Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

### Supporting Information

# Self-assembly of azaphthalocyanine-oligodeoxynucleotide conjugates into Jdimers: towards biomolecular logic gates

Jiri Demuth,<sup>a</sup> Miroslav Miletin,<sup>a</sup> Radim Kucera,<sup>a</sup> Ales Ruzicka,<sup>b</sup> Zuzana Havlinova,<sup>ac</sup> Antonin Libra,<sup>c</sup> Veronika Novakova,<sup>a</sup> Petr Zimcik<sup>\*,a</sup>

<sup>a</sup> Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203/8, 500 05 Hradec Kralove, Czech Republic, <u>zimcik@faf.cuni.cz</u>

<sup>b</sup> Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic

<sup>c</sup> Generi Biotech, Machkova 587, Hradec Kralove, 500 11, Czech Republic

### Content:

| Synthesis                                                  | S2  |
|------------------------------------------------------------|-----|
| General                                                    | S3  |
| Synthesis of AzaPcs                                        | S4  |
| Synthesis, purification and characterization of ODN probes | S7  |
| Crystallography - figures                                  | S10 |
| Study of J-dimer stability                                 | S13 |
| Study of J-dimer formation in ODN probes                   | S14 |
| Quenching efficiency                                       | S15 |
| Real time PCR                                              | S15 |
| Determination of melting temperature                       | S15 |
| Characterization of J-dimers in organic solvents           | S17 |
| Photophysics                                               | S18 |
| Characterization of J-dimers in ODN probes                 | S18 |
| NMR spectra                                                | S22 |
| Crystallography - Experimental                             | S38 |
| References                                                 | S53 |

# Synthesis



Scheme S1. Synthesis of the investigated compounds and ODN probes.

Precursors for AzaPcs, *i.e.* disubstituted pyrazine-2,3-dicarbonitriles, were prepared by nucleophilic substitution starting from 5,-6-dichloro-pyrazine-2,3-dicarbonitrile. Thus, reaction with bis(2-methoxy)ethylamine provided 5,6-bis[bis(2-methoxyethyl)amino]pyrazine-2,3-dicarbonitrile (**5**) in 99 % yield. Precursor **6** bearing hydroxy and azido groups was synthesized in four steps similarly as published before.<sup>1</sup>

Synthesis of AzaPc **2** and **4** followed the protocol recently developed for AzaPcs **1** and **3** (Scheme S1).<sup>1</sup> Briefly, lithium butoxide-induced mixed cyclotetramerization of precursor **5** and **6** yielded mixture of six congeners of the metal-free AzaPc. The retention factors of all congeners were, however, very close each other. For this reason, the desired congener **2H**<sub>2</sub>-**DMTr** (8 % yield) was isolated after reaction of the whole mixture with dimethoxytritylchloride (DMTrCl) that protected the OH groups and made the individual congeners easily separable. Coordination of central zinc (II) cation using zinc acetate in pyridine was achieved in 50 % yield leading to **2-DMTr** that was deprotected to **2** (88 %). Direct cyclotetramerization of **5** yielded 60 % of metal-free ligand that was converted to **4** in 64 %.

Similarly to synthesis of the ODN probes bearing AzaPc **1**,<sup>1</sup> AzaPc **2-DMTr** was subsequently attached to controlled-pore glass solid phase (achieved loading 55 µmol/g, based on the released DMTr) and introduced into DNA/RNA synthesizer. The selected ODNs (Chart 2) were then synthesized and eventually modified by fluorescein on 5' -end if requested. The probes were then cleaved from the solid phase, purified by HPLC and characterized by MALDI spectra (Fig. S1). Unmodified antisense **ODN-ant** (Chart 2) with part of its sequence complementary to complete sequence of the labeled probes was used in some experiments.

#### General

All organic solvents used in the synthesis were of analytical grade. Anhydrous butanol used for the cyclotetramerization was freshly distilled from magnesium. All other chemicals for the syntheses were purchased from certified suppliers (i.e. TCI Europe, Acros, and Merck) and used as received. TLC was performed on Merck aluminium sheets coated with silica gel 60 F254. Merck Kieselgel 60 (0.040-0.063 mm) was used for column chromatography. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Varian VNMR S500 NMR spectrometer. The chemical shifts are reported as  $\delta$  values in ppm and are indirectly referenced to  $Si(CH_3)_4$  via the signal from the solvent. J values are given in Hz. The UV/Vis spectra were recorded using a Shimadzu UV-2600 spectrophotometer. The fluorescence spectra were measured using an FS5 Spectrofluorometer (Edinburg Instruments). HRMS spectra were measured at UHPLC system Acquity UPLC I-class (Waters, Millford, USA) coupled to high resolution mass spectrometer (HRMS) Synapt G2Si (Waters, Manchester, UK) based on Q-TOF were used for HRMS spectra measurement. Chromatography was carried out using Acquity UPLC Protein BEH C4 (2.1 x 50mm, 1.7  $\mu$ m, 300 Å) column using gradient elution with ACN and 0.1% formic acid at flow-rate 0.4 ml/min. Electrospray ionization was operated in positive ion mode. The ESI spectra were recorded in the range 50 - 5000 m/z using leucine-enkefaline as a lock mass reference and sodium iodide for external calibration or in the range 50 - 1200 m/z using leucine-enkefaline as a lock mass reference and sodium formate for external calibration. Mass spectra of the oligonucleotide probes were obtained using a MALDI-TOF Bruker Autoflex II mass spectrometer with 3-hydroxypicolinic acid and ammonium citrate in 50% acetonitrile as a matrix.

#### Synthesis of AzaPcs

AzaPc **1**,<sup>1</sup> AzaPc **3**,<sup>2</sup> and 2-(1-{3-[4-(2-azidoethyl)piperidin-1-yl]-5,6-dicyanopyrazin-2-yl}piperidin-4yl)ethyl acetate (**6**)<sup>1</sup> were prepared according to the published procedures.

#### 5,6-bis[bis(2-methoxyethyl)amino]pyrazine-2,3-dicarbonitrile (5):

5,6-dichloropyrazine-2,3-dicarbonitrile (3.00 g, 15.00 mmol) was dissolved in THF (100 mL). Bis(2methoxy)ethylamine (13.26 mL, 90.00 mmol) was added dropwise at rt. After that, reaction was heated at 70°C for 5 hours. The solvent was then evaporated and the solid residue was dissolved in ethyl acetate (80 mL), and washed with water (3×100 mL). The layers were separated each other; remaining product was extracted from water with ethyl acetate (2×100 mL). Organic layers were collected, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and solvent was evaporated to dryness. Crude product was purified by column chromatography on silica with ethyl acetate/acetone 10:1 ( $R_f$ =0.6) as an eluent and recrystallized from methanol. Yield: 5.85 g (99%) as orange-yellow crystals. M.p. 71.0-71.2 °C. <sup>1</sup>H NMR (500 MHz, Acetone- $d_6$ )  $\delta$  3.81 (t, J = 5.1 Hz, 8H), 3.47 (t, J = 5.1 Hz, 8H), 3.18 (s, 12H) ppm. <sup>13</sup>C NMR (126 MHz, Acetone- $d_6$ )  $\delta$  148.23, 120.31, 116.12, 70.52, 58.62, 49.26 ppm. HRMS (ESI) (m/z): calculated for [M+H]<sup>+</sup> ( $C_{18}H_{29}N_6O_4^+$ ) requires 393.2245, found 393.2249.

# 2-[4-(2-azidoethyl)piperidin-1-yl]-3-[4-(2-dimethoxytrityloxyethyl)-piperidin-1-yl]-9,10,16,17,23,24hexakis[bis(2-methoxyethyl)amino]-1,4,8,11,15,18,22,25-octaazaphthalocyanine (2H<sub>2</sub>-DMTr):

Compounds **6** (1.0 g, 2.22 mmol) and **5** (2.61 g, 6.66 mmol) were dissolved in anhydrous butanol, heated to reflux and metal lithium was added (460 mg, 66.6 mmol). Reaction mixture was heated at reflux for 30 minutes. Butanol was evaporated under reduce pressure and a mixture of DCM/2% HCl 1:1 (150 mL) was added. Product was extracted by DCM (3×50 mL). Organic layers were collected and evaporated to dryness under reduced pressure by azeotropic distillation with toluene. According to TLC, the congeners in the mixture had similar R<sub>f</sub> disabling isolation of desired congener. Therefore, the mixture of congeners was only pre-purified by column chromatography on silica with DCM/MeOH 12:1 as an eluent (fractions with R<sub>f</sub> around 0.47 containing mostly desired congener were collected).

Free hydroxy groups on AzaPc periphery resulting from a spontaneous deprotection of precursor **6** by lithium butoxide used for cyclotetramerization were modified by the following procedure: Pre-purified congener (1.67 g, approx. 1 mmol) and 4,4'-dimethoxytrityl chloride (4.31 g, 12.72 mmol) were dissolved in an anhydrous pyridine (15 mL) under inert atmosphere and few crystals of 4-dimethylaminopyridine were added. Reaction mixture was stirred at rt for 48 hours. Reaction mixture was evaporated to dryness. Product was purified by column chromatography on silica with DCM/THF/MeOH 40:1:1 ( $R_f$ =0.43) as an eluent. Finally, the product was dissolved in a minimal amount of DCM (approx. 0.5 mL), dropped into hexane (100 mL) and stored at a freezer at -18 °C overnight.

Precipitate was collected and thoroughly dried. Yield: 320 mg (8 %) of purple crystals. M.p. > 300°C. <sup>1</sup>H NMR (500 MHz, Pyridine- $d_5$ )  $\delta$  7.87 – 7.81 (m, 2H), 7.73 – 7.66 (m, 4H), 7.54 – 7.49 (m, 2H), 7.40 – 7.35 (m, 1H), 7.15 – 7.08 (m, 4H), 4.81 – 4.70 (m, 4H), 4.45 – 4.39 (m, 16H), 4.39 – 4.34 (m, 8H), 3.77 (s, 6H), 3.77 – 3.72 (m, 16H), 3.72 – 3.66 (m, 8H), 3.47 – 3.41 (m, 2H), 3.35 (t, *J* = 7.1 Hz, 2H), 3.24 (s, 18H), 3.23 (s, 6H), 3.22 (s, 6H), 3.21 (s, 6H), 3.11 – 3.03 (m, 4H), 1.98 – 1.78 (m, 8H), 1.59 – 1.43 (m, 6H), -1.49 (s, 2H) ppm. <sup>13</sup>C NMR (126 MHz, Pyridine- $d_5$ )  $\delta$  158.9, 150.9, 150.8, 150.6, 149.5, 137.1, 135.3, 135.1, 130.5, 128.6, 128.1, 127.0, 123.3, 123.1, 113.5, 71.0, 70.9, 70.9, 61.3, 58.3, 58.3, 55.1, 49.0, 48.9, 48.8, 47.8, 47.5, 36.9, 35.2, 33.7, 33.5, 32.6, 32.1 ppm (some aromatic signals fused together). HRMS (ESI) (m/z): calculated for [M+H]<sup>+</sup> (C<sub>95</sub>H<sub>132</sub>N<sub>27</sub>O<sub>15</sub><sup>+</sup>) requires 1891.0391, found 1891.0325.

# 2-[4-(2-azidoethyl)piperidin-1-yl]-3-[4-(2-dimethoxytrityloxyethyl)-piperidin-1-yl]-9,10,16,17,23,24hexakis[bis(2-methoxyethyl)amino]-1,4,8,11,15,18,22,25-octaazaphthalocyaninato zinc(II) (2-DMTr):

Metal-free **2H**<sub>2</sub>-**DMTr** (290 mg, 0.15 mmol) was dissolved in anhydrous pyridine (5 mL) and zinc (II) acetate (169 mg, 0.96 mmol) was added. Reaction was stirred and refluxed for 3 hours. Pyridine was removed under reduced pressure and product was purified by column chromatography on silica with DCM/MeOH 22:1 ( $R_f$ =0.37) as an eluent. Finally, the product was dissolved in a minimal amount of DCM (approx. 0.5 mL), dropped into hexane (100 mL) and stored at a freezer at -18 °C overnight. Precipitate was collected and thoroughly dried. Yield:150 mg (50 %) of dark blue crystals. M.p. > 300°C. <sup>1</sup>H NMR (500 MHz, Pyridine- $d_5$ )  $\delta$  7.86 – 7.81 (m, 2H), 7.71 – 7.67 (m, 4H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.40 – 7.35 (m, 1H), 7.14 – 7.09 (m, 4H), 4.81 – 4.70 (m, 4H), 4.45 – 4.40 (m, 16H), 4.40 – 4.35 (m, 8H), 3.78 (s, 6H), 3.77 – 3.73 (m, 16H), 3.72 – 3.67 (m, 8H), 3.44 (t, *J* = 6.4 Hz, 2H), 3.37 – 3.32 (m, 2H), 3.23 (d, *J* = 1.3 Hz, 24H), 3.21 (s, 6H), 3.20 (s, 6H), 3.14 – 3.03 (m, 4H), 1.97 – 1.78 (m, 8H), 1.59 – 1.42 (m, 6H) ppm. <sup>13</sup>C NMR (126 MHz, Pyridine- $d_5$ )  $\delta$  159.1, 151.5, 149.6, 142.8, 137.3, 135.5, 135.3, 130.7, 128.8, 128.3, 123.5, 123.3, 113.7, 71.2, 71.2, 71.1, 58.5, 58.4, 55.3, 49.2, 49.2, 49.1, 49.0, 48.0, 47.7, 35.4, 32.8, 32.3 ppm (some aromatic signals fused together). HRMS (ESI) (m/z): calculated for [M+H]<sup>+</sup> ( $C_{95}H_{130}N_{27}O_{15}Zn^+$ ) requires 1952.9526, found 1952.9515.

# 2-[4-(2-azidoethyl)piperidin-1-yl]-3-[4-(2-hydroxyethyl)-piperidin-1-yl]-9,10,16,17,23,24hexakis[bis(2-methoxyethyl)amino]-1,4,8,11,15,18,22,25-octaazaphthalocyaninato zinc(II) (2):

Trichloroacetic acid (5.4  $\mu$ L, 0.05 mmol) was added to **2-DMTr** (50 mg, 0.03 mmol) dissolved in DCM (5 mL) and the reaction mixture was stirred for 2 hours at rt. After that, DCM (30 mL) was added and product was washed with 5% NaHCO<sub>3</sub> (3×20 mL). Organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated to dryness. Crude product was purified by column chromatography on silica with DCM/MeOH (15:1) as an eluent (R<sub>f</sub>=0.31). Yield: 37 mg (88 %) of dark blue crystals. M.p. > 300°C. <sup>1</sup>H

NMR (500 MHz, Pyridine- $d_5$ )  $\delta$  4.78 (t, J = 9.4 Hz, 4H), 4.44 – 4.38 (m, 16H), 4.38 – 4.33 (m, 8H), 4.04 (t, J = 6.5 Hz, 2H), 3.77 – 3.71 (m, 16H), 3.71 – 3.65 (m, 8H), 3.34 (t, J = 7.1 Hz, 2H), 3.23 (s, 24H), 3.20 (s, 6H), 3.20 (s, 6H), 3.16 – 3.02 (m, 4H), 2.09 – 2.03 (m, 2H), 1.99 (br, 1H), 1.91 – 1.80 (m, 4H), 1.73 – 1.41 (m, 8H) ppm. <sup>13</sup>C NMR (126 MHz, Pyridine- $d_5$ )  $\delta$  151.53, 151.44, 151.30, 150.91, 149.66, 143.22, 143.10, 142.88, 142.84, 135.51, 135.31, 123.50, 123.30, 71.22, 71.13, 59.72, 58.47, 49.20, 49.12, 49.02, 48.07, 47.76, 40.47, 35.41, 33.94, 33.47, 33.00, 32.33 ppm (some aromatic signals fused together). UV/Vis (THF):  $\lambda_{max}$  (log  $\epsilon$ ) = 654 (5.4), 596 (4.6), 505 (4.6), 373 nm (5.2). HRMS (ESI) (m/z): calculated for [M+H]<sup>+</sup> ( $C_{74}H_{112}N_{27}O_{13}Zn^+$ ) requires 1650.8219, found 1650.8181.

## 2, 3, 9, 10, 16, 17, 23, 24-octakis[bis(2-methoxyethyl)amino]-1,4,8,11,15,18,22,25octaazaphthalocyane (4H<sub>2</sub>):

Compound **4** (300 mg, 0.76 mmol) was dissolved in anhydrous BuOH (5 mL), heated to reflux and lithium (38 mg, 5.42 mmol) was added. Reaction mixture was heated at 118 °C for 1 hour. Butanol was evaporated under vacuum. Solid residue was dissolved in mixture of DCM/2% HCl 1:1 (40 mL), product was than extracted with DCM (3×20 mL). Organic layers were collected and evaporated under reduced pressure by azeotropic distillation with toluene. Product was purified by column chromatography on silica with DCM/MeOH (15:1) as eluent ( $R_f$ =0.22). Finally, the product was dissolved in a minimal amount of DCM (approx. 0.5 mL), dropped into hexane (100 mL) and stored at a freezer at -18 °C overnight. Precipitate was collected and thoroughly dried. Yield: 180 mg (60 %) of dark purple crystals. M.p. > 300°C. <sup>1</sup>H NMR (500 MHz, Pyridine- $d_5$ )  $\delta$  4.39 (t, *J* = 5.4 Hz, 32H), 3.73 (t, *J* = 5.3 Hz, 32H), 3.21 (d, *J* = 1.3 Hz, 48H), -1.56 (s, 2H) ppm. <sup>13</sup>C NMR (126 MHz, Pyridine- $d_5$ )  $\delta$  150.84, 141.16, 71.13, 58.49, 49.11 ppm (one aromatic signal is overlapped by solvent signal). HRMS (ESI) (m/z): calculated for [M+H]<sup>+</sup> ( $C_{72}H_{115}N_{24}O_{16}^{+}$ ) requires 1571.8917, found 1571.8879

# 2, 3, 9, 10, 16, 17, 23, 24-octakis[bis(2-methoxyethyl)amino]-1,4,8,11,15,18,22,25octaazaphthalocyaninato zinc(II) (4):

Compound **4H**<sub>2</sub> (700 mg, 0.45 mmol) was dissolved in pyridine (15 mL) and zinc (II) acetate (490 mg, 2.67 mmol) was added. Reaction mixture was heated at 115 °C for 3 hours, followed by evaporation of pyridine. Product was obtained by column chromatography on silica with DCM/MeOH (15:1) as a mobile phase ( $R_f$ =0.58). Finally, the product was dissolved in a minimal amount of DCM (approx. 0.5 mL), dropped into hexane (100 mL) and stored at a freezer at –18 °C overnight. Precipitate was collected and thoroughly dried. Yield: 467 mg (64 %) as dark blue crystals. M.p. > 300°C. <sup>1</sup>H NMR (500 MHz, Pyridine- $d_5$ )  $\delta$  4.39 (t, *J* = 5.5 Hz, 32H), 3.72 (t, *J* = 5.5 Hz, 32H), 3.22 (d, *J* = 0.7 Hz, 48H) ppm. <sup>13</sup>C NMR (126 MHz, Pyridine- $d_5$ )  $\delta$  151.21, 142.82, 71.20, 58.46, 49.12 ppm (one aromatic signal is

overlapped by solvent signal). UV/Vis (THF):  $\lambda_{max}$  (log  $\epsilon$ ) = 666 (5.3), 599 (4.5), 508 (4.6), 374 nm (5.1). HRMS (ESI) (m/z): calculated for [M+H]<sup>+</sup> (C<sub>72</sub>H<sub>113</sub>N<sub>24</sub>O<sub>16</sub>Zn<sup>+</sup>) requires 1633.8052, found 1633.7996

# Synthesis, purification and characterization of ODN probes *Solid phase modified with AzaPc*

AzaPc **2-DMTr** (24 mg, 0.012 mmol) and Cul (34 mg, 0.180 mmol) were dissolved in THF/diisopropylethylamine (2:1 v/v, 1 mL) and added to the alkyne-modified solid phase (120 mg) prepared according to the literature.<sup>3</sup> The suspension was shaken at rt for 24 h. Then, solvent in the vial with the solid phase was removed by decantation, solid phase was washed successively with THF, acetonitrile, dichloromethane, and diethyl ether (4×1 mL of each) and dried under vacuum over the  $P_2O_5$ . The loading of AzaPc to the solid phase was determined using absorption spectroscopy and monitoring the band corresponding to 4,4'-dimethoxytrityl (*i.e.*, at 498 nm) released from the solid phase. The procedure was as follows: approximately 2–3 mg of the support was accurately weighed directly to the test tube, perchloric acid solution (10 mL, 70% HClO₄/methanol in ratio 52:46) was then added, the test tube was sealed and shaken for 30 min. The sample was diluted, transferred to 1 cm cuvette and absorbance at 498 nm was measured. The loading was calculated as follows:

$$loading (\mu mol/g) = \frac{A_{498 nm} \times dilution \times 143}{weight of support in mg}$$

The loading of the solid phase by AzaPc **2-DMTr** was 55  $\mu$ mol/g.

#### ODNs labeled with AzaPc

ODNs (**ODN-1**, **ODN-2**, **F-ODN-2**) were synthesized with a Perkin– Elmer Applied Biosystems 394 DNA/RNA synthesizer using the modified solid phase by the Generi Biotech company (Hradec Kralove, Czech Republic). Synthesis and characterization of **F-ODN-1** was published before.<sup>1</sup> For **F-ODN-2**, the 5'-labeling by fluorescein was performed on the same synthesizer employing standard phosphoramidite chemistry and 6-Fluorescein Phosphoramidite (Glen Research, Sterling, VA, USA, Catalog No 10-1964). All labeled ODNs were synthesized using standard protected phosphoramidite monomers and were cleaved from the solid support and deprotected by treatment with 32% ammonia solution at rt for 24 h. After that, the crude oligonucleotides were passed through a hydrated gel filtration column (CentriPure N10, empBIOTECH, Germany) in order to remove the low molecular weight impurities. The blue/purple fractions (eluted with water) were quantified by absorbance at 260 nm, then evaporated to dryness under high vacuum (4 mbar) and dissolved in water to the approximate concentration of 1 mM for HPLC purification. Chromatographic conditions: The purity of **ODN-1, ODN-2** and **F-ODN-2** after semi-preparative purification was assessed by HPLC. The separation was performed on a Hypersil BDS C18 column (100 × 4.6 mm, particle size 2.4  $\mu$ m) using a mobile phase consisting of acetonitrile-TEAA (5 mM, pH 6.3), 34:66, v/v (**ODN-1**) and 25:75, v/v (**ODN-2**, **F-ODN-2**). The column temperature was maintained at 40 °C, and the flow rate was set at 1.0 mL/min. The compounds were analysed by a diode array detector and the chromatograms were monitored at 650 nm. The chromatograms and three-point purity of principal compound was assessed as the purity criterion. The semi-preparative purification was accomplished under the same conditions, but the amount of acetonitrile in the mobile phase was decreased by 1%. After the purification, the desired ODNs were obtained by freeze-drying as purple-black solid. Purified oligonucleotides were stored at - 20 °C.

**ODN-1**: MS (MALDI-TOF): clusters peaking at m/z 8801 [M+H]<sup>+</sup> and 4401 [M+2H]<sup>2+</sup>. UV/Vis (hybridization buffer):  $\lambda_{max}$  (log  $\varepsilon$ ) = 680 (4.6), 540 (4.6), 377 (5.0), 259 nm (5.4). HPLC:  $t_R$  = 13.2 min. **ODN-2**: MS (MALDI-TOF): clusters peaking at m/z 9163 [M+H]<sup>+</sup> and 4582 [M+2H]<sup>2+</sup>. UV/Vis (hybridization buffer):  $\lambda_{max}$  (log  $\varepsilon$ ) = 664 (5.1), 535 (4.5), 376 (5.0), 258 nm (5.3). HPLC:  $t_R$  = 10.8 min. **F-ODN-2**: MS (MALDI-TOF): clusters peaking at m/z 9701 [M+H]<sup>+</sup> and 4851 [M+2H]<sup>2+</sup>. UV/Vis (hybridization buffer):  $\lambda_{max}$  (log  $\varepsilon$ ) = 669 (5.2), 609 (4.5), 494 (4.7), 381 (5.2), 257 nm (5.4). HPLC:  $t_R$  = 12.3 min.



**Fig. S1**. a, d, g) HPLC chromatogram of **ODN-1** (a) ( $\lambda$  = 650 nm, three-point purity—similarity 0. 9999), **ODN-2** (d) ( $\lambda$  = 650 nm, three-point purity—similarity 0. 9999). and **F-ODN-2** (g) ( $\lambda$  = 650 nm, three-point purity—similarity 0. 9999). b, e, h) absorption spectrum from HPLC peak for **ODN-1** (b, at *t* = 13.2 min), **ODN-2** (e, at *t* = 10.8 min), and **F-ODN-2** (h, at *t* = 12.3 min). Spectra contain typical features of a ODN chain (256 nm), AzaPc (~375 and ~662 nm) and fluorescein (500 nm, only in **F-ODN-2**). c, f, i) MALDI mass spectrum of **ODN-1** (c), **ODN-2** (f) and **F-ODN-2** (i). HPLC conditions: Hypersil BDS C18 column (100 × 4.6 mm, particle size 2.4  $\mu$ m), mobile phase acetonitrile-TEAA (5 mM, pH 6.3), 34:66, v/v (**ODN-1**) and 25:75, v/v (**ODN-2**, **F-ODN-2**).

# Crystallography - figures



**Fig. S2**. The molecular structure of single molecule of **3** (a) and **4** (b). Color codes: nitrogen – blue, zinc – green, oxygen – red, carbon – grey, hydrogen – white.



**Fig. S3**: A dimeric arrangement of molecule **4** in crystalline material. Side (a) and top (b) view. Color codes: nitrogen – blue, zinc – green, oxygen – red, carbon – grey, water hydrogens – orange. For the sake of clarity, other hydrogens are not shown. H-bridges in the dimeric arrangement are highlighted in orange.



Fig. S4: Supramolecular architecture of layered structure of 4 and the picture of grown crystals.



Fig. S5: Supramolecular architecture of layered structure of 3.



**Fig S6.** Schematic illustration of the J-dimers **(3)**<sub>2</sub> viewed from the top. In toluene solution, NMR confirmed formation of J-dimers (two isomers are possible (parallel and oblique)) formed by coordination of central zinc (II) with nitrogen of diethylamino substituent. XRD of the crystalline material confirmed spatial situation different from the NMR in solution. The signals that were shielded by ring current are shown in green. If the spatial situation in solution would be the same as in the crystal structures, only half of the signals would be shielded that does not correspond with the <sup>1</sup>H NMR spectra.

### Study of J-dimer stability

Equilibrium constants covering monomerization of a sample and its association with pyridine (i.e.,  $K_P$  constant, Chart S1) were determined from the titration of the samples (dissolved in toluene) with pyridine. Dye concentration of 1  $\mu$ M (for **1**, **2**, **3**) or 10  $\mu$ M (for **4**) was used. Eq. 1 was adopted from the literature based on the procedure described by Kobuke<sup>'</sup>s<sup>4</sup> and Torres<sup>'</sup>s<sup>5</sup> groups,:

$$A_M = \frac{2\varepsilon_M (A - A_M)}{2\varepsilon_M - \varepsilon_D}$$
(Eq. 1)

, in which *A*,  $\varepsilon$ , *M*, *D* refer to absorbance, molar absorption coefficient, monomer of a compound and dimer of a compound, respectively. The value of  $\varepsilon_M$  was taken as the A at final titration point, value of  $\varepsilon_D$  as the A at initial point. A<sub>M</sub> (calculated by Eq. 1 using A = 658, 659, 659 and 660 nm for **1**, **2**, **3** and **4**, respectively) was plotted as a function of concentration of pyridine (i.e., [P]) at all titration points. Obtained graphs were analyzed by GraphPad version 8.2 using non-linear regression, that provided appropriate  $K_P$  values. Fluorescence titration data were analyzed similarly using fluorescence emission maximum of dimer instead of A<sub>M</sub>.



**Chart S1**: Scheme and equilibrium equation for reaction involving monomerization of the compound **4** and its association with pyridine.

Dimerization constant for **4** ( $K_D$ ) was calculated after dilution of the sample in toluene from 100  $\mu$ M to 0.1  $\mu$ M (in some cases even to 0.01  $\mu$ M) from a nonlinear regression of dependence of extinction coefficient at monomer maximum on the concentration of **4**.



Chart S2: Scheme and equilibrium equation of dimerization of compound 4.

Association constant of compound **4** with pyridine ( $K_1$ ) was calculated as follows: Eq. 2 below was derived based on the following equations of appropriate equilibrium constants of compound **4**:

$$K_{P} = \frac{[\mathbf{4} - \mathbf{P}]^{2}}{[(\mathbf{4})_{2}] \times [\mathbf{P}]^{2}} \qquad \qquad K_{D} = \frac{[(\mathbf{4})_{2}]}{[\mathbf{4}]^{2}} \qquad \qquad K_{1} = \frac{[\mathbf{4} - \mathbf{P}]}{[\mathbf{4}] \times [\mathbf{P}]}$$

, where [4-P] states for concentration of complex of compound **4** with pyridine, [**4**] concertation of compound **4**, and [P] concentration of pyridine. By substitution in equation for  $K_D$ , we can get relation between  $K_1$ ,  $K_D$  and  $K_P$  (Eq. 2):

$$K_{D} = \frac{[(\mathbf{4})_{2}]}{[\mathbf{4}]^{2}} = \frac{\frac{[\mathbf{4}-\mathbf{P}]^{2}}{K_{P}[\mathbf{P}]^{2}}}{\left(\frac{[\mathbf{4}-\mathbf{P}]}{K_{1}\times[\mathbf{P}]}\right)^{2}} = \frac{K_{1}^{2}}{K_{P}}$$

$$K_1 = \sqrt{K_D \times K_P} \qquad (Eq. 2)$$



**Chart S3**: Scheme and definition of  $K_1$  of compound **4**.

### Study of J-dimer formation in ODN probes

Typical procedure was as follows: Appropriate amount of the stock solution of a probe was transferred into cuvette with hybridization buffer (600  $\mu$ L) (*i.e.*, DNase I reaction buffer composed of 20 mm Tris-HCl (pH 8.4), 2 mm MgCl<sub>2</sub>, 50 mm KCl) to get final concentration of 1  $\mu$ M and fluorescence emission and absorption spectra were measured (excitation wavelength was 492 nm). Antisense strand **ODNant** (5 equivalents, *i.e.* its final concentration in cuvette was 5  $\mu$ M) was added, the cuvette was heated at 75 °C for 10 min in water bath and then allowed to slowly (within 30 min) cool down to room temperature while protected from light. Fluorescence emission and absorption spectra of the hybridized duplex was then taken. After that, DNase I (1 U, Thermo Scientific) was added, and solution in the cuvette was left stirring for 20 minutes at room temperature protected from light. Fluorescence emission and absorption spectra of the mixture after cleavage were measured. This procedure was performed for each probe (**(ODN-1)**<sub>2</sub>, **ODN-2**, **(F-ODN-1)**<sub>2</sub> and **F-ODN-2**) and pyridine was added stepwise at different stages (always in a separate experiment) – with a probe before the addition of antisense **ODN-ant**, after hybridization step or after cleavage of the duplex (see schemes in Figs. 4, 5). Absorption and fluorescence emission spectra were taken after each addition of pyridine. Maximal concentration of pyridine was 2.5 M in all cases.

# **Quenching efficiency**

Appropriate amount of the stock solution of a probe was transferred into cuvette with hybridization buffer (600  $\mu$ L) to get final concentration of 50 nM and fluorescence emission spectrum was measured (excitation wavelength was 492 nm). Antisense strand **ODN-ant** (5 equivalents, *i.e.* its final concentration in cuvette was 250 nM) was added, the cuvette was heated at 75 °C for 10 min in water bath and then allowed to slowly (within 30 min) cool down to room temperature while protected from light. Fluorescence emission spectrum of the hybridized duplex was taken. After that, DNase I (1 U, Thermo Scientific) was added, and solution in the cuvette was left stirring for 20 minutes at room temperature protected from light. Fluorescence emission spectrum of the mixture after cleavage was measured. The quenching efficiency (QE) was calculated according to the following Eq. 3 using fluorescence intensity at emission maxima at 521 nm:

$$QE = \left(1 - \frac{F_X}{F_{max}}\right) \times 100$$
 Eq. 3

in which  $F_{max}$  is the fluorescence intensity after full cleavage with DNase, and  $F_x$  is the fluorescence intensity in a random coil (for static quenching) or fluorescence intensity of the hybridized duplex (for FRET). All measurements were performed in triplicate and the presented values represent the mean value.

### Real time PCR

Real time PCR was performed using a Real-Time PCR Detection System CFX96T (Bio-Rad) with a gb Ideal master mix (Generi Biotech), and the temperature profile of the reaction was as follows: initial denaturation at 95°C for 3 min and 50 cycles of denaturation at 95°C for 15 s, followed by annealing and elongation at 60°C for 30 s. A plasmid standard was prepared using molecular cloning described previously.<sup>6</sup> The calibration curves for each probe were obtained by measuring a series of decimally diluted plasmid standards (the numbers of copies in the reaction were in the 10<sup>7</sup>-10<sup>2</sup> range). The probes and primers were based on a quantification assay for the SLCO2B1 transporter gene. The primers for real-time PCR were synthesized by Generi Biotech with the following sequences: forward primer: GTCTCACCCACACCCTC, reverse primer: ATGCCCACAGCCAAGTCT. The concentration of the **F-ODN-2** probe was 150 nM. All calibration measurements were performed in triplicate for each concentration of the standard and the probes.

### Determination of melting temperature

The determination of melting temperature ( $T_m$ ) was performed on Real-Time PCR Detection System CFX96T (Bio-Rad). The antisense ODN modified at 5'-end by HEX (0.3  $\mu$ M, sequence: HEX-

TCACTCCTCTTAGGATGAGCATGA) was mixed with the studied **ODN-1**, **ODN-2**, **F-ODN-1** or **F-ODN-2** (0.4  $\mu$ M), heated to 95°C and cooled down to 40°C. The formed duplex was subsequently heated (40-80°C, 0.2 °C / 5s) and fluorescence of HEX was measured ( $\lambda_{exc}$  = 515-535 nm,  $\lambda_{em}$  = 560-580 nm). The derivative of the dependence of fluorescence intensity on time was used to determine the T<sub>m</sub> of each duplex. The experiment was performed in triplicate and the data in the manuscript are expressed as mean ± standard deviation.

# Characterization of J-dimers in organic solvents



**Fig. S7**. Absorption spectra of compounds **1-4** (1  $\mu$ M) in different solvents. Upper row shows the spectra where the compounds are predominantly monomeric, lower row where they form J-dimers.



Fig. S8 Determination of  $K_{D}$  and  $K_{P}$  values for compounds 1 and 2.



Fig. S9. Spectral changes of toluene solutions of 1-4 (1  $\mu$ M) with increasing temperature.

# **Photophysics**



**Fig. S10** Normalized absorption (black, dashed), emission (red) and excitation (green) spectra of compounds 1 - 4 in toluene (a) and toluene with 250 mM pyridine (b).

# Characterization of J-dimers in ODN probes



**Fig. S11**. Absorption spectra (1  $\mu$ M) of **1** (a) in toluene (red, J-dimer) and in toluene with 250 mM pyridine (blue, monomer) and **ODN-1** (b) in hybridization buffer (red, J-dimer) and in hybridization buffer with 1.5 M pyridine (blue, monomer).



**Fig. S12**. Changes in absorption spectra during addition of pyridine into  $1 \mu M$  solution of the (**ODN-1**)<sub>2</sub> probe in hybridization buffer. a) Addition to probe alone in solution. b) Addition to duplex (**ODN-1**)<sub>2</sub>-**ODN-ant.** c) Addition to the fragments that arose after cleavage of the duplex by DNase.



**Fig. S13**. Changes in absorption spectra during addition of pyridine into 1  $\mu$ M solution of the **ODN-2** probe in hybridization buffer. a) Addition to probe alone in solution. b) Addition to duplex **ODN-2**-**ODN-ant.** c) Addition to the fragments that arose after cleavage of the duplex by DNase.



**Fig. S14**. Spectral changes of **(ODN-1)**<sub>2</sub> (a) and **ODN-2** (b) in hybridization buffer with increasing temperature.



**Fig. S15**. Dependence of absorbance at 673 nm (for **ODN-1**)or 667 nm (for **ODN-2**) on the amount of added pyridine.



**Fig. S16**. a) Absorption spectra of 1  $\mu$ M solutions of **(ODN-1)**<sub>2</sub> (red), **F-ODN** (green) in hybridization buffer and a mathematical sum of these spectra (black, dashed). b) Absorption spectra of 1  $\mu$ M solutions of heterotetramer **(F-ODN-1)**<sub>2</sub> (magenta), dsDNA of hybridized **(F-ODN-1)**<sub>2</sub> with **ODN-ant** (orange) in hybridization buffer and the mathematical sum of spectra from figure a) (black, dashed).



**Fig. S17**. Absorption changes of (**F-ODN-1**)<sub>2</sub> (a) and **F-ODN-2** (b) at concentration of 1  $\mu$ M in hybridization buffer after addition of pyridine to the fragments that arose after cleavage of the duplex by DNase. Insets: Dependence of absorbance at 500 nm (red, corresponds to fluorescein) and 673 nm or 667 nm (black, corresponds to monomeric species of AzaPcs) on the added pyridine.



**Fig. S18**. a) Absorption changes in (**F-ODN-1**)<sub>2</sub> at concentration of 1  $\mu$ M in hybridization buffer during addition of pyridine (up to 0.6 M). b) Absorption changes in (**F-ODN-1**)<sub>2</sub> at concentration of 1  $\mu$ M in hybridization buffer during addition of pyridine (from 0.6 M to 2.5 M). c) Dependence of absorbance at 500 nm (red, corresponds to fluorescein) and 673 nm (black, corresponds to monomeric species of AzaPc).



**Fig. S19**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **1** in pyridine- $d_5$ . Asterisk (\*) and triangle ( $\blacktriangle$ ) indicate residuals of non-deuterated solvent and water, respectively.



**Fig. S20**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **1** in toluene- $d_8$ . Asterisk (\*) indicates residuals of non-deuterated solvent.



**Fig. S21**: <sup>1</sup>H-<sup>1</sup>H NMR COSY spectrum of compound **1** in toluene-*d*<sub>8</sub>.



**Fig. S21**: <sup>1</sup>H-<sup>13</sup>C NMR HSQC spectrum of compound **1** in toluene-*d*<sub>8</sub>.



**Fig. S22**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound  $2H_2$ -DMTr in pyridine- $d_5$ . Asterisk (\*) and triangle ( $\blacktriangle$ ) indicate residuals of non-deuterated solvent and water, respectively.



**Fig. S23**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **2-DMTr** in pyridine $d_5$ . Asterisk (\*) and triangle ( $\blacktriangle$ ) indicate residuals of non-deuterated solvent and water, respectively.



**Fig. S24**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **2** in pyridine- $d_5$ . Asterisk (\*) and triangle ( $\blacktriangle$ ) indicate residuals of non-deuterated solvent and water, respectively.



**Fig. S25**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **2** in toluene- $d_8$ . Asterisk (\*) indicates residuals of non-deuterated solvent.



**Fig. S26**: <sup>1</sup>H-<sup>1</sup>H NMR COSY spectrum of compound **2** in toluene-*d*<sub>8</sub>.



**Fig. S27**: <sup>1</sup>H-<sup>13</sup>C NMR HSQC spectrum of compound **2** in toluene-*d*<sub>8</sub>.



**Fig. S28**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **3** in pyridine- $d_5$ . Asterisk (\*) and triangle ( $\blacktriangle$ ) indicate residuals of non-deuterated solvent and water, respectively.



**Fig. S29**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **3** in toluene- $d_8$ . Asterisk (\*) indicates residuals of non-deuterated solvent. Red circles indicate signals shielded by the ring-current effect.



**Fig. S30**: <sup>1</sup>H-<sup>1</sup>H NMR COSY spectrum of compound **3** in toluene- $d_8$ . Red circles indicate signals shielded by the ring-current effect.



**Fig. S31**: <sup>1</sup>H-<sup>13</sup>C NMR HSQC spectrum of compound **3** in toluene- $d_8$ . Red circles indicate signals shielded by the ring-current effect.



**Fig. S32**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **4H**<sub>2</sub> in pyridine- $d_5$ . Asterisk (\*) and triangle ( $\blacktriangle$ ) indicate residuals of non-deuterated solvent and water, respectively.



**Fig. S33**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **4** in pyridine- $d_5$ . Asterisk (\*) and triangle ( $\blacktriangle$ ) indicate residuals of non-deuterated solvent and water, respectively



**Fig. S34**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **4** in toluene- $d_8$ . Asterisk (\*) indicates residuals of non-deuterated solvent.



**Fig. S35**: <sup>1</sup>H-<sup>1</sup>H NMR COSY spectrum of compound **4** in toluene-*d*<sub>8</sub>.



**Fig. S36**: <sup>1</sup>H-<sup>13</sup>C NMR HSQC spectrum of compound **4** in toluene- $d_8$ . Red circles indicate signals shielded by the ring-current effect.



**Fig. S37**: <sup>1</sup>H NMR (500 MHz) (a) and <sup>13</sup>C NMR (126 MHz) (b) spectra of compound **5** in aceton- $d_6$ . Asterisk (\*) and triangle ( $\blacktriangle$ ) indicate residuals of non-deuterated solvent and water, respectively.

### **Crystallography - Experimental**

Full-sets of diffraction data for **3** and **4** were collected at 150(2)K with a Bruker D8-Venture diffractometer equipped with Cu (Cu/K<sub> $\alpha$ </sub> radiation;  $\lambda$  =1.54178 Å) or Mo (Mo/K<sub> $\alpha$ </sub> radiation;  $\lambda$  = 0.71073 Å) microfocus X-ray (IµS) sources, Photon CMOS detector and Oxford Cryosystems cooling device was used for data collection.

The frames were integrated with the Bruker SAINT software package using a narrowframe algorithm. Data were corrected for absorption effects using the Multi-Scan method (SADABS). Obtained data were treated by XT-version 2014/5 and SHELXL-2014/7 software implemented in APEX3 v2016.5-0 (Bruker AXS) system.<sup>52</sup>

Hydrogen atoms were mostly localized on a difference Fourier map, however to ensure uniformity of treatment of crystal, all hydrogen were recalculated into idealized positions (riding model) and assigned temperature factors  $H_{iso}(H) = 1.2 U_{eq}$  (pivot atom) or of  $1.5U_{eq}$ (methyl). H atoms in methyl and methylene and hydrogen atoms in aromatic rings were placed with C-H distances of 0.96, 0.97 and 0.93Å and 0.82 Å for O-H bonds.

 $R_{\text{int}} = \sum |F_0^2 - F_{\text{o,mean}}^2| / \sum F_0^2, \text{ GOF} = [\sum (w(F_0^2 - F_c^2)^2) / (N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}} \text{ for all data, } R(F) = \\\sum ||F_0| - |F_c|| / \sum |F_0| \text{ for observed data, } wR(F^2) = [\sum (w(F_0^2 - F_c^2)^2) / (\sum w(F_0^2)^2)]^{\frac{1}{2}} \text{ for all data.} \\Crystallographic data for structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 1955796-1955797. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EY, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).$ 

Both crystals of **3 and 4** were of poor quality materials, which revealed weak diffraction patterns. Some of the positions of methylene, methyl or methoxy chains are disordered to the two or three positions with nearly equal occupancy. Disorders of these atoms are treated by standard methods.

**Table S1**. Crystal data and structure refinement for **3** (pz190509Zn1).

| Identification code      | pz190509Zn1                                                                |
|--------------------------|----------------------------------------------------------------------------|
| Empirical formula        | C <sub>58.75</sub> H <sub>90.50</sub> N <sub>24</sub> O <sub>3.75</sub> Zn |
| Formula weight           | 1258.42                                                                    |
| Temperature              | 150(2) K                                                                   |
| Wavelength               | 0.71073 A                                                                  |
| Crystal system, space gr | oup Monoclinic, C2/c                                                       |
| Unit cell dimensions     | a = 29.806(2) Å α = 90°                                                    |
| b = 2                    | 6.1290(16) Å $\beta = 94.812(2)^{\circ}$                                   |
| c = 1                    | 8.2989(11) Å γ = 90°                                                       |

14201.0(15) Å<sup>3</sup> Volume Z, Calculated density 8, 1.177 Mg/m<sup>3</sup> Absorption coefficient 0.405 mm<sup>-1</sup> F(000) 5368 0.646 x 0.432 x 0.424 mm Crystal size Theta range for data collection 2.234 to 26.000 deg. Limiting indices -36<=h<=36, -32<=k<=32, -22<=l<=22 Reflections collected / unique 203511 / 13927 [R(int) = 0.0960] Completeness to theta = 25.242 99.5 % Absorption correction Semi-empirical from equivalents 0.8620 and 0.8095 Max. and min. transmission Refinement method Full-matrix least-squares on F<sup>2</sup> Data / restraints / parameters 13927 / 1048 / 906 Goodness-of-fit on  $F^2$ 1.061 Final R indices [I>2sigma(I)]  $R_1 = 0.0673$ ,  $wR_2 = 0.1883$ R indices (all data) R1 = 0.0863, wR2 = 0.1989 Extinction coefficient n/a Largest diff. peak and hole 1.551 and -0.817 e.A<sup>-3</sup>

| Zn(1)-N(5)                        | 2.018(3)         |
|-----------------------------------|------------------|
| 2n(1) - N(3)                      | 2.025(3)         |
| 2n(1) = N(3)<br>2n(1) = N(7)      | 2.023(3)         |
| $Z_{11}(1)^{-1N}(7)$              | 2.032(3)         |
| Zn(1)-N(1)                        | 2.033(3)         |
| Zn(1)-O(1)                        | 2.091(2)         |
| N(1)-C(1)                         | 1.365(4)         |
| N(1)-C(4)                         | 1.369(4)         |
| N(2)-C(4)                         | 1.324(4)         |
| N(2)-C(5)                         | 1.332(4)         |
| N(3)-C(5)                         | 1.363(4)         |
| N(3)-C(8)                         | 1.370(4)         |
| N(4)-C(8)                         | 1.328(4)         |
| N(4)-C(9)                         | 1.334(4)         |
| N(5)-C(9)                         | 1.374(4)         |
| N(5)-C(12)                        | 1 375(4)         |
| $N(6)_{-}C(12)$                   | 1 329(4)         |
| N(6) - C(12)                      | 1.323(4)         |
| N(0)-C(15)                        | 1.337(4)         |
| N(7)-C(10)                        | 1.362(4)         |
| N(7)-C(13)                        | 1.368(4)         |
| N(8)-C(16)                        | 1.325(4)         |
| N(8)-C(1)                         | 1.326(4)         |
| N(9)-C(17)                        | 1.324(4)         |
| N(9)-C(2)                         | 1.348(4)         |
| N(10)-C(18)                       | 1.327(4)         |
| N(10)-C(3)                        | 1.348(4)         |
| N(11)-C(27)                       | 1.333(5)         |
| N(11)-C(6)                        | 1.346(4)         |
| N(12)-C(28)                       | 1.330(5)         |
| N(12)-C(7)                        | 1.353(5)         |
| N(13)-C(37)                       | 1.328(5)         |
| N(13)-C(10)                       | 1.353(4)         |
| N(14)-C(38)                       | 1 333(5)         |
| N(14) = C(11)                     | 1 3/8(/)         |
| N(1+) = C(1+1)<br>N(1+5) = C(1+7) | 1,216(4)         |
| N(15) - C(47)                     | 1.310(4)         |
| N(15)-C(14)                       | 1.360(4)         |
| N(16)-C(48)                       | 1.333(4)         |
| N(16)-C(15)                       | 1.346(4)         |
| N(17)-C(17)                       | 1.395(4)         |
| N(17)-C(19)                       | 1.453(5)         |
| N(17)-C(21)                       | 1.479(5)         |
| N(18)-C(18)                       | 1.382(4)         |
| N(18)-C(25)                       | 1.460(5)         |
| N(18)-C(23)                       | 1.500(5)         |
| N(19)-C(27)                       | 1.384(5)         |
| N(19)-C(29)                       | 1.461(6)         |
| N(19)-C(31)                       | 1.469(6)         |
| N(20)-C(28)                       | 1.390(5)         |
| N(20)-C(35)                       | 1 472(8)         |
| N(20)-C(35')                      | 1 <u>4</u> 79(7) |
| N(20)-C(22)                       | 1 /Q/(7)         |
| N(20)-C(33)                       | 1 200(E)         |
| N(21) - C(37)                     | 1.333(3)         |
| N(21)-C(39)                       | 1.4/6(6)         |
| N(21)-C(41)                       | 1.501(7)         |

| Table S2. E | Bond lengths | [A] and | angles | [deg] f | for <b>3</b> | (pz190509Zn1) | ). |
|-------------|--------------|---------|--------|---------|--------------|---------------|----|
|-------------|--------------|---------|--------|---------|--------------|---------------|----|

| N(22)-C(38)           | 1.386(5)  |
|-----------------------|-----------|
| N(22)-C(43)           | 1.445(9)  |
| N(22)-C(43')          | 1.472(7)  |
| N(22)-C(45)           | 1.476(5)  |
| N(23)-C(47)           | 1 397(4)  |
| $N(23)_{C(40)}$       | 1 448(6)  |
| N(23) - C(43)         | 1.440(0)  |
| N(23)-C(51)           | 1.483(6)  |
| N(24)-C(48)           | 1.3/1(4)  |
| N(24)-C(55)           | 1.465(5)  |
| N(24)-C(53)           | 1.501(6)  |
| C(1)-C(2)             | 1.448(4)  |
| C(2)-C(3)             | 1.380(4)  |
| C(3)-C(4)             | 1.460(4)  |
| C(5)-C(6)             | 1 456(4)  |
| C(6) - C(7)           | 1 363(5)  |
| C(0) = C(7)           | 1.303(5)  |
| C(7) - C(0)           | 1.404(5)  |
| C(9)-C(10)            | 1.451(5)  |
| C(10)-C(11)           | 1.369(5)  |
| C(11)-C(12)           | 1.449(4)  |
| C(13)-C(14)           | 1.447(4)  |
| C(14)-C(15)           | 1.377(4)  |
| C(15)-C(16)           | 1.451(4)  |
| C(17)-C(18)           | 1 466(5)  |
| $C(10)_{-}C(20)$      | 1 510(5)  |
| C(19) - C(20)         | 1.319(3)  |
| C(21)-C(22)           | 1.494(7)  |
| C(23)-C(24)           | 1.4/4(/)  |
| C(25)-C(26)           | 1.482(7)  |
| C(27)-C(28)           | 1.457(6)  |
| C(29)-C(30')          | 1.512(10) |
| C(29)-C(30)           | 1.540(8)  |
| C(31)-C(32)           | 1.520(8)  |
| C(31)-C(32')          | 1 551(9)  |
| C(33)-C(34)           | 1 / 81(9) |
| C(35) = C(34)         | 1 524(0)  |
| C(35)-C(36)           | 1.534(9)  |
| C(35')-C(36')         | 1.537(8)  |
| C(37)-C(38)           | 1.458(5)  |
| C(39)-C(40)           | 1.520(7)  |
| C(39)-C(40')          | 1.540(10) |
| C(41)-C(42)           | 1.525(6)  |
| C(41)-C(42')          | 1.540(10) |
| C(43)-C(44)           | 1.524(9)  |
| C(43')-C(44')         | 1 547(9)  |
| C(45) = C(46)         | 1 527(0)  |
| C(45) - C(40)         | 1.557(5)  |
| $C(45)-C(46^{\circ})$ | 1.541(9)  |
| C(47)-C(48)           | 1.468(5)  |
| C(49)-C(50)           | 1.525(7)  |
| C(51)-C(52)           | 1.530(7)  |
| C(51)-C(52')          | 1.545(10) |
| C(53)-C(54')          | 1.531(7)  |
| C(53)-C(54)           | 1.535(10) |
| C(55)-C(56)           | 1 527(8)  |
| $O(AS)_C(SS)$         | 1 201/11  |
| O(45) = C(05) = 0     | 1 204/44  |
| 0(45)-0(85)#1         | 1.391(11) |
| C(8S)-C(9S)           | 1.583(9)  |
| C(9S)-C(9S)#1         | 1.530(9)  |
| N(5)-Zn(1)-N(3)       | 87.79(11) |

| N(5)-Zn(1)-N(7)                              | 86.57(10)  |
|----------------------------------------------|------------|
| N(3)-Zn(1)-N(7)                              | 154.25(10) |
| N(5)-Zn(1)-N(1)                              | 154.43(11) |
| N(3)-Zn(1)-N(1)                              | 86.86(10)  |
| N(7)-7n(1)-N(1)                              | 87 48(10)  |
| $N(5)_{7n}(1)_{0}(1)$                        | 101 61(10) |
| N(3) = Z n(1) = O(1)<br>N(3) = Z n(1) = O(1) | 101.01(10) |
| N(3)-Zn(1)-O(1)                              | 101.69(10) |
| N(7)-2n(1)-O(1)                              | 104.06(10) |
| N(1)-Zn(1)-O(1)                              | 103.96(10) |
| C(1)-N(1)-C(4)                               | 108.8(2)   |
| C(1)-N(1)-Zn(1)                              | 125.2(2)   |
| C(4)-N(1)-Zn(1)                              | 125.7(2)   |
| C(4)-N(2)-C(5)                               | 123.4(3)   |
| C(5)-N(3)-C(8)                               | 109.3(3)   |
| C(5)-N(3)-7n(1)                              | 125.1(2)   |
| C(8)-N(3)-7n(1)                              | 124 8(2)   |
| C(0) N(3) Z(1(1))                            | 172 9(2)   |
| C(0) = N(4) - C(3)                           | 109 9(2)   |
| C(9)-N(5)-C(12)                              | 108.8(3)   |
| C(9)-N(5)-Zn(1)                              | 125.2(2)   |
| C(12)-N(5)-Zn(1)                             | 125.2(2)   |
| C(12)-N(6)-C(13)                             | 122.9(3)   |
| C(16)-N(7)-C(13)                             | 108.5(3)   |
| C(16)-N(7)-Zn(1)                             | 124.9(2)   |
| C(13)-N(7)-Zn(1)                             | 126.3(2)   |
| C(16)-N(8)-C(1)                              | 123.3(3)   |
| C(17)-N(9)-C(2)                              | 114 7(3)   |
| C(18) - N(10) - C(3)                         | 11/(8/3)   |
| $C(10)^{-10}(10)^{-}C(3)$                    | 114.0(3)   |
| C(27) - N(11) - C(0)                         | 114.9(5)   |
| C(28) - N(12) - C(7)                         | 114.9(3)   |
| C(37)-N(13)-C(10)                            | 114.7(3)   |
| C(38)-N(14)-C(11)                            | 114.8(3)   |
| C(47)-N(15)-C(14)                            | 114.8(3)   |
| C(48)-N(16)-C(15)                            | 114.6(3)   |
| C(17)-N(17)-C(19)                            | 116.1(3)   |
| C(17)-N(17)-C(21)                            | 114.7(3)   |
| C(19)-N(17)-C(21)                            | 115.3(3)   |
| C(18)-N(18)-C(25)                            | 117.2(3)   |
| C(18)-N(18)-C(23)                            | 117 1(3)   |
| $C(25)_N(18)_C(23)$                          | 115 6(2)   |
| $C(23)^{-10}(10)^{-}C(23)$                   | 119.0(3)   |
| C(27) - N(19) - C(29)                        | 110.0(4)   |
| C(27) - N(19) - C(31)                        | 118.4(3)   |
| C(29)-N(19)-C(31)                            | 115.9(4)   |
| C(28)-N(20)-C(35)                            | 118.7(7)   |
| C(28)-N(20)-C(35')                           | 114.9(5)   |
| C(28)-N(20)-C(33)                            | 116.3(4)   |
| C(35)-N(20)-C(33)                            | 101.9(6)   |
| C(35')-N(20)-C(33)                           | 122.1(6)   |
| C(37)-N(21)-C(39)                            | 116.6(4)   |
| C(37)-N(21)-C(41)                            | 114 2(4)   |
| C(39) - N(21) - C(41)                        | 1155(4)    |
| $C(28)_N(21)^{-}C(41)$                       | 112 0/6)   |
| C(30) = N(22) - C(43)                        | 110 4(4)   |
| C(30) - N(22) - C(43')                       | 118.4(4)   |
| C(38)-N(22)-C(45)                            | 121.2(4)   |
| C(43)-N(22)-C(45)                            | 122.9(7)   |
| C(43')-N(22)-C(45)                           | 109.6(6)   |
| C(47)-N(23)-C(49)                            | 116.4(3)   |
| C(47)-N(23)-C(51)                            | 112.9(3)   |
|                                              |            |

| C(49)-N(23)-C(51)         | 112.2(4) |
|---------------------------|----------|
| C(48)-N(24)-C(55)         | 116.9(3) |
| C(48)-N(24)-C(53)         | 118.1(3) |
| C(55)-N(24)-C(53)         | 111.1(3) |
| N(8)-C(1)-N(1)            | 128 1(3) |
| $N(8)_{C(1)_{C(2)}}$      | 122 8(2) |
| N(0) - C(1) - C(2)        | 122.0(3) |
| N(1)-C(1)-C(2)            | 109.0(3) |
| N(9)-C(2)-C(3)            | 123.6(3) |
| N(9)-C(2)-C(1)            | 129.3(3) |
| C(3)-C(2)-C(1)            | 106.9(3) |
| N(10)-C(3)-C(2)           | 122.9(3) |
| N(10)-C(3)-C(4)           | 130.3(3) |
| C(2)-C(3)-C(4)            | 106.8(3) |
| N(2)-C(4)-N(1)            | 1275(3)  |
| N(2)-C(4)-C(3)            | 124 1(3) |
| N(2) C(4) C(3)            | 109 1(2) |
| N(1) - C(4) - C(3)        | 100.4(5) |
| N(2)-C(5)-N(3)            | 128.1(3) |
| N(2)-C(5)-C(6)            | 123.4(3) |
| N(3)-C(5)-C(6)            | 108.5(3) |
| N(11)-C(6)-C(7)           | 123.7(3) |
| N(11)-C(6)-C(5)           | 129.2(3) |
| C(7)-C(6)-C(5)            | 107.0(3) |
| N(12)-C(7)-C(6)           | 122.8(3) |
| N(12)-C(7)-C(8)           | 129 4(3) |
| C(6)-C(7)-C(8)            | 107 5(3) |
| N(A) C(9) N(2)            | 107.5(5) |
| N(4) - C(0) - N(3)        | 127.9(3) |
| N(4)-C(8)-C(7)            | 124.5(3) |
| N(3)-C(8)-C(7)            | 107.6(3) |
| N(4)-C(9)-N(5)            | 127.4(3) |
| N(4)-C(9)-C(10)           | 124.4(3) |
| N(5)-C(9)-C(10)           | 108.2(3) |
| N(13)-C(10)-C(11)         | 122.6(3) |
| N(13)-C(10)-C(9)          | 129.9(3) |
| C(11)-C(10)-C(9)          | 107.4(3) |
| N(14)-C(11)-C(10)         | 124.2(3) |
| N(14)-C(11)-C(12)         | 128 5(3) |
| C(10) C(11) C(12)         | 107 2(2) |
| $V(10)^{-}C(11)^{-}C(12)$ | 107.3(3) |
| N(0)-C(12)-N(5)           | 128.2(3) |
| N(6)-C(12)-C(11)          | 123.4(3) |
| N(5)-C(12)-C(11)          | 108.3(3) |
| N(6)-C(13)-N(7)           | 126.9(3) |
| N(6)-C(13)-C(14)          | 124.2(3) |
| N(7)-C(13)-C(14)          | 108.9(3) |
| N(15)-C(14)-C(15)         | 122.0(3) |
| N(15)-C(14)-C(13)         | 130.8(3) |
| C(15)-C(14)-C(13)         | 106 9(3) |
| N(16)-C(15)-C(14)         | 1247(3)  |
| $N(10)^{-}C(15)^{-}C(14)$ | 124.7(3) |
| N(10)-C(15)-C(10)         | 120.0(5) |
| C(14)-C(15)-C(16)         | 106.7(3) |
| N(8)-C(16)-N(7)           | 128.8(3) |
| N(8)-C(16)-C(15)          | 122.2(3) |
| N(7)-C(16)-C(15)          | 109.0(3) |
| N(9)-C(17)-N(17)          | 118.1(3) |
| N(9)-C(17)-C(18)          | 121.3(3) |
| N(17)-C(17)-C(18)         | 120.6(3) |
| N(10)-C(18)-N(18)         | 118.3(3) |
| N(10)-C(18)-C(17)         | 121 7(3) |
| $\cdots$                  |          |

| N(18)-C(18)-C(17)       | 120.0(3)                                   |
|-------------------------|--------------------------------------------|
| N(17)-C(19)-C(20)       | 111.7(3)                                   |
| N(17)-C(21)-C(22)       | 114.0(4)                                   |
| C(24)-C(23)-N(18)       | 114.0(5)                                   |
| N(18)-C(25)-C(26)       | 111.7(4)                                   |
| N(11)-C(27)-N(19)       | 117.4(4)                                   |
| N(11)-C(27)-C(28)       | 121.1(3)                                   |
| N(19)-C(27)-C(28)       | 121.5(3)                                   |
| N(12)-C(28)-N(20)       | 116.9(4)                                   |
| N(12)-C(28)-C(27)       | 121 7(3)                                   |
| N(20)-C(28)-C(27)       | 121.4(3)                                   |
| N(19)-C(29)-C(30')      | 110 7(11)                                  |
| N(19)-C(29)-C(30)       | 113 6(5)                                   |
| N(19)-C(31)-C(32)       | 112 9(7)                                   |
| N(19)-C(31)-C(32')      | 108 9(9)                                   |
| C(34)-C(33)-N(20)       | 113 0(5)                                   |
| N(20)-C(35)-C(36)       | 105 3(9)                                   |
| N(20) - C(35') - C(36') | 117 9(7)                                   |
| N(20) C(30) C(30)       | 117.5(7)                                   |
| N(13) - C(37) - C(38)   | 122 5(3)                                   |
| N(21) - C(37) - C(38)   | 110 0(3)                                   |
| N(24)-C(38)-N(22)       | 116.6(3)                                   |
| N(14)-C(38)-C(37)       | 120.9(3)                                   |
| N(22)-C(38)-C(37)       | 122.5(3)                                   |
| N(21)-C(39)-C(40)       | 110 1(4)                                   |
| N(21)-C(39)-C(40')      | 139(4)                                     |
| N(21)-C(41)-C(42)       | 113 9(4)                                   |
| N(21)-C(41)-C(42')      | 99 4(6)                                    |
| N(22)-C(43)-C(44)       | 116.1(14)                                  |
| N(22)-C(43')-C(44')     | 106.1(10)                                  |
| N(22)-C(45)-C(46)       | 108.8(7)                                   |
| N(22)-C(45)-C(46')      | 116.3(7)                                   |
| N(15)-C(47)-N(23)       | 118.3(3)                                   |
| N(15)-C(47)-C(48)       | 122.9(3)                                   |
| N(23)-C(47)-C(48)       | 118.8(3)                                   |
| N(16)-C(48)-N(24)       | 117.9(3)                                   |
| N(16)-C(48)-C(47)       | 120.6(3)                                   |
| N(24)-C(48)-C(47)       | 121.5(3)                                   |
| N(23)-C(49)-C(50)       | 110.0(4)                                   |
| N(23)-C(51)-C(52)       | 113.1(5)                                   |
| N(23)-C(51)-C(52')      | 131(3)                                     |
| N(24)-C(53)-C(54')      | 109.8(6)                                   |
| N(24)-C(53)-C(54)       | 119.6(14)                                  |
| N(24)-C(55)-C(56)       | 109.9(4)                                   |
| C(2S)-C(1S)-C(7S)       | 115.8(15)                                  |
| C(6S)-C(1S)-C(7S)       | 124.0(15)                                  |
| C(8S)-O(4S)-C(8S)#1     | 113.0(11)                                  |
| O(4S)-C(8S)-C(9S)       | 109.1(8)                                   |
| C(9S)#1-C(9S)-C(8S)     | 104.4(4)                                   |
| Symmetry transfor       | mations used to generate equivalent atoms: |
| #1 x12 x = 1 /2         |                                            |

#1 -x+3,y,-z+1/2

 
 Table S3. Crystal data and structure refinement for 4 (pz190507Zn1).
 Identification code pz190507Zn1 Empirical formula C<sub>72</sub>H<sub>118.50</sub>N<sub>24</sub>O<sub>19.25</sub>Zn Formula weight 1693.77 Temperature 150(2) K 0.71073 Å Wavelength Crystal system, space group Triclinic, P-1 Unit cell dimensions  $a = 15.5889(6) \text{ Å} \alpha = 86.233(2)^{\circ}.$ b = 15.9560(7) Å  $\beta$  = 71.563(2)°.  $c = 19.7600(8) \text{ Å} \gamma = 68.105(2)^{\circ}.$ 4318.8(3) Å<sup>3</sup> Volume 2, 1.302 Mg/m<sup>3</sup> Z, Calculated density Absorption coefficient 0.364 mm<sup>-1</sup> 1805 F(000) 1.036 x 0.418 x 0.264 mm Crystal size Theta range for data collection 2.371 to 26.000 deg. Limiting indices -19<=h<=19, -19<=k<=19, -24<=l<=24 Reflections collected / unique 117332 / 16921 [R(int) = 0.0847] Completeness to theta = 25.242 99.7 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.8620 and 0.7832 Full-matrix least-squares on F<sup>2</sup> Refinement method Data / restraints / parameters 16921 / 1344 / 1166 Goodness-of-fit on F^2 1.103 Final R indices [I>2sigma(I)] R1 = 0.0709, wR2 = 0.1960 R indices (all data)  $R_1 = 0.1025, wR_2 = 0.2178$ Extinction coefficient n/a Largest diff. peak and hole 1.120 and -0.822 eÅ<sup>-3</sup>

 Table S4.
 Bond lengths [A] and angles [deg] for 4 (pz190507Zn1).

| Zn(1)-N(3)  | 2.011(2)  |
|-------------|-----------|
| Zn(1)-N(5)  | 2.023(3)  |
| Zn(1)-N(1)  | 2.029(2)  |
| Zn(1)-N(7)  | 2.031(2)  |
| Zn(1)-O(1S) | 2.086(3)  |
| O(1S)-H(1)  | 0.899(10) |
| O(1S)-H(2)  | 0.902(10) |
| N(1)-C(1)   | 1.369(4)  |
| N(1)-C(4)   | 1.374(4)  |
| N(2)-C(4)   | 1.327(4)  |
| N(2)-C(5)   | 1.336(4)  |
| N(3)-C(5)   | 1.370(4)  |
| N(3)-C(8)   | 1.373(4)  |
| N(4)-C(8)   | 1.322(4)  |
| N(4)-C(9)   | 1.331(4)  |
| N(5)-C(9)   | 1.372(4)  |
| N(5)-C(12)  | 1.373(4)  |
| N(6)-C(12)  | 1.325(4)  |
|             |           |

| N(6)-C(13)                    | 1.335(4)             |
|-------------------------------|----------------------|
| N(7)-C(16)                    | 1.368(4)             |
| N(7)-C(13)                    | 1.369(4)             |
| N(8)-C(16)                    | 1.322(4)             |
| N(8)-C(1)                     | 1.331(4)             |
| N(9)-C(31)                    | 1.332(4)             |
| N(9)-C(6)                     | 1.341(4)             |
| N(10)-C(32)                   | 1.317(4)             |
| N(10)-C(7)                    | 1.351(4)             |
| N(11)-C(45)                   | 1.321(5)             |
| N(11)-C(10)                   | 1.359(4)             |
| N(12) - C(46)                 | 1 334(4)             |
| N(12) - C(11)                 | 1 339(4)             |
| N(13)-C(59)                   | 1 327(4)             |
| N(13) - C(14)                 | 1.327(4)<br>1 358(4) |
| N(14) - C(60)                 | 1.335(4)             |
| N(14) = C(15)                 | 1.323(4)             |
| N(14)-C(13)<br>N(15)-C(17)    | 1.339(4)<br>1.221(4) |
| N(15) - C(17)                 | 1.321(4)             |
| N(15) - C(2)<br>N(16) - C(19) | 1.347(4)             |
| N(10)-C(10)                   | 1.529(4)             |
| N(10)-C(3)                    | 1.347(4)             |
| N(17)-C(31)                   | 1.380(4)             |
| N(17)-C(36)                   | 1.453(9)             |
| N(17)-C(36')                  | 1.461(9)             |
| N(17)-C(33)                   | 1.501(6)             |
| N(17)-C(36")                  | 1.503(9)             |
| N(18)-C(32)                   | 1.381(4)             |
| N(18)-C(39)                   | 1.459(5)             |
| N(18)-C(42)                   | 1.471(5)             |
| N(19)-C(45)                   | 1.390(4)             |
| N(19)-C(50)                   | 1.459(6)             |
| N(19)-C(47)                   | 1.464(6)             |
| N(20)-C(46)                   | 1.385(5)             |
| N(20)-C(53)                   | 1.448(6)             |
| N(20)-C(56)                   | 1.474(6)             |
| N(21)-C(59)                   | 1.390(4)             |
| N(21)-C(61)                   | 1.462(5)             |
| N(21)-C(64)                   | 1.468(5)             |
| N(22)-C(60)                   | 1.377(4)             |
| N(22)-C(67)                   | 1.465(4)             |
| N(22)-C(70)                   | 1.479(4)             |
| N(23)-C(17)                   | 1.393(4)             |
| N(23)-C(22)                   | 1.453(5)             |
| N(23)-C(19)                   | 1.467(4)             |
| N(24)-C(18)                   | 1.392(4)             |
| N(24)-C(28)                   | 1.473(4)             |
| N(24)-C(25)                   | 1.478(5)             |
| C(1)-C(2)                     | 1.439(4)             |
| C(2)-C(3)                     | 1.375(4)             |
| C(3)-C(4)                     | 1.462(4)             |
| C(5)-C(6)                     | 1.458(4)             |
| C(6)-C(7)                     | 1.377(4)             |
| C(7)-C(8)                     | 1.447(4)             |
| C(9)-C(10)                    | 1.451(4)             |
| C(10)-C(11)                   | 1 376(5)             |
| C(11)-C(12)                   | 1 457(4)             |
| C(13)-C(14)                   | 1.453(4)             |
| / /                           | =                    |

| C(14)-C(15)      | 1.371(4)  |
|------------------|-----------|
| C(15)-C(16)      | 1.451(4)  |
| C(17)-C(18)      | 1.461(4)  |
| C(19)-C(20)      | 1.501(5)  |
| C(20)-O(1')      | 1.314(6)  |
| C(20)-O(1)       | 1.350(6)  |
| O(1)-C(21)       | 1.409(7)  |
| O(1')-C(21')     | 1.448(10) |
| C(22)-C(23)      | 1.506(7)  |
| C(23)-O(2)       | 1.404(6)  |
| O(2)-C(24')      | 1.428(14) |
| O(2)-C(24)       | 1.464(15) |
| C(25)-C(26)      | 1.505(5)  |
| C(26)-O(3)       | 1.386(6)  |
| O(3)-C(27')      | 1.430(12) |
| O(3)-C(27)       | 1 473(12) |
| C(28)-C(29)      | 1 479(7)  |
| C(29) - O(4)     | 1,475(7)  |
| $O(A)_{-}C(30)$  | 1 / 25(7) |
| $C(21)_{-}C(22)$ | 1.425(7)  |
| $C(31)^{-}C(32)$ | 1.403(3)  |
| C(33) - C(34)    | 1,330(9)  |
| C(34)-O(3)       | 1.433(9)  |
| O(5) - C(35)     | 1.431(9)  |
| O(5) - C(35)     | 1.438(9)  |
| C(39)-C(40)      | 1.524(7)  |
| C(40)-O(8)       | 1.378(6)  |
| O(8)-C(41)       | 1.438(8)  |
| C(42)-C(43)      | 1.466(7)  |
| C(43)-O(7)       | 1.404(9)  |
| C(43)-O(7)       | 1.457(7)  |
| O(7)-C(44)       | 1.433(8)  |
| O(7')-C(44')     | 1.436(10) |
| C(45)-C(46)      | 1.463(5)  |
| C(47)-C(48)      | 1.473(8)  |
| C(48)-O(9)       | 1.423(6)  |
| O(9)-C(49)       | 1.403(8)  |
| O(9)-C(49')      | 1.441(8)  |
| C(50)-C(51)      | 1.458(12) |
| C(50)-C(51')     | 1.517(19) |
| C(51)-O(10)      | 1.416(8)  |
| O(10)-C(52)      | 1.425(8)  |
| C(51')-O(10')    | 1.418(9)  |
| O(10')-C(52')    | 1.418(9)  |
| C(53)-C(54')     | 1.525(10) |
| C(53)-C(54)      | 1.531(8)  |
| C(54)-O(11)      | 1.448(8)  |
| O(11)-C(55)      | 1.415(8)  |
| C(54')-O(11')    | 1.436(10) |
| O(11')-C(55')    | 1.452(10) |
| C(56)-C(57)      | 1.398(14) |
| C(56)-C(57')     | 1.568(14) |
| C(57)-O(12)      | 1.388(7)  |
| O(12)-C(58)      | 1.389(9)  |
| C(57')-O(12')    | 1.466(9)  |
| O(12')-C(58')    | 1.426(9)  |
| C(59)-C(60)      | 1.466(4)  |
| C(61)-C(62)      | 1.517(6)  |
|                  |           |

| C(62)-O(13)           | 1.372(7)   |
|-----------------------|------------|
| O(13)-C(63)           | 1.428(6)   |
| C(64)-C(65)           | 1.447(7)   |
| C(65)-O(14')          | 1.363(6)   |
| C(65)-O(14)           | 1.367(6)   |
| O(14)-C(66)           | 1.416(8)   |
| O(14')-C(66')         | 1.427(9)   |
| C(67)-C(68)           | 1.493(5)   |
| C(68)-O(15)           | 1.410(5)   |
| O(15)-C(69)           | 1.419(6)   |
| C(70)-C(71)           | 1.493(5)   |
| C(71)-O(16')          | 1.396(5)   |
| C(71)-O(16)           | 1.402(9)   |
| O(16)-C(72)           | 1.427(10)  |
| O(16')-C(72')         | 1.427(6)   |
| O(6)-C(38)            | 1.401(10)  |
| O(6)-C(37)            | 1.441(9)   |
| C(36)-C(37)           | 1.549(10)  |
| O(6')-C(37')          | 1.427(9)   |
| O(6')-C(38')          | 1.444(10)  |
| C(36')-C(37')         | 1.529(10)  |
| O(6")-C(38")          | 1.430(10)  |
| O(6")-C(37")          | 1.449(9)   |
| C(36")-C(37")         | 1.544(9)   |
|                       |            |
| N(3)-Zn(1)-N(5)       | 88.69(10)  |
| N(3)-Zn(1)-N(1)       | 86.56(10)  |
| N(5)-Zn(1)-N(1)       | 155.92(12) |
| N(3)-Zn(1)-N(7)       | 154.54(11) |
| N(5)-Zn(1)-N(7)       | 86.47(10)  |
| N(1)-Zn(1)-N(7)       | 87.74(10)  |
| N(3)-Zn(1)-O(1S)      | 99.81(10)  |
| N(5)-Zn(1)-O(1S)      | 104.48(10) |
| N(1)-Zn(1)-O(1S)      | 99.59(10)  |
| N(7)-Zn(1)-O(1S)      | 105.61(10) |
| C(1)-N(1)-C(4)        | 108.5(2)   |
| C(1)-N(1)-Zn(1)       | 124.2(2)   |
| C(4)-N(1)-Zn(1)       | 125.71(19) |
| C(4)-N(2)-C(5)        | 123.3(3)   |
| C(5)-N(3)-C(8)        | 109.0(2)   |
| C(5)-N(3)-Zn(1)       | 126.58(19) |
| C(8)-N(3)-Zn(1)       | 124.2(2)   |
| C(8)-N(4)-C(9)        | 124.0(3)   |
| C(9)-N(5)-C(12)       | 108.6(3)   |
| C(9)-N(5)-Zn(1)       | 124.7(2)   |
| C(12)-N(5)-Zn(1)      | 126.6(2)   |
| C(12)-N(6)-C(13)      | 123.1(3)   |
| C(16)-N(7)-C(13)      | 108.5(2)   |
| C(16)-N(7)-Zn(1)      | 124.1(2)   |
| C(13)-N(7)-Zn(1)      | 126.9(2)   |
| C(16)-N(8)-C(1)       | 124.0(2)   |
| C(31)-N(9)-C(6)       | 114.2(3)   |
| C(32) - N(10) - C(7)  | 114.5(3)   |
| C(45)-N(11)-C(10)     | 115.2(3)   |
| C(40) - N(12) - C(11) | 112.U(3)   |
| C(59) - N(13) - C(14) | 113.9(3)   |
|                       | 113./(3)   |

| C(17)-N(15)-C(2)                           | 115.0(3) |
|--------------------------------------------|----------|
| C(18)-N(16)-C(3)                           | 114.7(3) |
| C(31)-N(17)-C(36)                          | 119.9(9) |
| C(31)-N(17)-C(36')                         | 115.8(8) |
| C(31)-N(17)-C(33)                          | 114.8(4) |
| C(36)-N(17)-C(33)                          | 108 3(8) |
| C(36') - N(17) - C(33)                     | 115 6(9) |
| C(30) = N(17) = C(33)                      | 112 2(7) |
| C(31) - N(17) - C(30)                      | 115.5(7) |
| $C(33)-N(17)-C(36^{\circ})$                | 125.8(8) |
| C(32)-N(18)-C(39)                          | 119.0(3) |
| C(32)-N(18)-C(42)                          | 117.0(3) |
| C(39)-N(18)-C(42)                          | 115.3(3) |
| C(45)-N(19)-C(50)                          | 117.0(3) |
| C(45)-N(19)-C(47)                          | 117.0(3) |
| C(50)-N(19)-C(47)                          | 115.3(3) |
| C(46)-N(20)-C(53)                          | 117.7(3) |
| C(46)-N(20)-C(56)                          | 119.4(4) |
| C(53)-N(20)-C(56)                          | 117.2(4) |
| C(59)-N(21)-C(61)                          | 1175(3)  |
| C(59) - N(21) - C(64)                      | 115 6(2) |
| $C(53)^{-1}N(21)^{-}C(04)$                 | 116 5(3) |
| C(01) - N(21) - C(04)                      | 110.5(5) |
| C(60)-N(22)-C(67)                          | 117.9(3) |
| C(60)-N(22)-C(70)                          | 119.1(3) |
| C(67)-N(22)-C(70)                          | 116.6(3) |
| C(17)-N(23)-C(22)                          | 114.8(3) |
| C(17)-N(23)-C(19)                          | 115.1(3) |
| C(22)-N(23)-C(19)                          | 115.2(3) |
| C(18)-N(24)-C(28)                          | 114.8(3) |
| C(18)-N(24)-C(25)                          | 116.2(3) |
| C(28)-N(24)-C(25)                          | 113.9(3) |
| N(8)-C(1)-N(1)                             | 127.6(3) |
| N(8)-C(1)-C(2)                             | 123.5(3) |
| N(1)-C(1)-C(2)                             | 1089(2)  |
| $N(15)_{-}C(2)_{-}C(2)$                    | 122 /(2) |
| N(15) - C(2) - C(3)                        | 120.4(3) |
| N(13)-C(2)-C(1)                            | 107 7(2) |
| C(3)-C(2)-C(1)                             | 107.7(2) |
| N(16)-C(3)-C(2)                            | 122.7(3) |
| N(16)-C(3)-C(4)                            | 130.7(3) |
| C(2)-C(3)-C(4)                             | 106.4(3) |
| N(2)-C(4)-N(1)                             | 126.9(3) |
| N(2)-C(4)-C(3)                             | 124.7(3) |
| N(1)-C(4)-C(3)                             | 108.4(2) |
| N(2)-C(5)-N(3)                             | 127.5(3) |
| N(2)-C(5)-C(6)                             | 124.0(3) |
| N(3)-C(5)-C(6)                             | 108.5(3) |
| N(9)-C(6)-C(7)                             | 123.0(3) |
| N(9)-C(6)-C(5)                             | 129.9(3) |
| C(7)-C(6)-C(5)                             | 106 6(3) |
| N(10)-C(7)-C(6)                            | 123 5(3) |
| N(10) = C(7) = C(0)<br>N(10) = C(7) = C(8) | 122.5(3) |
| C(E) C(T) C(0)                             | 107 6(2) |
| U(0) - U(7) - U(8)                         | 120.0(3) |
| N(4)-C(8)-N(3)                             | 128.6(3) |
| N(4)-C(8)-C(7)                             | 123.1(3) |
| N(3)-C(8)-C(7)                             | 108.3(3) |
| N(4)-C(9)-N(5)                             | 127.4(3) |
| N(4)-C(9)-C(10)                            | 123.9(3) |
| N(5)-C(9)-C(10)                            | 108.5(3) |

| N(11)-C(10)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.6(3) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| N(11)-C(10)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129.5(3) |
| C(11)-C(10)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.5(3) |
| N(12)-C(11)-C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123.7(3) |
| N(12)-C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129 6(3) |
| C(10) C(11) C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106 6(2) |
| C(10) - C(11) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0(3) |
| N(6)-C(12)-N(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128.1(3) |
| N(6)-C(12)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123.2(3) |
| N(5)-C(12)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.7(3) |
| N(6)-C(13)-N(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127.0(3) |
| N(6)-C(13)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124.1(3) |
| N(7)-C(13)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.9(2) |
| N(13)-C(14)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.8(3) |
| N(13)-C(14)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129 9(3) |
| $C(15)_{-}C(14)_{-}C(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106 7(3) |
| $C(13)^{-}C(14)^{-}C(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.7(3) |
| N(14)-C(15)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 124.0(3) |
| N(14)-C(15)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128.7(3) |
| C(14)-C(15)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107.3(3) |
| N(8)-C(16)-N(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128.3(3) |
| N(8)-C(16)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123.1(3) |
| N(7)-C(16)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.6(2) |
| N(15)-C(17)-N(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118.1(3) |
| N(15)-C(17)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.0(3) |
| N(23)-C(17)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 9(3) |
| N(16)-C(18)-N(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118 3(3) |
| N(16) - C(10) - N(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121 c(2) |
| N(10)-C(10)-C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.0(5) |
| N(24)-C(18)-C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.1(3) |
| N(23)-C(19)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.9(3) |
| O(1')-C(20)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.1(5) |
| O(1)-C(20)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106.0(4) |
| C(20)-O(1)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.7(6) |
| C(20)-O(1')-C(21')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113.7(7) |
| N(23)-C(22)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115.4(3) |
| O(2)-C(23)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.6(4) |
| C(23)-O(2)-C(24')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102 8(7) |
| C(23) - O(2) - C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122.0(7) |
| N(24) C(25) C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/ 9/2) |
| N(24) - C(25) - C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.0(3) |
| O(3)-C(26)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.9(4) |
| C(26)-O(3)-C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.4(6) |
| C(26)-O(3)-C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105.9(6) |
| N(24)-C(28)-C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.4(4) |
| O(4)-C(29)-C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.3(4) |
| C(30)-O(4)-C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112.7(4) |
| N(9)-C(31)-N(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.7(3) |
| N(9)-C(31)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.7(3) |
| N(17)-C(31)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 6(3) |
| $N(10)_{C}(32)_{N}(18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117 6(3) |
| N(10) - C(32) - N(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117.0(3) |
| N(10)-C(32)-C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.1(3) |
| N(18)-C(32)-C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.2(3) |
| N(17)-C(33)-C(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.3(4) |
| O(5)-C(34)-C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.7(5) |
| C(35')-O(5)-C(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.4(9) |
| C(34)-O(5)-C(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.8(9) |
| N(18)-C(39)-C(40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.0(3) |
| O(8)-C(40)-C(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.4(4) |
| C(40)-O(8)-C(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111 6(5) |
| $C(\Delta 3) = C(\Delta 3) = C$ | 112 2/1  |
| C(70)-C(72)-N(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.3(4) |

| O(7')-C(43)-C(42)              | 124.9(10)  |
|--------------------------------|------------|
| O(7)-C(43)-C(42)               | 102.5(5)   |
| C(44)-O(7)-C(43)               | 108.7(7)   |
| C(43)-O(7')-C(44')             | 119.6(19)  |
| N(11)-C(45)-N(19)              | 118.1(3)   |
| N(11)-C(45)-C(46)              | 122.0(3)   |
| N(19)-C(45)-C(46)              | 119 9(3)   |
| N(12)-C(46)-N(20)              | 117 2(3)   |
| N(12) - C(A6) - C(A5)          | 120 7(2)   |
| $N(12)^{-}C(40)^{-}C(45)$      | 120.7(3)   |
| N(20)-C(40)-C(45)              | 122.0(5)   |
| N(19)-C(47)-C(48)              | 112.3(4)   |
| O(9)-C(48)-C(47)               | 108.5(4)   |
| C(49)-O(9)-C(48)               | 105.3(7)   |
| C(48)-O(9)-C(49')              | 114.6(7)   |
| C(51)-C(50)-N(19)              | 114.0(6)   |
| N(19)-C(50)-C(51')             | 111.9(8)   |
| O(10)-C(51)-C(50)              | 103.2(7)   |
| C(51)-O(10)-C(52)              | 116.1(9)   |
| O(10')-C(51')-C(50)            | 112.5(13)  |
| C(51')-O(10')-C(52')           | 117.9(14)  |
| N(20)-C(53)-C(54')             | 122.6(17)  |
| N(20)-C(53)-C(54)              | 109.0(6)   |
| O(11)-C(54)-C(53)              | 103.3(7)   |
| C(55)-O(11)-C(54)              | 109.3(8)   |
| O(11')-C(54')-C(53)            | 88.2(13)   |
| C(54')-O(11')-C(55')           | 118(2)     |
| C(57)-C(56)-N(20)              | 122 1(5)   |
| N(20)-C(56)-C(57')             | 106 7(6)   |
| $\Omega(12)_{-}C(57)_{-}C(56)$ | 115 1(9)   |
| $C(57)_{-}O(12)_{-}C(58)$      | 125 0(11)  |
| O(12) O(12) O(12) O(12)        | 123.3(11)  |
| O(12) - C(57) - C(50)          | 100.4(8)   |
| U(30) - U(12) - U(37)          | 1105.0(10) |
| N(13)-C(59)-N(21)              | 122.0(2)   |
| N(13)-C(59)-C(60)              | 122.0(3)   |
| N(21)-C(59)-C(60)              | 119.4(3)   |
| N(14)-C(60)-N(22)              | 118.7(3)   |
| N(14)-C(60)-C(59)              | 121.1(3)   |
| N(22)-C(60)-C(59)              | 120.1(3)   |
| N(21)-C(61)-C(62)              | 111.3(3)   |
| O(13)-C(62)-C(61)              | 111.4(4)   |
| C(62)-O(13)-C(63)              | 111.9(5)   |
| C(65)-C(64)-N(21)              | 115.6(3)   |
| O(14')-C(65)-C(64)             | 130.0(6)   |
| O(14)-C(65)-C(64)              | 111.2(5)   |
| C(65)-O(14)-C(66)              | 113.0(8)   |
| C(65)-O(14')-C(66')            | 115.1(10)  |
| N(22)-C(67)-C(68)              | 111.1(3)   |
| O(15)-C(68)-C(67)              | 108.5(3)   |
| C(68)-O(15)-C(69)              | 111.7(4)   |
| N(22)-C(70)-C(71)              | 114.5(4)   |
| O(16')-C(71)-C(70)             | 110.1(4)   |
| O(16)-C(71)-C(70)              | 113.7(7)   |
| C(71)-O(16)-C(72)              | 112(2)     |
| C(71)-O(16')-C(72')            | 110.1(5)   |
| C(38)-O(6)-C(37)               | 120.5(17)  |
| N(17)-C(36)-C(37)              | 101.5(12)  |
| O(6)-C(37)-C(36)               | 119.7(16)  |
|                                |            |

| C(37')-O(6')-C(38') | 106.1(13) |
|---------------------|-----------|
| N(17)-C(36')-C(37') | 108.2(13) |
| O(6')-C(37')-C(36') | 105.7(15) |
| C(38")-O(6")-C(37") | 121.9(16) |
| N(17)-C(36")-C(37") | 123.6(11) |
| O(6")-C(37")-C(36") | 112.4(12) |

# References

Demuth, J.; Kucera, R.; Kopecky, K.; Havlínová, Z.; Libra, A.; Novakova, V.; Miletin, M.; Zimcik,
 P., Efficient Synthesis of a Wide-Range Absorbing Azaphthalocyanine Dark Quencher and Its
 Application to Dual-Labeled Oligonucleotide Probes for Quantitative Real-Time Polymerase Chain
 Reactions. *Chemistry – A European Journal* **2018**, 24, (38), 9658-9666.

2. Petrik, P.; Zimcik, P.; Kopecky, K.; Musil, Z.; Miletin, M.; Loukotova, V., Protonation and deprotonation of nitrogens in tetrapyrazinoporphyrazine macrocycles. *Journal of Porphyrins and Phthalocyanines* **2007**, 11, 487-495.

3. Kopecky, K.; Novakova, V.; Miletin, M.; Kucera, R.; Zimcik, P., Synthesis of new azaphthalocyanine dark quencher and evaluation of its quenching efficiency with different fluorophores. *Tetrahedron* **2011**, 67, (33), 5956-5963.

4. Inaba, Y.; Kobuke, Y., Synthesis of a complementary dimer from mono(imidazolyl)-substituted cobalt(II) porphyrin as a new artificial T-form hemoglobin. *Tetrahedron* **2004**, 60, (13), 3097-3107.

5. García-Iglesias, M.; Peuntinger, K.; Kahnt, A.; Krausmann, J.; Vázquez, P.; González-Rodríguez, D.; Guldi, D. M.; Torres, T., Supramolecular Assembly of Multicomponent Photoactive Systems via Cooperatively Coupled Equilibria. *Journal of the American Chemical Society* **2013**, 135, (51), 19311-19318.

6. Libra, A.; Fernetti, C.; Lorusso, V.; Visigalli, M.; Anelli, P. L.; Staud, F.; Tiribelli, C.; Pascolo, L., Molecular determinants in the transport of a bile acid-derived diagnostic agent in tumoral and nontumoral cell lines of human liver. *Journal of Pharmacology and Experimental Therapeutics* **2006**, 319, (2), 809-817.