Supporting Information:

Enantioselective Rearrangement of Indolyl Carbonates Catalyzed by Chiral DMAP-*N*-oxides

Meng Shan, Tao Liang, Ye-Fei Zhang, Ming-Sheng Xie,* Gui-Rong Qu, and Hai-Ming Guo*

Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

E-mail: xiemingsheng@htu.edu.cn; ghm@htu.edu.cn

Contents

1. General information	S2
2. HRMS experiments	S3
3. Substrates synthesis	S5
4. Typical procedure for the rearrangement of indolyl carbonates	S8
5. Gram-scale synthesis of 2a	S9
6. References	S10
7. The analytical and spectral characterization data for the oxindoles	S11
8. Copies of NMR Spectra	S22
9. Copies of HPLC Spectra.	S40

1. General information

¹H NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = $\frac{1}{2}$ doublet; t = triplet; q = quartet; sext = sextet; br = broad, m = multiplet), coupling constants (Hz), integration. ¹³C NMR data were collected on Bruker Avance III HD 150 or Avance 100 MHz spectrometer. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel ADH/ODH/IE in comparison with the authentic racemates. Chiral HPLC analysis recorded on Thermo scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were reported as follows: $\left[\alpha\right]_{D}^{T}$ (c: g/100 mL, in solvent). Optical rotations recorded on Autopol Automatic Polarimeter. HRMS was recorded on an ABI/Sciex QStar Mass Spectrometer (ESI). Toluene and THF were freshly distilled from sodium under nitrogen prior to use. CH₂Cl₂ was distilled from CaH₂ under nitrogen prior to use. Other solvents used for work-up and purification purposes were purchased in technical grade quality and distilled by rotary evaporator before use. The chiral DMAP-N-oxides C9a-C9f and catalyst C10a were synthesized by the same procedure in the literature.¹

2. HRMS experiments

3. Substrates Synthesis

Indolyl carbonates **1a-1t** were prepared according to literature precedents.²⁻⁴ Among these substrates, indolyl carbonates **1d**, **1k**, **1o**, **1r**, and **1t** were new compounds and their characterization data were listed as follows.

1,1,1-Trichloro-2-methylpropan-2-yl 3-methyl-2-((((1,1,1-trichloro-2-methylpropan-2-yl)oxy)

carbonyl)oxy)-1*H*-indole-1-carboxylate (1d)

A colorless solid. m.p.: 160.4-161.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.0 Hz, 1H), 7.49-7.42 (m, 1H), 7.35-7.30 (m, 1H), 7.30-7.24 (m, 1H), 2.18 (s, 3H), 2.10 (s, 6H), 2.02 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 149.2, 148.1, 138.3, 131.5, 127.9, 124.7, 123.5, 118.9, 115.9, 105.6, 105.5, 105.1, 92.4, 91.8, 21.9, 21.1, 7.0.

HRMS: exact mass calcd for $C_{19}H_{19}Cl_6NO_5Na^+$ (M+Na)⁺ requires m/z 573.9287, found m/z 573.9284.

Phenyl 3-butyl-2-((phenoxycarbonyl)oxy)-1*H*-indole-1-carboxylate (1k)

A colorless solid. m.p.: 115.0-115.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.0 Hz, 1H), 7.62-7.54 (m, 1H), 7.51-7.42 (m, 2H), 7.40-7.28 (m, 7H), 7.25-7.21 (m, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 2.75 (d, *J* = 7.6 Hz, 2H), 1.77-1.65 (m, 2H), 1.45 (sext, *J* = 7.6 Hz, 2H), 0.98 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 151.4, 151.1, 150.1, 148.8, 137.2, 132.5, 129.9, 129.7, 127.8, 126.8, 126.7, 125.2, 123.8, 121.8, 120.9, 119.5, 115.8, 111.0, 31.2, 22.7, 22.3, 14.0. **HRMS:** exact mass calcd for C₂₆H₂₃NO₅Na⁺ (M+Na)⁺ requires m/z 452.1468, found m/z 452.1475.

Phenyl 2-((phenoxycarbonyl)oxy)-3-(2-((phenoxycarbonyl)oxy)ethyl)-1H-indole

-1-carboxylate (10)

A colorless solid. m.p.: 146.2-147.6 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 8.20 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.51-7.45 (m, 2H), 7.43-7.39 (m, 1H), 7.38-7.33 (m, 4H), 7.33-7.28 (m, 4H), 7.25-7.20 (m, 2H), 7.18-7.07 (m, 4H), 4.54 (t, *J* = 7.2 Hz, 2H), 3.23 (t, *J* = 7.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 153.9, 151.3, 151.2, 151.0, 150.0, 148.6, 138.5, 132.5, 129.9, 129.7, 129.6, 127.2, 126.9, 126.7, 126.2, 125.6, 124.2, 121.7, 121.3, 120.9, 119.2, 115.9, 106.1, 66.9, 22.5.

HRMS: exact mass calcd for $C_{31}H_{23}NO_8Na^+$ (M+Na)⁺ requires m/z 560.1316, found m/z 560.1317.

Phenyl 3-benzyl-4-bromo-2-((phenoxycarbonyl)oxy)-1*H*-indole-1-carboxylate (1r)

A colorless solid. m.p.: 174.2-176.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.4 Hz, 1H), 7.49-7.44 (m, 3H), 7.37-7.29 (m, 9H), 7.24-7.19 (m, 3H), 6.96 (d, *J* = 8.0 Hz, 2H), 4.44 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 150.92, 150.88, 149.4, 148.3, 139.7, 139.6, 134.0, 130.0, 129.7, 129.0, 128.59, 128.56, 127.1, 126.8, 126.3, 126.1, 125.7, 121.6, 120.8, 115.0, 114.6, 109.7, 28.9. HRMS: exact mass calcd for C₂₉H₂₀BrNO₅Na⁺ (M+Na)⁺ requires m/z 564.0417, found m/z 564.0415

Phenyl 6-bromo-3-methyl-2-((phenoxycarbonyl)oxy)-1*H*-indole-1-carboxylate (1t)

A colorless solid. m.p.: 157.1-161.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.50-7.45 (m, 3H), 7.40-7.29 (m, 6H), 7.26-7.23 (m,

1H), 7.11 (d, *J* = 8.0 Hz, 2H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 151.2, 151.0, 150.0, 148.5, 137.5, 132.9, 129.9, 129.8, 127.2, 127.1, 127.0, 126.8, 121.7, 120.9, 120.5, 118.9, 118.8, 106.4, 7.2.

HRMS: exact mass calcd for $C_{23}H_{16}BrNO_5Na^+$ (M+Na)⁺ requires m/z 488.0104, found m/z 488.0094

4. Typical procedure for the rearrangement of indolyl carbonates

In a test tube, indolyl carbonate **1** (0.05 mmol), catalyst **C9a** (0.6 mg, 2.5 mol%), and 3Å MS (40 mg) were added subsequently. Then, the tube was filled with N₂ gas. After that, toluene (0.5 mL) was added and the reaction was stirred at rt until reactant **1** was consumed (determined by TLC). Then, the reaction was quenched with iodomethane (0.05 mL). Subsequently, the crude mixture was purified by flash column chromatography on silica gel (gradient elution: i) pure petroleum ii) petroleum: $CH_2Cl_2 = 1:10$) to give the desired rearrangement product **2**.

5. Gram-scale synthesis of 2a

In a 50 mL round bottom flask equipped with a magnetic stir bar, indolyl carbonate **1a** (1.1640 g, 3 mmol), catalyst **C9a** (33 mg, 2.5 mol %), and 3Å MS (2.4000 g) were added subsequently. Then, the round bottom flask was filled with N₂ gas. After that, toluene (30 mL) was added and the reaction was stirred at rt until reactant **1a** was consumed (45 h). Then, the reaction was quenched with iodomethane (3.0 mL). Subsequently, the crude mixture was extracted with EtOAc/H₂O, dried over Na₂SO₄ and concentrated *in vacuo*. Subsequently, the crude product was purified by flash column chromatography on silica gel (gradient elution: i) pure petroleum ii) petroleum: CH₂Cl₂ = 1:10) to give the desired rearrangement product **2a** in 1.0940 g.

6. References

(1) M.-S. Xie, Y.-F. Zhang, M. Shan, X.-X. Wu, G.-R. Qu and H.-M. Guo, *Angew. Chem., Int. Ed.,* 2019, **58**, 2839.

- (2) H. Mandai, T. Fujiwara, K. Noda, K. Fujii, K. Mitsudo, T. Korenaga and S. Suga, Org. Lett., 2015, 17, 4436;
- (3) H. Mandai, K. Fujii, H. Yasuhara, K. Abe, K. Mitsudo, T. Korenaga and S. Suga, Nat. Commun., 2016, 7. 11297.
- (4) S. A. Shaw, P. Aleman, J. Christy, J. W. Kampf, P. Va and E. Vedejs, *J. Am. Chem. Soc.*, 2006, **128**, 925.

7. The analytical and spectral characterization data for the oxindoles

(S)-Diphenyl-3-methyl-2-oxoindoline-1,3-dicarboxylate (2a)

A pale yellow oil; 18.9 mg, 98% yield, 94% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 11.370 min (minor), 12.302 min (major).

 $[\alpha]_D^{27} = +97.5$ (c = 0.46, CHCl₃). The absolute configuration of compound (*S*)-**2a** was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H** NMR (600 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.50-7.40 (m, 4H), 7.38-7.28 (m, 6H), 7.22 (t, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 7.8 Hz, 2H), 1.90 (s, 3H).

(S)-Dibenzyl-3-methyl-2-oxoindoline-1,3-dicarboxylate (2b)

A colorless oil; 19.0 mg, 92% yield, 91% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, $\lambda = 256$ nm, retention time: 26.345 min (major), 31.578 min (minor).

 $[\alpha]_D^{27} = 79.8$ (c = 0.19, CHCl₃). The absolute configuration of compound (*S*)-**2b** was assigned by comparison with the (*S*)-enantiomer reported in the literature.²

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.4 Hz, 1H), 7.56-7.47 (m, 2H), 7.42-7.31 (m, 4H), 7.26-7.20 (m, 4H), 7.19-7.13 (m, 1H), 7.12-7.06 (m, 2H), 5.46 (s, 2H), 5.11 (s, 2H), 1.74 (s, 3H).

(S)-Dimethyl-3-methyl-2-oxoindoline-1,3-dicarboxylate (2c)

A colorless oil; 11.2 mg, 87% yield, 93% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 21.517 min (minor), 22.097 min (major).

 $[\alpha]_D^{27} = +74.3$ (c = 0.14, CHCl₃). The absolute configuration of compound (*S*)-2c was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.41-7.35 (m, 1H), 7.30-7.26 (m, 1H), 7.23-7.17 (m, 1H), 4.04 (s, 3H), 3.67 (s, 3H), 1.73 (s, 3H).

A colorless solid; 24.3 mg, 88% yield, 91% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 5.543 min (major), 6.099 min (minor).

 $[\alpha]_D^{27} = +85.6$ (c = 0.75, CHCl₃). The absolute configuration of the product (*S*)-2d was assigned by analogy.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.39-7.32 (m, 1H), 7.28-7.24 (m, 1H), 7.22-7.16 (m, 1H), 2.10 (s, 3H), 2.09 (s, 3H), 1.85 (s, 3H), 1.72 (s, 3H), 1.64 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 166.4, 148.0, 139.5, 129.6, 128.5, 125.3, 122.5, 116.1, 105.4, 105.3, 92.1, 90.2, 56.7, 21.79, 21.78, 21.3, 20.7, 18.8.

HRMS: exact mass calcd for $C_{19}H_{19}Cl_6NO_5Na^+$ (M+Na)⁺ requires m/z 573.9287, found m/z 573.9287.

(S)-Bis(4-methoxyphenyl)-3-methyl-2-oxoindoline-1,3-dicarboxylate (2e)

A colorless solid; 19.0 mg, 86% yield, 96% ee.

HPLC CHIRALCEL ADH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 34.812 min (minor), 52.155 min (major).

 $[\alpha]_D^{27} = +85.7$ (c = 0.62, CHCl₃). The absolute configuration of compound (*S*)-2e was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.47-7.38 (m, 2H), 7.32-7.27 (m, 1H), 7.25-7.20 (m, 2H), 6.98-6.91 (m, 2H), 6.90-6.80 (m, 4H), 3.83 (s, 3H), 3.77 (s, 3H), 1.88 (s, 3H).

(S)-Bis(4-fluorophenyl)-3-methyl-2-oxoindoline-1,3-dicarboxylate (2f)

A colorless oil; 19.8 mg, 94% yield, 93% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 9.338min (minor), 10.020 min (major).

 $[\alpha]_D^{27} = 95.4$ (c = 0.23, CHCl₃). The absolute configuration of compound (*S*)-2f was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 1H), 7.50-7.39 (m, 2H), 7.34-7.27 (m, 3H), 7.18-7.09 (m, 2H), 7.06-6.98 (m, 2H), 6.97-6.90 (m, 2H), 1.89 (s, 3H).

(S)-Phenyl -1-(4-methoxyphenyl)-3-methyl-2-oxoindoline-3-carboxylate (2g)

A colorless oil; 18.3 mg, 98% yield, 88% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 41.653 min (major), 50.765 min (minor).

 $[\alpha]_D^{27} = -175$ (c = 0.504, CHCl₃). The absolute configuration of compound (*S*)-**2**g was assigned by analogy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43-7.27 (m, 6H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.08-7.02 (m, 2H), 7.02-6.96 (m, 2H), 6.82 (d, *J* = 8.0 Hz, 1H), 3.87 (s, 3H), 1.88 (s, 3H).

(S)-Phenyl -1-allyl-3-methyl-2-oxoindoline-3-carboxylate (2h)

A colorless oil; 14.5 mg, 95% yield, 81% ee.

HPLC CHIRALCEL ADH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 9.665 min (minor), 12.630 min (major).

 $[\alpha]_D^{27} = 66.48$ (c = 0.307, CHCl₃). The absolute configuration of compound (*S*)-**2h** was assigned by analogy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37-7.29 (m, 4H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.0 Hz, 1H), 5.91-5.82 (m, 1H), 5.28-5.19 (m, 2H), 4.54-4.45 (m, 1H), 4.40-4.28 (m, 1H), 1.79 (s, 3H).

(S)-Phenyl-1,3-dimethyl-2-oxoindoline-3-carboxylate (2i)

A colorless oil; 12.8 mg, 91% yield, 50% ee.

HPLC CHIRALCEL OD(H), *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL/min, λ = 256 nm, retention time: 13.400 min (minor), 15.830 min (major).

 $[\alpha]_D^{27} = 30.9$ (c = 0.204, CHCl₃). The absolute configuration of compound (*S*)-**2i** was assigned by analogy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39-7.35 (m, 2H), 7.33-7.27 (m, 2H), 7.20-7.17 (m, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.96-6.90 (m, 3H), 3.30 (s, 3H), 1.78 (s, 3H).

(S)-Diphenyl-3-ethyl-2-oxoindoline-1,3-dicarboxylate (2j)

A colorless solid; 18.4 mg, 92% yield, 96% ee.

HPLC CHIRALCEL ADH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 12.400 min (minor), 14.880 min (major).

 $[\alpha]_D^{27} = +90.0$ (c = 0.32, CHCl₃). The absolute configuration of compound (*S*)-2j was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 1H), 7.49-7.39 (m, 4H), 7.38-7.28 (m, 6H), 7.25-7.18 (m, 1H), 7.02-6.95 (m, 2H), 2.56 (dq, *J* = 14.0, 7.2 Hz, 1H), 2.42 (dq, *J* = 14.0, 7.2 Hz, 1H), 0.86 (t, *J* = 7.2 Hz, 3H).

(S)-Diphenyl-3-butyl-2-oxoindoline-1,3-dicarboxylate (2k)

A colorless solid; 19.4 mg, 92% yield, 96% ee.

HPLC CHIRALCEL ADH, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 19.597 min (major), 22.448 min (minor).

 $[\alpha]_D^{27} = +31.4$ (c = 0.78, CHCl₃). The absolute configuration of the product (*S*)-**2h** was assigned by analogy.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 1H), 7.48-7.40 (m, 4H), 7.36-7.28 (m, 6H), 7.25-7.19 (m, 1H), 7.01-6.95 (m, 2H), 2.54-2.44 (m, 1H), 2.42-2.32 (m, 1H), 1.39-1.29 (m, 2H), 1.27-1.20 (m, 1H), 1.12-1.00 (m 1H), 0.86 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 171.9, 167.5, 150.4, 150.2, 149.4, 139.9, 129.9, 129.8, 129.6, 127.0, 126.7, 126.5, 125.8, 123.3, 121.7, 121.3, 115.9, 60.4, 34.8, 25.9, 22.8, 13.9.

HRMS: exact mass calcd for $C_{26}H_{23}NO_5Na^+$ (M+Na)⁺ requires m/z 452.1468, found m/z 452.1472.

(S)-Diphenyl-3-benzyl-2-oxoindoline-1,3-dicarboxylate (2l)

A colorless solid; 22.6 mg, 98% yield, 92% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 8.145 min (major), 9.283 min (minor).

 $[\alpha]_D^{27}$ = +33.1 (c = 0.24, CHCl₃). The absolute configuration of compound (*S*)-2i was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.52 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.45-7.08 (m, 13H), 7.06-7.00 (m, 2H), 6.96-6.90 (m, 2H), 3.78 (d, *J* = 13.2 Hz, 1H), 3.68 (d, *J* = 13.2 Hz, 1H).

(S)-Diphenyl-3-allyl-2-oxoindoline-1,3-dicarboxylate (2m)

A colorless solid; 18.3 mg, 89% yield, 84% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 50/50, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 6.277min (minor), 6.767 min (major).

 $[\alpha]_D^{27} = +77.5$ (c = 0.60, CHCl₃). The absolute configuration of compound (*S*)-2j was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H** NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 1H), 7.50-7.40 (m, 4H), 7.38-7.27 (m, 6H), 7.23 (t, J = 7.2 Hz, 1H), 6.99 (d, J = 7.8 Hz, 2H), 5.58-5.47 (m, 1H), 5.18 (d, J = 16.8 Hz, 1H), 5.09 (d, J = 10.2 Hz, 1H), 3.18 (d, J = 7.2 Hz, 2H).

(S)-Diphenyl-3-(cyanomethyl)-2-oxoindoline-1,3-dicarboxylate (2n)

A pale yellow solid; 20.0 mg, 98% yield, 85% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 20.940 min (minor), 28.458 min (major).

 $[\alpha]_D^{27} = +70.4$ (c = 0.12, CHCl₃). The absolute configuration of compound (*S*)-**2k** was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H NMR** (400 MHz, CDCl₃) δ 8.17-8.08 (m, 1H), 7.60-7.52 (m, 2H), 7.50-7.43 (m, 2H), 7.42-7.30 (m, 6H), 7.28-7.23 (m, 1H), 7.03-6.93 (m, 2H), 3.51 (d, *J* = 16.8 Hz, 1H), 3.31 (d, *J* = 16.8 Hz, 1H).

(S)-Diphenyl-2-oxo-3-(2-((phenoxycarbonyl)oxy)ethyl)indoline-1,3-dicarboxylate (20)

A colorless oil; 25.2 mg, 94 % yield, 95% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 24.280 min (minor), 28.282 min (major).

 $[\alpha]_D^{27} = +46.0$ (c = 0.57, CHCl₃). The absolute configuration of the product (S)-**21** was assigned by analogy.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 1H), 7.55-7.47 (m, 1H), 7.46-7.41 (m, 1H), 7.38-7.28 (m, 7H), 7.25-7.17 (m, 5H), 7.15-7.08 (m, 2H), 7.02-6.95 (m, 2H), 4.45 (ddd, *J* = 9.2, 5.6, 3.6 Hz, 1H), 4.01 (td, *J* = 10.8, 4.4 Hz, 1H), 3.15 (ddd, *J* = 15.2, 10.8, 6.0 Hz, 1H), 2.85 (dt, *J* = 14.8, 4.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 167.1, 153.2, 151.0, 150.3, 150.2, 149.6, 140.3, 130.6, 129.64, 129.61, 129.59, 126.68, 126.58, 126.3, 125.9, 125.1, 123.4, 121.6, 121.2, 116.5, 64.1, 58.5, 33.0.

HRMS: exact mass calcd for $C_{31}H_{23}NO_8Na^+$ (M+Na)⁺ requires m/z 560.1316, found m/z 560.1299.

(S)-Diphenyl-3-(2-((methoxycarbonyl)amino)ethyl)-2-oxoindoline-1,3-dicarboxylate (2p)

A colorless oil; 22.8 mg, 96% yield, 88% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 42.518 min (major), 49.835 min (minor).

 $[\alpha]_D^{27} = +73.5$ (c = 0.55, CHCl₃). The absolute configuration of compound (*S*)-**2m** was assigned by comparison with the (*S*)-enantiomer reported in the literature.³

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 1H), 7.50-7.40 (m, 4H), 7.37-7.28 (m, 6H), 7.22 (t, J = 7.6 Hz, 1H), 7.01-6.92 (m, 2H), 4.75 (br, 1H), 3.58 (s, 3H), 3.36-3.12 (m, 2H), 2.81 (dt, J = 14.4, 7.6 Hz, 1H), 2.68-2.53 (m, 1H).

(S)-Diphenyl-2-oxo-3-phenylindoline-1,3-dicarboxylate (2q)

A colorless solid; 22.0 mg, 98% yield, 92% ee.

HPLC CHIRALCEL ADH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 15.922 min (minor), 23.277 min (major).

 $[\alpha]_D^{27} = +70.3$ (c = 0.64, CHCl₃). The absolute configuration of compound (*S*)-**2n** was assigned by comparison with the (*S*)-enantiomer reported in the literature.²

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.0 Hz, 1H), 7.65 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.56 (td, *J* = 7.6, 1.2 Hz, 1H), 7.48-7.20 (m, 14H), 7.11-7.00 (m, 2H).

(S)-Diphenyl-3-benzyl-4-bromo-2-oxoindoline-1,3-dicarboxylate (2r)

A colorless oil; 23.5 mg, 87 % yield, 92% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time:12.035 min (minor), 15.068 min (major).

 $[\alpha]_D^{27} = -765$ (c = 0.200, CHCl₃). The absolute configuration of the product (*S*)-**2r** was assigned by analogy.

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 1H), 7.49-7.35 (m, 5H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.28-7.23 (m, 1H), 7.23-7.16 (m, 3H), 7.16-7.06 (m, 5H), 6.95 (d, *J* = 7.2 Hz, 2H), 4.06 (d, *J* = 13.6 Hz, 1H), 3.80 (d, *J* = 13.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 170.5, 165.6, 150.5, 150.0, 148.5, 141.6, 133.5, 131.1, 129.8, 129.74, 129.65, 129.1, 128.2, 127.6, 126.8, 126.6, 126.3, 121.6, 121.5, 118.9, 114.5, 63.6, 38.3. HRMS: exact mass calcd for C₂₉H₂₀BrNO₅Na⁺ (M+Na)⁺ requires m/z 564.0417, found m/z

564.0417

(S)-Diphenyl-5-bromo-3-methyl-2-oxoindoline-1,3-dicarboxylate (2s)

A colorless solid; 22.8 mg, 98% yield, 92% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 9.515 min (minor), 10.178 min (major).

 $[\alpha]_D^{27} = +6.5$ (c = 0.42, CHCl₃). The absolute configuration of compound (*S*)-**20** was assigned by comparison with the (*S*)-enantiomer reported in the literature.²

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.8 Hz, 1H), 7.60-7.54 (m, 2H), 7.49-7.41 (m, 2H), 7.39-7.21 (m, 6H), 7.04-6.98 (m, 2H), 1.90 (s, 3H).

(S)-Diphenyl -6-bromo-3-methyl-2-oxoindoline-1,3-dicarboxylate (2t)

A colorless oil; 21.6 mg, 93 % yield, 93% ee.

HPLC CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 9.253 min (minor), 10.567 min (major).

 $[\alpha]_D^{27} = -162.62$ (c = 0.610, CHCl₃). The absolute configuration of the product (*S*)-**2t** was assigned by analogy.

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.50-7.42 (m, 3H), 7.39-7.28 (m, 6H), 7.26-7.21 (m, 1H), 6.98 (d, *J* = 8.4 Hz, 2H), 1.89 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 167.2, 150.3, 150.1, 149.3, 140.2, 129.8, 129.7, 128.9, 127.6, 126.9, 126.7, 124.3, 123.7, 121.5, 121.2, 119.6, 55.8, 20.9.

HRMS: exact mass calcd for $C_{23}H_{16}BrNO_5Na^+$ (M+Na)⁺ requires m/z 488.0104, found m/z 488.0103.

8. Copies of NMR spectra

¹H NMR of 1d

¹³C NMR of 1d

¹³C NMR of 11

S25

¹H NMR of 2c

¹H NMR of 2d

¹³C NMR of 2d

¹H NMR of 2e

¹H NMR of 2f

¹H NMR of 2h

S31

¹H NMR of 2j

¹H NMR of 2k

¹³C NMR of 2k 171.92 167.53 150.40 150.24 149.38 139.86 129.92 129.92 129.60 129.60 129.60 129.57 122.78 126.72 126.72 126.72 126.72 126.73 126.74 127.70 127.01 126.75 127.05 12 ~ 34.80 ~ 25.86 ~ 22.82 ~ 13.88 - 60.42 . 11000000 10000000 9000000 8000000 0 ^{_}OPh 7000000 0 . 6000000 ő OPh 5000000 2k 4000000 3000000 2000000 1000000 0 -1000000 100 90 f1 (ppm) 190 180 170 160 150 130 80 70 60 50 40 30 20 10 0 140120 110

¹H NMR of 2l 7.7687.5077.5077.5037.4217.4197.3687.3727.3347.3357.3357.3357.3693.36991.558 0.001 4.0E+11 3.8E+11 3.6E+11 3.4E+11 3.2E+11 0 3.0E+11 Bŋ OPh 2.8E+11 \cap 2.6E+11 2.4E+11 0 OPh 2. 2E+11 2.0E+11 21 1.8E+11 1.6E+11 1.4E+11 1.2E+11 1.0E+11 8.0E+10 6.0E+10 4.0E+10 2.0E+10 illi 0. 0E+00 1.95[₹] 2.00 5.88 1.00_{T} 70.07 -2.0E+10 9.5 9.0 6.0 5.0 4.5 f1 (ppm) 3.0 2.5 8.5 8.0 7.5 7.0 6.5 5.5 4.0 3.5 2.0 1.5 1.0 0.5 0.0

¹H NMR of 2m

¹H NMR of 2n

S34

¹H NMR of 20

¹³C NMR of 20

¹H NMR of 2p

¹H NMR of 2q

S37

¹H NMR of 2s

¹H NMR of 2t

¹³C NMR of 2t

9. Copies of HPLC Spectra

2

12.302 VV

0.2990 3.58593e4 1910.61646

96.7664

积分结果							
Peak	Retention Time	Area	Height	Area	Height		
	min	mAU*min	mAU	%	%		
1	26.345	764.464	430.290	95.66	95.84		
2	31.578	34.712	18.664	4.34	4.16		
Total:		799.176	448.954	100.00	100.00		

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	21.010	216.097	351.820	51.24	52.84
2	22.560	205.602	314.056	48.76	47.16
Total:		421.700	665.875	100.00	100.00

4	min	mAU*min	mAU	%	%
2	21.517 22.097	32.069 892.689	98.238 887.431	3.47 96.53	9.97 90.03
Total:		924.758	985.669	100.00	100.00

1	5.543	MM	0.2967	4.32002e4	2426.34473	95.7203
2	6.099	MM	0.1316	1931.51733	244,60286	4.2797

-500] \	12 - 50.765
0.0	10.0	20.0	30.0	40.0	50.0 60.0
Peak	Retention Time min	Area mAU*min	Height mAU	Area %	Height %
1	41.653	3840.320	2352.058	93.60	92.23
2	50.765	262.372	198.025	6.40	7.77
Total:		4102.692	2550.083	100.00	100.00

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	20.248	BV	0.9685	1.03027e4	153.67387	48.4500
2	23.723	VBA	1.4008	1.09619e4	107.76720	51.5500

S51

S57

3 mmol scale

π	furril		furtil	[mayors]	[mayo]	0
1	11.484	BV	0.2190	649.43195	45.88321	2.3239
2	12.441	VB	0.2705	2.72960e4	1587.22070	97.6761