min).

Racemic 3w

Enantiomerically enriched 3w

5. Scale-up Synthesis and Synthetic Elaboration of Product

(i). General procedure of Scale-up synthesis

Procedure for scale-up synthesis of 3h

To a round bottle flask with a magnetic stirring bar were added *ortho*-quinone methids **1a** (0.31 g, 1.21 mmol), α -bromoacetophenone **2a** (0.44 g, 1.45 mmol), phosphonium salt **P11** (95.6 mg, 0.121 mmol) and Cs₂CO₃ (1.58 g, 4.84 mmol), followed by the addition of dry DCM (15 mL). The reaction mixture was stirred at -20 °C for 3 days. Then, the reaction was added H₂O (10 mL), and the mixture was extracted with DCM (10 mL x 3), dried over Na₂SO₄, and the solvent was removed

mAU

under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to give **3h** (0.5 g, 86% yield, > 20:1 dr, 94% ee) as a white solid.

Procedure for scale-up synthesis of 3m

To a round bottle flask with a magnetic stirring bar were added ortho-quinone methids 1a (0.31 g, 1.21 mmol), α -bromoacetophenone **2a** (0.33 g, 1.45 mmol), phosphonium salt **P11** (95.6 mg, 0.121 mmol) and Cs₂CO₃ (1.58 g, 4.84 mmol), followed by the addition of dry DCM (15 mL). The reaction mixture was stirred at -20 °C for 3 days. Then, the reaction was added H₂O (10 mL), and the mixture was extracted with DCM (10 mL x 3), dried over Na₂SO₄, and the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to give **3m** (0.42 g, 86% yield, > 20:1 dr, 96% ee) as a white solid.

(ii). Synthetic elaboration of product

Under nitrogen atmosphere, a flame-dried round bottle flask with a magnetic stirring bar were added 3r (with > 20:1 dr and 86% ee, 63.7 mg, 0.15 mmol), and dry DCM (2 mL), after cooling to 0 °C, Et₃SiH (484 mg, 4.16 mmol), BF₃.(Et)₂O (48% wt, 589 mg, 4.16 mmol) and H₂O (10.8 mg, 0.6 mmol) were added, after stired for 20 min at 0 °C, the solution was heated to 40 °C for 12 h. The reaction was cooled to room temperature and H_2O (3 mL) was added. the mixture was extracted with DCM (5 mL x 3), dried over Na_2SO_4 , and the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give 4 (52.3 mg, 85% yield, > 20:1 dr, 86% ee) as a white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (m, 3H), 7.71 (s, 1H), 7.45 (m, 2H), 7.39 (dd, J = 8.4, 1.4 Hz, 1H), 7.00 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 6.46 (s, 1H), 6.40 (s, 1H), 5.88 (dd, J = 3.8, 1.0 Hz, 2H), 4.88 (td, J = 7.5, 5.2 Hz, 1H), 4.25 (d, J = 7.6 Hz, 1H), 3.78 (s, 3H), 3.26 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) & 158.80, 154.30, 147.77, 141.87, 135.05, 134.65, 133.65, 132.46, 129.18, 128.15, 128.00, 127.77, 127.73, 126.12, 125.62, 121.78, 114.27, 105.36, 101.26, 93.24, 93.00, 55.40, 53.27, 40.90; ESI-HRMS: calcd for $C_{27}H_{22}O_4$ [M+Na]⁺ = 433.1416, found = 433.1394; t_R (minor) = 8.9 min, t_R (major) = 9.9 min (Chiralcel IB, λ = 254 nm, hexane/2-propanol = 95/5, flow rate = 0.5 mL/min).

Chromatogram D:\HPLC-Data\ZS\694\05-95-5-0.5-IB-100minZS-R-694RACE.lcd

Racemic 4

Enantiomerically enriched 4

6. Mechanism Studies and Proposed Transition State Models

The methylated catalysts **P11'** was prepared and used for the asymmetric reaction, for testing the reactivities and enantioselectivities. The results were listed in the following table.

Table S5. Asymmetric [4+1] cycloaddition promoted by different phosphonium salts in different solvents and the proposed transition state models.^[a]

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **P** (10 mol %), Cs_2CO_3 (4.0 equiv.) and solvent (2.0 mL) were stirred for 6 h-64 h. [b] Isolated yields. [c] The ee value was determined by chiral HPLC. PMP = *p*-methoxyphenyl.

7. Crystallographic Data of 3m

Figure S2. X-ray structure of 3m (CCDC 1876074)

Empirical formula	C25H18O5
Formula weight	398.39
Temperature/K	293.8(4)
Crystal system	monoclinic
Space group	P21
a/Å	11.6007(8)
b/Å	5.7368(5)
c/Å	15.0074(10)
α/°	90

β/°	101.620(7)
γ/°	90
Volume/Å3	978.29(13)
Z	2
pcalcg/cm3	1.352
µ/mm-1	0.773
F(000)	416.0
Crystal size/mm3	0.7 ×0.3 ×0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.78 to 146.36
Index ranges	$-14 \le h \le 13, -6 \le k \le 6, -18 \le l \le 18$
Reflections collected	10155
Independent reflections	3452 [Rint = 0.0406, Rsigma = 0.0364]
Data/restraints/parameters	3452/1/273
Goodness-of-fit on F2	1.039

Final R indexes [I>= 2σ (I)]	R1 = 0.0579, wR2 = 0.1605
Final R indexes [all data]	R1 = 0.0635, wR2 = 0.1702
Largest diff. peak/hole / e Å-3	0.41/-0.23
Flack parameter	-0.04(19)

8. References

- [1] a) X. Han, Y. Wang, F. Zhong, Y. Lu, J. Am. Chem. Soc., 2011, 133, 1726; b) X. Han, F. Zhong, Y. Wang, Y. Lu, Angew. Chem. Int. Ed., 2012, 51, 767; c) F. Zhong, X. Han, Y. Wang, Y. Lu, Chem. Sci., 2012, 3, 1231; d) F. Zhong, X. Han, Y. Wang, Y. Lu, Angew. Chem. Int. Ed., 2011, 50, 7837; e) F. Zhong, J. Luo, G.-Y. Chen, X. Dou, Y. Lu, J. Am. Chem. Soc., 2012, 134, 10222; f) F. Zhong, X. Dou, X. Han, W. Yao, Q, Zhu, Y. Meng, Y. Lu, Angew. Chem. Int. Ed., 2013, 52, 943.
- [2] S. Wen, X. Li, W. Yao, A. Waheed, N. Ullah, Y. Lu, Eur. J. Org. Chem., 2016, 2016, 4298.
- [3] J. Zhang, H. Wang, Q. Jin, C. Zheng, G. Zhao, Y. Shang, Org. Lett., 2016, 18, 4774.
- [4] J. Pan, J. Wu, H. Zhang, X. Ren, J. Tan, L. Zhu, H. Zhang, C. Jiang, T. Wang, *Angew. Chem. Int. Ed.*, 2019, **58**, 7425.
- [5] a) L. Jurd, *Tetrahedron.*, 1977, 33, 16; b) P. N. Moquist, Moquist, T. Moquist, S. E. Schaus, *Angew. Chem. Int. Ed.* 2010, 49, 7096.
- [6] a) T. A. Salama, Z. Novak, *Tetrahedron Lett.*, 2011, **52**, 4026; b) T. Maji, A. c) Karmakar, O. Reiser, *J. Org. Chem.*, 2011, **76**, 736; d) K. Mal, A. Sharma, P.R Maulik, I. Das, *Chem. Eur. J.*, 2014, **20**, 662;
- [7] F. Zhong, X. Dou, X. Han, W. Yao, Q. Zhu, Y. Meng, Y. Lu*, Angew. Chem. Int. Ed., 2013, 52, 943.

