Supporting Information

Divergent Oriented Synthesis (DOS) of aza-Heterocyclic Amides through Palladium-catalyzed Ketenimination of 2-Iodo-N-(propa-1,2-dien-1-yl)anilines

Xiaoyan Chen,a Guanyinsheng Qiu,*b Renzhi Liu,b Dianpeng Chen,*c and Zhiyuan Chen*a

a Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China. E-mail: zchen@jxnu.edu.cn

b College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China. E-mail: qiuguanyinsheng@mail.zjxu.edu.cn

c Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; Email: chendp@zju.edu.cn
Content

1. General experimental information (S2).
2. General procedure for the preparation of the starting materials 1 (S3-S10).
3. General procedure and characterization data of intermediate 3 and compounds 4-11 (S11-S27).
4. 1H and 13C NMR spectra of 3-13 (S28-S57).
5. X-ray crystal structure of 4a (S58-S59).

General experimental information.
All reactions were performed in flame-dried glassware under nitrogen atmosphere. Solvents were distilled prior to use. Reagents were used as purchased from Aldrich, Acros, Alfa Aesar, or TCI unless otherwise noted. Chromatographic separations were performed using Silicycle 43-60 Å SiO$_2$. 1H and 13C NMR spectra were obtained on Varian VI-400 and VI-500 spectrometers using CDCl$_3$ with TMS or residual solvent as standard unless otherwise noted. Melting points were determined using a Laboratory Devices MEL-TEMP and are uncorrected/calibrated. Infrared spectra were obtained on Bruker EQUINOX 55 FTIR. TLC analysis was performed using Aldrich 254 nm polyester-backed plates (60 Å, 250 µm) and visualized using UV, p-anisolaldehyde and phosphomolybdic acid stains. Low-resolution mass spectra were obtained using Waters LCT® (ESI) and Agilent 1100 series LS/MSD (APCI). All spectral data obtained for new compounds are reported here.
General procedure for the preparation of starting materials.

Preparations of allenamides 1a - 1f. \[1\]

General procedure A for tosylation:
To a solution of o-iodoaniline (1.00 g, 4.56 mmol) in pyridine (4.60 mL) was added p-TsCl (0.95 g, 4.83 mmol, 1.05 equiv) at 0°C. The reaction was stirred at rt over night before being quenched with H2O. The quenched mixture was extracted three times with DCM. The combined organic layers were first washed with 1 M HCl to remove excess pyridine, and then with sat aq NaHCO3, H2O, sat aq NaCl, and dried over anhyd MgSO4. The filtrate was concentrated under reduced pressure and purified using silica gel flash column chromatography [eluent, PE:EA=10:1] to give the desired product tosylamine (1.58 g, 87% yield).

General procedure B for propargylation:
To a solution of tosylamine (1.58 g, 1.0 equiv.) and potassium carbonate (1.50 equiv.) in DMF (0.4 M) at room temperature, 3-bromopropyne (1.20 equiv., 80% in toluene) was added. The mixture was allowed to stir at 60 ºC overnight. the reaction progress was monitored using TLC analysis. After the reaction was complete, the mixture was filtered through CeliteTM. The filtrate was concentrated under reduced pressure and purified using silica gel flash column chromatography [eluent, PE:EA=10:1] to give the desired propargyl amide S1a (1.58 g, 85% yield).

General procedure C:
To a solution of o-iodoaniline (2.00 g, 9.14 mmol) in THF (20 mL) was added Boc$_2$O (2.19 g, 10.05 mmol, 1.10 equiv). The reaction was refluxed for 24 h before being quenched with H$_2$O. The mixture was extracted three times with DCM. The combined organic layer were washed with sat aq NaCl and dried over anhyd MgSO$_4$. The solution was filtered and concentrated under reduced pressure to give the crude Boc-protected anilide that was used in the next step without further purification.

General procedure D for propargylation:
To a solution of the crude Boc-protected anilide in DMF (45 mL) were added K$_2$CO$_3$ (1.90 g, 13.71 mmol, 1.5 eqequiv) and propargyl bromide (0.97 mL, 10.92 mmol, 1.20 equiv) at room. The reaction was stirred at rt for 0.5 h, than at 60°Cstirred overnight, and the reaction progress was monitored using TLC analysis. After the reaction was complete, the reaction was quenched with sat aq NH$_4$Cl. The quenched mixture was poured into H$_2$O and extracted three times with DCM. The combined organic layers were washed with equal volume of saturated aqueous NaCl and dried over anhyd. MgSO$_4$. After filtration and concentration under reduced pressure, the crude product was purified using silica gel flash column chromatography [eluent: PE:EA=15:1] to give the desired propargyl amide S2a (2.86 g, 88% yield over two steps).

General procedure E:
To a solution of o-iodoaniline (1.00 g, 4.56 mmol) in CH$_2$Cl$_2$ (22 mL) was added pyridine (1.10 mL, 13.70 mmol, 3.00 equiv) and Acetly chloride (1.40 mL, 6.84 mmol, 1.50 equiv). The reaction was stirred at rt overnight before being quenched by H$_2$O. The quenched mixture was extracted three times with DCM. The combined organic layers were washed with 1.0 M HCl, sat aq NaHCO$_3$, H$_2$O, and saturated NaCl, and dried over anhydrous MgSO$_4$. The solution was filtered and concentrated under reduced pressure to give the crude carbamate that was used in the next step without further purification.

General procedure F for propargylation:
To a solution of the above crude carbamate in DMF (25 mL) were added K$_2$CO$_3$ (1.90 g, 13.71 mmol, 1.5 equiv) and propargyl bromide (0.97 mL, 10.92 mmol, 1.20 equiv)
at room. The reaction was stirred at room temperature for 0.5 h, than stirred at 60°C for overnight. After the reaction was completed as monitored by TLC, the reaction was quenched with sat aq NH₄Cl. The quenched mixture was poured into H₂O and extracted three times with DCM. The combined organic layers were washed with sat aqNaCl and dried over anhyd MgSO₄. After filtration and concentration under reduced pressure, the crude product was purified using silica gel column chromatography [gradient eluent: PE:EA=20:1] to give the allenamide 10k directly (0.64 g, 50% yield over two steps).

General procedure for the preparation of pyridine-based allenamide:

![Diagram](http://example.com/diagram.png)

General procedure A for tosylation:

Prepared according to General Procedure E using 3-iodopyridin-2-amine (250 mg, 1.14 mmol, 1.0 equiv), 4-methylbenzenesulfonic anhydride (179 mg, 1.14 mmol, 1.0 equiv) and DMAP (13.9 mg, 0.11 mmol, 0.1 equiv). After 18 h, the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, 0-30% EtOAc/CH₂Cl₂) to afford the title compound as a white solid (248 mg, 0.66 mmol, 58%).

General procedure B for propargylation:

To a solution of tosylamine (1.00 equiv) and potassium carbonate (1.50 equiv) in DMF (0.4 M) at room temperature, 3-bromopropyne (1.20 equiv, 80% in toluene) was added. The mixture was allowed to stir at 60 ºC overnight. The reaction progress was monitored using TLC analysis. After the reaction was complete, the mixture was filtered through Celite™. The filtrate was concentrated under reduced pressure and purified using silica gel flash column chromatography [eluent: PE:EA=10:1] to give the desired propargyl amide (1.58 g, 70% yield).

General procedure C for allenation reaction:
To a solution of amide (1.00 g, 2.43 mmol) in THF (13 mL) was added t-BuOK (1.0 M solution in THF, 0.72 mL, 0.72 mmol, 0.30 equiv) at 0°C. The reaction was stirred at rt for 1 h before being concentrated under reduced pressure. Subsequently, the residue was suspended in DCM and then filtered through Celite. The filtrate was concentrated under reduced pressure and the crude residue was purified using silica gel flash column chromatography [eluent: PE:EA=100:1] to give the desired allenamide 10a (0.80 mg, 55% yield).

General procedure G for allenation reaction:
To a solution of allenamide S1a (1.00 g, 2.43 mmol) in THF (13 mL) was added t-BuOK (1.0 M solution in THF, 0.72 mL, 0.72 mmol, 0.30 equiv) at 0°C. The reaction was stirred at rt for 1 h before being concentrated under reduced pressure. Subsequently, the residue was first suspended in DCM and then filtered through CeliteTM. The filtrate was concentrated under reduced pressure and the crude residue was purified using silica gel flash column chromatography [eluent:PE:EA=100:1] to give the desired allenamide 1a.
CHARACTERIZATIONS OF ALLENAMIDES 1a-f.

1a: 1.26 g (80% yield); yellow solid, mp 78-79 °C.

1H NMR (400 MHz, CDCl$_3$) δ 2.45 (s, 3H), 5.00 (m, 2H), 6.76 (m, $J = 1.6$ Hz, 1H), 7.02 (m, 1H), 7.09 (t, $J = 6.4$ Hz, 1H), 7.22 (m, 1H), 7.32 (d, $J = 8.0$ Hz, 1H), 7.68 (m, 2H), 7.89 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.9, 87.9, 102.2, 128.2, 128.8, 130.0, 130.4, 130.5, 136.3, 140.2, 140.5, 144.4, 201.5; IR (neat) cm$^{-1}$ 3043m, 2360m, 1434s, 1353s, 1159s, 1018s, 714s, 661s.

1b: 0.74 g (71% yield); brown solid; mp 154-155 °C;

1H NMR (400 MHz, CDCl$_3$) δ 2.46 (s, 3H), 5.04 (m, 2H), 6.62 (d, $J = 8.4$ Hz, 1H), 7.06 (t, $J = 6.4$ Hz, 1H), 7.34 (m, 3H), 7.66 (m, 2H), 8.03 (d, $J = 2.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.9, 88.4, 102.0, 103.0, 123.6, 128.2, 130.1, 131.4, 132.1, 136.0, 139.4, 142.7, 144.7, 201.3; IR (neat) cm$^{-1}$ 2970m, 2360m, 1737m, 1355s, 1161s, 716, 665s; mass spectrum (ESI): m/e (% relative intensity) 492.0 (M+H)$^+$.

1c: 0.40 g (40% yield); white solid; mp 150-151°C;

1H NMR (400 MHz, CDCl$_3$) δ 2.45 (s, 3H), 3.77(s, 3H), 4.98 (m, 1H), 5.06 (m, 1H), 6.62 (d, $J = 8.8$ Hz, 1H), 6.73 (m, 1H), 7.09 (t, $J = 6.0$ Hz, 1H), 7.32 (d, $J = 8.4$ Hz, 2H), 7.39 (d, $J = 2.4$ Hz, 1H), 7.66 (d, $J = 8.4$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 21.9, 55.9, 88.0, 102.5, 102.6, 114.6, 125.2, 128.1, 129.9, 130.5, 132.8, 136.3, 144.3, 159.9, 201.5; IR (neat) cm$^{-1}$ 2925m, 2360m, 1737m, 1485s, 1355s, 1227s, 1162s, 837s, 667s; mass spectrum (ESI): m/e (% relative intensity) 442.1 (100) (M+H)$^+$.

57
1d: 2.3 g (79% yield); yellow solid; mp 68-69 °C;

1H NMR (400 MHz, CDCl$_3$) δ 1.38-1.59 (m, 10H), 5.00 (m, 2H), 7.00 (m, 1H), 7.09 (t, J = 7.6 Hz, 1H), 7.18-7.36 (m, 3H), 7.85 (d, J = 7.2 Hz, 1H); 13CNMR (100 MHz, CDCl$_3$) δ 28.3, 81.7, 87.1, 99.8, 101.3, 124.9, 129.0, 129.3, 129.8, 139.1, 139.5, 142.1, 151.6, 201.9; IR (neat) cm$^{-1}$: 3394w, 2977m, 2359w, 1734s, 1515s, 1365s, 1319s, 1154s, 1016s, 857s, 758s; mass spectrum (ESI): m/e (% relative intensity) 375.1 (100) (M+NH$_4^+$).

1e: 0.67 g (48% yield); yellow solid; mp 104-105 °C;

1H NMR (400 MHz, CDCl$_3$) δ 2.46 (s, 3H), 3.91 (s, 3H), 5.01 (s, 2H), 6.85 (d, J = 7.6 Hz, 1H), 7.08 (t, J = 6.4 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.89 (m, 1H), 8.54 (d, J = 2.0 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.9, 52.8, 88.3, 101.8, 128.2, 130.0, 130.1, 130.3, 131.9, 136.0, 141.6, 144.3, 144.8, 165.1, 201.4; IR (neat) cm$^{-1}$: 3464w, 3360w, 3944m, 2361m, 1718s, 1280s, 1163s, 663s; mass spectrum (ESI): m/e (% relative intensity) 470.1 (100) (M+NH$_4^+$).

1f: 1.0 g (55% yield); yellow solid; mp 91-92°C;

1H NMR (400 MHz, CDCl$_3$) δ 8.15 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.55 (m, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.3 Hz, 1H), 5.07-5.25 (m, 1H), 4.58 (m, 2H), 4.20-4.22 (m, 2H), 2.45 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 210.09, 145.92, 144.35, 137.46, 136.18, 131.82 (q, 2J = 33.2 Hz), 131.34, 129.63, 128.21, 125.76, 121.63 (q, 1J = 273.1 Hz), 103.49, 85.41, 76.44, 50.90, 21.80; IR (neat) cm$^{-1}$: 1955 (w), 1598 (w), 1354 (m), 1163 (s), 1131 (s), 1079 (s), 1026 (w), 656 (m); mass spectrum (ESI): m/e (% relative intensity) 450.2 (100) (M+H$^+$).
2-Iodophenyl Propa-dienyl Ether (8): A suspension of 2-iodophenol (2.20 g, 10 mmol), propargyl bromide (1.79 g, 12 mmol), and potassium carbonate (1.66 g, 12 mmol) in THF (25 mL) was boiled under reflux for 16 h. Water (50 mL) and ethyl acetate (20 mL) were then added, the organic layer was separated, dried over Na$_2$SO$_4$, and evaporated under reduced pressure, and the residue was dissolved in 3:1 v/v tert-butyl alcohol-THF (20 mL). Potassium tert-butoxide (1.35 g, 12 mmol) was then added, and the resulting mixture was stirred at room temperature for 16 h. Then the solvent was evaporated under reduced pressure, and dichloromethane (20 mL) was added. The organic layer was separated, washed with water (20 mL), dried (Na$_2$SO$_4$), and evaporated under reduced pressure. The residue was separated by column chromatography with petroleum ether/ethyl acetate as the eluent on a silica gel column to afford the corresponding product 8 as a colorless oil (1.4 g, 55% yield).

1H NMR (400 MHz, CDCl$_3$) δ 7.78 (d, $J = 7.8$ Hz, 1H), 7.29 (t, $J = 7.7$ Hz, 1H), 7.07 (d, $J = 8.1$ Hz, 1H), 6.84-6.76 (m, 2H), 5.43 (d, $J = 5.9$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 202.3, 156.2, 139.6, 129.8, 124.7, 118.4, 116.8, 90.4, 87.2. MS (EI, 70eV) m/z 258, 219, 190, 131, 103, 91.

2-Iodo-N-phenyl-N-(prop-2-yn-1-yl)benzamide [4] (SS): Prepared in analogy to a published procedure. To a solution of 2-iodo benzoyl chloride (3.57 g, 13.4 mmol, 1 equiv) in dichloromethane (5 mL) at 0 °C, N-(prop-2-yn-1-yl)aniline 21 (1.76 g, 13.4 mmol, 1 equiv), followed by triethylamine (1.63 g, 16.1 mmol, 1.2 equiv) in dichloromethane (12 mL) were added. After stirring at room temperature for 12 h, the reaction mixture was quenched with water (50 mL). The organic layer was separated,

dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by automated column chromatography PE:EA=20:1 to afford the title compound (3.29 g, 9.11 mmol, 68% yield) as a yellow solid. mp:102-103°C.

\textbf{1H NMR} (500 MHz, CD$_3$OD) δ 7.69 (dd, $J = 8.0$, 1.1 Hz, 1H), 7.32–7.47 (m, 2H), 7.05–7.33 (m, 5H), 6.85–7.01 (m, 1H), 4.70 (d, $J = 2.5$ Hz, 2H), 2.72 (t, $J = 2.5$ Hz, 1H); \textbf{13C NMR} (125 MHz, CD$_3$OD) δ 171.84, 142.91, 142.32, 140.37, 131.26, 130.06, 129.78, 129.33, 129.25, 128.55, 94.04, 79.20, 74.09, 39.68; \textbf{HRMS (ESI+)} calculated for C$_{16}$H$_{13}$INO ([M+H]$^+$): 362.0042, found: 362.0028.

![Chemical Structure](image)

\textit{2-Iodo-N-phenyl-N-(propa-1,2-dien-1-yl)benzamide (10).} Prepared in analogy to a published procedure. To a solution of 2-iodo-N-phenyl-N-(prop-2-yn-1-yl)benzamide (2.02 g, 5.6 mmol, 1.0 equiv) in DMF (12.5 mL) at room temperature, sodium hydroxide (269 mg, 6.72 mmol, 1.2 equiv) was added. After stirring at room temperature overnight, dichloromethane (25 mL) was added to the reaction mixture. The organic layer was washed with water (25 mL) and aqueous lithium chloride (10% w/w, 25 mL). The organic layer was then dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by automated column chromatography (PE:EA=100:1) to afford the title compound (800 mg, 2.22 mmol, 40% yield) as a yellow oil.

\textbf{1H NMR} (500 MHz, MeOD) δ 7.66–7.76 (m, 2H), 7.29–7.34 (m, 2H), 7.12–7.27 (m, 5H), 6.87–6.97 (m, 1H), 5.12 (d, $J = 6.4$ Hz, 2H); \textbf{13C NMR} (125 MHz, MeOD) 202.89, 168.75, 141.51, 138.88, 138.70, 129.91, 128.57, 128.52, 128.44, 128.13, 127.13, 100.04, 92.70, 85.92; \textbf{HRMS (ESI+)} calculated for C$_{16}$H$_{13}$INO ([M+H]$^+$): 362.0042, found: 362.0029.
3. General procedure for the synthesis of intermediate 3 and compounds 4-11.

To a test tube equipped with a stir bar was charged with acetamide 1a (0.30 mmol), tert-butyl isocyanide 2 (0.45 mmol), Pd(OAc)$_2$ (0.03 mmol, 10 mol%), Cs$_2$CO$_3$ (0.60 mmol, 2.0 equiv.), and dry MeCN (3.0 mL). The reaction was stirred at 60°C with N$_2$. The reaction was monitored by TLC. Upon completion, the reaction was allowed to cool to room temperature, diluted with ethyl acetate (5.0 mL), then filtered through a short pad of silica. The solid residue was washed with ethyl acetate (~15 mL) unless otherwise noted. Concentration of the filtrate under reduced pressure provided the crude product 3, which was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1:3) to afford the desired compound 4.

\[
\text{N-}(\text{tert-Butyl})-2-\text{[(1-tosyl-1H-indol-3-yl)ethen-1-imine (3a)]]}
\]

Yield 92%, 101 mg; yellow liquid.

1H NMR (400 MHz, CDCl$_3$) δ 7.99 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 7.8 Hz, 1H), 7.33-7.30 (m, 2H), 7.22 (d, J = 7.6 Hz, 1H), 7.18 (d, J = 8.2 Hz, 2H), 4.94 (s, 1H), 2.30 (s, 3H), 1.37 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 184.0, 144.8, 135.5, 135.1, 129.8, 129.3, 126.8, 124.8, 122.96, 119.9, 119.4, 114.9, 113.8, 59.7, 49.7, 28.0, 21.5; hydrolyzed into 4a during HRMS process. HRMS (ESI$^+$) calculated for C$_{21}$H$_{25}$N$_2$O$_3$S$^+$ ([M+H]$^+$): 385.1580, found: 385.1566.
N-(tert-Butyl)-2-(1-tosyl-1H-indol-3-yl)acetamid (4a)

Yield 82%, 94.5 mg; yellow solid.

1H NMR (400 MHz, CDCl$_3$) δ 7.99 (d, $J = 8.2$ Hz, 1H), 7.75 (d, $J = 8.2$ Hz, 2H), 7.47 (d, $J = 12.0$ Hz, 2H), 7.34 (t, $J = 7.6$ Hz, 1H), 7.25 (t, $J = 7.6$ Hz, 1H), 7.21 (t, $J = 6.3$ Hz, 2H), 5.28 (s, 1H), 3.52 (s, 2H), 2.32 (s, 3H), 1.21 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 168.8, 145.1, 135.2, 135.0, 130.1, 129.9, 126.8, 125.2, 124.70, 123.5, 119.6, 116.7, 113.8, 51.3, 34.4, 28.5, 21.6; IR (neat) 3312, 2925, 1651, 1172, 743, 670, 572; HRMS (ESI$^+$) calculated for C$_{21}$H$_{25}$N$_2$O$_3$S$^+([M+H]^+)$: 385.1580, found: 385.1580.

![Chemical Structure](image)

N-(tert-butyl)-2-(1-(thiophen-2-ylsulfonyl)-1H-indol-3-yl)acetamide (4b)

Yield 65%, 73.5 mg; yellow solid, 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, $J = 8.2$ Hz, 1H), 7.66 (t, $J = 8.2$ Hz, 1H), 7.50 (d, $J = 5.0$ Hz, 2H), 7.47 (d, $J = 8.2$ Hz, 1H), 7.36 (t, $J = 7.8$ Hz, 1H), 7.27 (t, $J = 7.8$ Hz, 1H), 6.96 (m, 1H), 5.37 (s, 1H), 3.52 (s, 2H), 1.22 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 168.7, 137.9, 135.1, 133.6, 133.2, 130.3, 127.5, 125.4, 124.5, 123.8, 119.7, 117.6, 113.9, 51.3, 34.3, 28.6; IR (neat) 3287, 2968, 1648, 1378, 1172, 722, 591; HRMS(ESI$^+$) calculated for C$_{18}$H$_{23}$N$_2$O$_3$S$^+([M+H]^+)$: 377.0988, found: 377.0984.

![Chemical Structure](image)

N-(tert-Butyl)-2-(1-(naphthalen-2-ylsulfonyl)-1H-indol-3-yl)acetamide (4c)

Yield 70%, 88.3 mg; yellow solid.
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.51\) (s, 1H), 8.07 (d, \(J = 8.3\) Hz, 1H), 7.91 (d, \(J = 7.5\) Hz, 1H), 7.80-7.72 (m, 3H), 7.58-7.53 (m, 3H), 7.44 (d, \(J = 7.8\) Hz, 1H), 7.33 (t, \(J = 7.8\) Hz, 1H), 7.25-7.19 (m, 1H), 5.37 (s, 1H), 3.51 (s, 2H), 1.17 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 168.8, 135.3, 135.2, 134.8, 131.8, 130.2, 129.7, 129.5, 129.4, 128.5, 127.9, 127.8, 125.3, 124.7, 123.6, 121.3, 119.6, 116.9, 113.8, 51.3, 34.3, 28.5; IR (neat) 3311, 2960, 1652, 1170, 749, 664, 535; HRMS (ESI\(^+\)) calculated for C\(_{24}\)H\(_{25}\)N\(_2\)O\(_3\)S\(^+\) ([M+H\(^+\)]: 421.1580, found: 421.1578.

\[N-(\text{tert-Butyl})-2-((4\text{-fluorophenyl})\text{sulfonyl})-1H\text{-indol-3-yl})\text{acetamide (4d)}\]

Yield 71\%, 83 mg; yellow solid.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.97\) (d, \(J = 8.2\) Hz, 1H), 7.90 – 7.86 (m, 2H), 7.47 (d, \(J = 2.6\) Hz, 2H), 7.34 (t, \(J = 7.0\) Hz, 1H), 7.27-7.23 (m, 1H), 7.10-7.05 (m, 2H), 5.37 (s, 1H), 3.51 (s, 2H), 1.23 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 168.7, 164.7\) (d, \(J = 242\) Hz), 132.7, 134.0, 129.6 (d, \(2J = 21\) Hz), 125.4, 124.5, 123.7, 119.7 (d, \(2J = 24\) Hz), 117.3, 116.8, 116.6, 113.7, 51.4, 34.3, 28.6; IR (neat) 3316, 1651, 1492, 1180, 843, 675, 574; HRMS (ESI\(^+\)) calculated for C\(_{20}\)H\(_{22}\)FN\(_2\)O\(_3\)S\(^+\) ([M+H\(^+\)]: 389.1330, found: 389.1350.

\[N-(\text{tert-Butyl})-2-((4\text{-methoxyphenyl})\text{sulfonyl})-1H\text{-indol-3-yl})\text{acetamide (4e)}\]
Yield 77 %, 92.5 mg; yellow solid.

\textbf{1H NMR (400 MHz, CDCl}_3) \delta 7.97 (d, J = 7.2 Hz, 1H), 7.78 (d, J = 7.0 Hz, 2H), 7.47 (s, 2H), 7.31-7.22 (m, 2H), 6.82 (d, J = 7.4 Hz, 2H), 5.41 (s, 1H), 3.73 (s, 3H), 3.50 (s, 2H), 1.20 (s, 9H); \textbf{13C NMR (100 MHz, CDCl}_3) \delta 168.9, 163.8, 135.2, 130.2, 129.4, 129.0, 125.1, 124.7, 123.4, 119.6, 116.6, 114.5, 113.7, 55.6, 51.3, 34.3, 28.5; \textbf{IR (neat)} 3296, 2925, 1654, 1213, 116, 743, 579; \textbf{HRMS (ESI')} calculated for C_{21}H_{25}N_2O_4S^+ ([M+H]^+): 401.1530, found: 401.1538.

\textbf{tert-Butyl 3-((tert-butylamino)-2-oxoethyl)-1H-indole-1-carboxylate (4f)}

Yield 57 %, 56.5 mg; white solid.

\textbf{1H NMR (400 MHz, CDCl}_3) \delta 8.14 (s, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.32 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 5.51 (s, 2H), 3.54 (s, 4H), 1.65 (s, 9H), 1.25 (s, 9H); \textbf{13C NMR (100 MHz, CDCl}_3) \delta 169.4, 149.5, 135.6, 129.8, 124.8, 124.5, 122.8, 119.1, 115.3, 114.4, 83.8, 51.3, 34.5, 28.6, 28.2; \textbf{IR (neat)} 3288, 2978, 1735, 1639, 1370, 1082, 769; \textbf{HRMS (ESI')} calculated for C_{19}H_{27}N_2O_3^+ ([M+H]^+): 331.2016, found: 331.2006.

\textbf{2-(1-Acetyl-1H-indol-3-yl)-N-(tert-butyl)acetamide (4g)}

Yield 50 %, 41 mg; white solid.

\textbf{1H NMR (400 MHz, CDCl}_3) \delta 8.42 (d, J = 7.4 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.38-7.34 (m, 2H), 7.31-7.25 (m, 1H), 5.46 (s, 1H), 3.55 (s, 2H), 2.61 (s, 3H), 1.29 (s, 9H); \textbf{13C NMR (100 MHz, CDCl}_3) \delta 169.0, 168.4, 135.9, 129.9, 125.6, 123.9, 123.8, 118.8, 116.7, 116.2, 51.4, 34.3, 28.6, 24.0; \textbf{IR (neat)} 3298, 2961, 1696, 1640, 1453,

\[
\text{N-(\text{tert-Butyl})-2-(1-(4-chlorobenzoyl)-1H-indol-3-yl)acetamide (4h)}
\]
Yield 37%, 41 mg; white solid.
\[^1\text{H NMR (400 MHz, CDCl}_3\text{)}\delta 8.35 (d, J = 8.2 \text{ Hz, 1H}), 7.68 (d, J = 8.4 \text{ Hz, 2H}), 7.53 (q, J = 8.0 \text{ Hz, 3H}), 7.41 (t, J = 7.6 \text{ Hz, 1H}), 7.34 (t, J = 7.4 \text{ Hz, 1H}), 7.24 (d, J = 10.8 \text{ Hz, 1H}), 5.42 (s, 1H), 3.53 (s, 2H), 1.27 (s, 9H); \[^{13}\text{C NMR (100 MHz, CDCl}_3\text{)}\delta 168.8, 167.3, 138.4, 136.3, 132.7, 130.6, 130.2, 129.0, 125.7, 125.6, 124.3, 119.1, 116.6, 116.2, 51.4, 34.3, 28.6; \text{IR (neat)} 3280, 1692, 1641, 1357, 1147, 874, 755; HRMS (ESI+) calculated for C₂₁H₂₂ClN₂O₂⁺ ([M+H]⁺): 369.1364, found: 369.1366.\]

\[
\text{2-(6-Bromo-1-tosyl-1H-indol-3-yl)-N-(\text{tert-butyl})acetamide (4i)}
\]
Yield 76%, 106 mg; yellow solid;
\[^1\text{H NMR (400 MHz, CDCl}_3\text{)}\delta 8.14 (s, 1H), 7.72 (d, J = 8.2 \text{ Hz, 2H}), 7.44 (s, 1H), 7.32 (s, 2H), 7.21 (d, J = 8.2 \text{ Hz, 2H}), 5.42 (s, 1H), 3.46 (s, 2H), 2.31 (s, 3H), 1.22 (s, 9H). \[^{13}\text{C NMR (100 MHz, CDCl}_3\text{)}\delta 168.6, 145.4, 135.8, 134.8, 130.1, 129.1, 126.8, 126.7, 125.0, 120.9, 118.8, 116.7, 116.6, 51.4, 34.1, 28.5, 21.6; \text{IR (neat)} 3374, 2897, 1632, 1172, 854, 665, 554; HRMS (ESI+) calculated for C₂₁H₂₄BrN₂O₃S⁺ ([M+H]⁺): 463.0686, found: 463.0682.\]
N-(tert-Butyl)-2-(6-chloro-1-tosyl-1H-indol-3-yl)acetamide (4j)

Yield 71%, 89 mg; yellow solid.

1H NMR (400 MHz, CDCl₃) \(\delta\) 7.98 (d, \(J = 1.4\) Hz, 1H), 7.72 (d, \(J = 8.4\) Hz, 2H), 7.46 (s, 1H), 7.37 (d, \(J = 8.4\) Hz, 1H), 7.22 (s, 1H), 7.20-7.16 (m, 2H), 5.42 (s, 1H), 3.46 (s, 2H), 2.31 (s, 3H), 1.22 (s, 9H). **13C NMR (100 MHz, CDCl₃)** \(\delta\) 168.6, 145.4, 135.5, 134.8, 131.1, 130.1, 128.8, 126.7, 125.1, 124.1, 120.5, 116.6, 113.9, 51.4, 34.2, 28.5, 21.6; **IR (neat)** 3406, 2963, 1648, 1365, 1172, 670, 579; **HRMS** (ESI⁺) calculated for C_{21}H_{24}ClN₂O₃S⁺ ([M+H]^+): 419.1191, found: 419.1189.

N-(tert-Butyl)-2-(6-fluoro-1-tosyl-1H-indol-3-yl)acetamide (4k)

Yield 53%, 64 mg; yellow solid.

1H NMR (400 MHz, CDCl₃) \(\delta\) 7.91-7.88 (m, 1H), 7.70 (d, \(J = 8.4\) Hz, 2H), 7.51 (s, 1H), 7.18 (d, \(J = 8.2\) Hz, 2H), 7.13-7.10 (m, 1H), 7.03-6.99 (m, 1H), 5.55 (s, 1H), 3.44 (s, 2H), 2.29 (s, 3H), 1.23 (s, 9H); **13C NMR (100 MHz, CDCl₃)** \(\delta\) 168.6, 159.6 (d, \(^1J = 241.2\) Hz), 145.3, 134.8, 131.85, 130.80, 126.7, 126.5, 126.3, 116.8, 114.8, 113.1 (d, \(^2J = 25.6\) Hz), 105.4 (d, \(^2J = 24.2\) Hz), 51.4, 34.1, 28.5, 21.5. **IR (neat)** 3313, 2924, 1651, 1174, 809, 670, 584; **HRMS** (ESI⁺) calculated for C_{21}H_{24}FN₂O₃S⁺ ([M+H]^+): 403.1486, found: 403.1478.
N-(tert-Butyl)-2-(5-cyano-1-tosyl-1H-indol-3-yl)acetamide (4l)
Yield 54%, 66 mg; yellow solid.

^1H NMR (400 MHz, CDCl_3) δ 8.03 (d, J = 8.6 Hz, 1H), 7.85 (s, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.63 (s, 1H), 7.54-7.52 (m, 1H), 7.25-7.23 (m, 2H), 5.50 (s, 1H), 3.49 (s, 2H), 2.34 (s, 3H), 1.29 (s, 9H); ^13C NMR (100 MHz, CDCl_3) δ 168.1, 145.8, 136.7, 134.6, 130.5, 130.2, 127.9, 126.9, 126.5, 124.9, 119.2, 116.3, 114.4, 106.8, 51.6, 33.8, 28.6, 21.6; IR (neat) 3316, 2922, 1365, 1176, 743, 586, 569; HRMS (ESI^+) calculated for C_{22}H_{24}N_{3}O_{3}S^+ ([M+H]^+): 410.1533, found: 410.1537.

Methyl 3-(2-(tert-butlamino)-2-oxoethyl)-1-tosyl-1H-indole-5-carboxylate (4m)
Yield 55%, 73 mg; yellow solid;

^1H NMR (400 MHz, CDCl_3) δ 8.20 (s, 1H), 8.01 (s, 2H), 7.76 (d, J = 8.2 Hz, 2H), 7.57 (s, 1H), 7.22 (d, J = 8.2 Hz, 2H), 5.41 (s, 1H), 3.90 (s, 3H), 3.54 (s, 2H), 2.32 (s, 3H), 1.26 (s, 9H); ^13C NMR (100 MHz, CDCl_3) δ 168.5, 167.0, 145.4, 137.7, 134.9, 130.1, 130.0, 126.8, 126.2, 125.9, 125.5, 121.9, 117.0, 113.5, 52.1, 51.5, 34.0, 28.6, 21.6; IR (neat) 3329, 2957, 1720, 1652, 1171, 670, 588; HRMS (ESI^+) calculated for C_{23}H_{27}N_{2}O_{5}S^+ ([M+H]^+): 443.1635, found: 443.1631.

N-(tert-Butyl)-2-(1-tosyl-5-(trifluoromethyl)-1H-indol-3-yl)acetamide (4n)
Yield 65%, 88 mg; yellow solid.

^1H NMR (400 MHz, CDCl_3) δ 8.06 (d, J = 8.8 Hz, 1H), 7.75 (d, J = 8.5 Hz, 3H), 7.61 (s, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 5.52 (s, 1H), 3.52 (s, 2H), 2.32 (s, 3H), 1.26 (s, 9H); ^13C NMR (100 MHz, CDCl_3) δ 168.4, 145.6, 136.6, 132.4 (q, J = 272 Hz), 130.1, 126.8, 126.2, 125.7 (d, J = 32 Hz), 125.3, 124.4 (d, J =
N-(tert-Butyl)-2-(5-fluoro-1-tosyl-1H-indol-3-yl)acetamide (4o)
Yield 73%, 88 mg; yellow solid.

\[^1H\text{ NMR (400 MHz, CDCl}_3\text{)}\delta 7.9-7.88 (m, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.51 (s, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.13-7.10 (m, 1H), 7.03-6.99 (m,1H), 5.55 (s, 1H), 3.44 (s, 2H), 2.29 (s, 3H), 1.23 (s, 9H); \[^13C\text{ NMR (100 MHz, CDCl}_3\text{)}\delta 168.6, 159.6 (d, J = 241.1 Hz), 145.3, 134.8, 131.5 (d, J = 3.8 Hz), 131.4, 130.0, 126.7, 126.3, 116.8 (d, J = 4.1 Hz), 114.8 (d, J = 9.4 Hz), 113.1 (d, J = 25.6 Hz), 105.4 (d, J = 24.2 Hz), 51.4, 34.1, 28.5, 21.5; \text{IR (neat)} 3326, 2964, 1647, 1371, 1172, 671, 575; \text{HRMS (ESI}^+)\text{ calculated for C}_{21}H_{24}FN_2O_3S^+ ([M+H]^+): 403.1486, found: 403.1484.\]

2-(5-Bromo-1-tosyl-1H-indol-3-yl)-N-(tert-butyl)acetamide (4p)
Yield 68%, 95 mg; yellow solid.

\[^1H\text{ NMR (400 MHz, CDCl}_3\text{)}\delta 7.84 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 1.6 Hz, 1H), 7.48 (s, 1H), 7.41-7.38 (m,1H), 7.20 (d, J = 8.2 Hz, 2H), 5.39 (s, 1H), 3.45 (s, 2H), 2.31 (s, 3H), 1.25 (s, 9H); \[^13C\text{ NMR (100 MHz, CDCl}_3\text{)}\delta 168.4, 145.4, 134.8, 133.9, 132.0, 130.0, 128.0, 126.7, 125.8, 122.4, 117.0, 116.1, 115.2, 51.4, 34.1, 28.6, 21.6. \text{IR (neat)} 3301, 2964, 1647, 1371, 1172, 671, 575; \text{HRMS (ESI}^+)\text{ calculated for C}_{21}H_{24}BrN_2O_3S^+ ([M+H]^+): 463.0686, found: 463.0686.\]
N-(tert-Butyl)-2-(4-chloro-1-tosyl-1H-indol-3-yl)acetamide (4q)
Yield 60%, 75.5 mg; yellow solid.

^1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.90-7.88 (m, 1H), 7.73 (d, \(J = 8.4\) Hz, 2H), 7.52 (s, 1H), 7.20 (t, \(J = 8.0\) Hz, 3H), 7.17-7.15 (m, 1H), 5.34 (s, 1H), 3.71 (s, 2H), 2.31 (s, 3H), 1.24 (s, 9H); \(^{13}\text{C NMR (100 MHz, CDCl}_3\) \(\delta\) 169.2, 145.4, 136.5, 134.7, 130.0, 126.9, 126.8, 126.6, 125.6, 124.4, 116.1, 112.4, 51.2, 35.3, 28.6, 21.6; IR (neat) 3326, 2924, 1655, 1365, 1171, 671, 579; HRMS (ESI+) calculated for C\textsubscript{21}H\textsubscript{24}ClN\textsubscript{2}O\textsubscript{3}S+ ([M+H]+): 419.1191, found: 419.1197.

N-(tert-Butyl)-2-(6-methyl-1-tosyl-1H-indol-3-yl)acetamide (4r)
Yield 73%, 87.2 mg, white solid.

^1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.79 (s, 1H), 7.72 (d, \(J = 8.2\) Hz, 2H), 7.39 (s, 1H), 7.32 (d, \(J = 8.0\) Hz, 1H), 7.18 (d, \(J = 8.0\) Hz, 2H), 7.04 (d, \(J = 8.0\) Hz, 1H), 5.38 (s, 1H), 3.47 (s, 2H), 2.45 (s, 3H), 2.29 (s, 3H), 1.19 (s, 9H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\) \(\delta\) 168.9, 144.9, 135.7, 135.4, 135.2, 129.9, 127.9, 126.7, 125.03, 124.0, 119.2, 116.7, 113.8, 51.2, 34.4, 28.5, 21.9, 21.5; IR (neat) 3405, 2964, 1651, 1364, 1173, 1110, 665, 581; HRMS (ESI+) calculated for C\textsubscript{22}H\textsubscript{27}N\textsubscript{2}O\textsubscript{3}S+ ([M+H]+): 399.1737, found: 399.1717.
N-(tert-Butyl)-2-(5-methoxy-1-tosyl-1H-indol-3-yl)acetamide (4s)
Yield 65%, 80.8 mg; white solid.

1H NMR (400 MHz, CDCl$_3$) δ 7.88 (dd, J = 9.0, 2.3 Hz, 1H), 7.71 (dd, J = 8.2, 2.0 Hz, 2H), 7.42 (d, J = 1.6 Hz, 1H), 7.19 (d, J = 6.5 Hz, 2H), 6.94 (d, J = 9.0 Hz, 1H), 6.86 (s, 1H), 5.25 (s, 1H), 3.78 (s, 3H), 3.49 (s, 2H), 2.31 (s, 3H), 1.20 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 168.7, 156.6, 144.9, 135.0, 131.1, 129.9, 129.8, 126.7, 125.4, 116.8, 114.8, 114.6, 101.6, 101.6, 55.6, 51.2, 34.5, 28.5, 21.5; IR (neat) 3405, 2961, 1652, 1225, 1170, 670, 596; HRMS (ESI$^+$) calculated for C$_{22}$H$_{27}$N$_2$O$_4$S$^+$ ([M+H]$^+$): 415.1686, found: 415.1646.

\[
\text{N-(tert-Butyl)-2-(1-tosyl-1H-pyrrolo[2,3-b]pyridin-3-yl)acetamide (4t)}
\]
Yield 60%, 69.4 mg; yellow solid.

1H NMR (400 MHz, CDCl$_3$) δ 8.39 (d, J = 4.2 Hz, 1H), 8.02 (d, J = 8.2 Hz, 2H), 7.83 (d, J = 7.8 Hz, 1H), 7.60 (s, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.16-7.12 (m, 1H), 5.55 (s, 1H), 3.48 (s, 2H), 2.32 (s, 3H), 1.25 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 168.7, 147.4, 145.2, 145.2, 135.3, 129.6, 128.5, 127.9, 124.42 (s), 122.7, 118.9, 113.3, 51.5, 34.5, 28.6, 21.6; IR (neat) 3396, 2962, 1648, 1363, 1175, 669, 581; HRMS (ESI$^+$) calculated for C$_{20}$H$_{24}$N$_3$O$_3$S$^+$ ([M+H]$^+$): 386.1533, found: 386.1512.

\[
\text{2-(1-Tosyl-1H-indol-3-yl)-N-(2,3,3-trimethylbutan-2-yl)acetamide (4u)}
\]
Yield 70%, 89.6 mg; yellow solid.

1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 4.5 Hz, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 3.8 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 5.32 (s, 1H), 3.53 (s, 3H), 2.32 (s, 3H), 1.26 (s, 6H), 0.71 (s, 9H); 13C NMR
(100 MHz, CDCl$_3$) δ 168.4, 145.1, 135.3, 135.2, 130.1, 129.9, 126.8, 125.2, 124.7, 123.5, 119.7, 116.4, 113.7, 55.2, 52.0, 34.5, 31.1, 28.7, 21.5; IR (neat) 3303, 2924, 1645, 1172, 743, 670, 537; HRMS (ESI$^+$) calculated for C$_{25}$H$_{33}$N$_2$O$_3$S$^+ ([M+H]$^+$): 441.2206, found: 441.2200.
N-(tert-Butyl)-2-(1H-indol-3-yl)acetamide (4v): To a solution of KOH (3.6 mmol, 12.0 equiv., 201.6 mg) in EtOH (3.0 mL) were added acetamide 4a (115.4 mg, 0.3 mmol, 1.5 equiv) at room temperature. The reaction was stirred at 85°C overnight. After the reaction was monitored as completed, the solution was concentrated under reduced pressure. The mixture was diluted with DCM (2.0 mL), and then poured into H₂O, extracted three times with DCM. The combined organic layer was washed with sat NaCl, dried over anhyd. MgSO₄. Concentration under reduced pressure of the crude product followed by purification using silica gel column chromatography [gradient eluent: PE:MeOH=2:1] to give the product 4v (70%, 48.4 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.22 (t, J = 7.4 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 1.8 Hz, 1H), 5.62 (s, 2H), 3.66 (s, 2H), 1.25 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 171.1, 136.5, 126.9, 123.8, 122.3, 119.8, 118.6, 111.5, 109.2, 51.1, 34.7, 28.6; **IR (neat)** 3406, 2924, 1638, 1543, 1326, 747, 427; **HRMS (ESI⁺)** calculated for C₁₄H₁₉N₂O⁺ ([M+H]⁺): 231.1492, found: 231.1492.
2-(1-Tosyl-1H-indol-3-yl)acetamide (5): To a test tube equipped with a stir bar was charged with acetamide 1a (0.20 mmol), tert-butyl isocyanide 2 (0.30 mmol), Pd(OAc)$_2$ (0.02 mmol, 10 mol%), Cs$_2$CO$_3$ (0.40 mmol, 2.0 equiv.), and dry MeCN (2.0 mL). The reaction was stirred at 60 °C for 14-22 h under N$_2$ until complete consumption of the acetamide 1a and allowed to cool to room temperature. The reaction mixture was filtered through a short pad of Celite and concentrated. The crude product was dissolved in dichloroethane (2.0 mL) at 0°C, BF$_3$·Et$_2$O (248 μL, 2.0 mmol, 10.0 equiv) was added. The reaction mixture was then stirred at 50 °C for 10 h. Water was added at room temperature, the crude product was extracted in the aqueous layer at pH=0 and the organic layer was discarded. The combined aqueous layer was then basified with sat. aqueous NaHCO$_3$ and extracted with DCM. The combined organic layers were washed with brine, dried over Na$_2$SO$_4$ and concentrated under reduced pressure. The crude product was purified by column chromatography with DCM/MeOH=5:1 as eluent to afford the desired 5 as a yellow solid (36 mg, 55% yield over two steps).

1H NMR (400 MHz, CDCl$_3$) δ 7.98 (d, $J = 8.2$ Hz, 1H), 7.76 (d, $J = 8.4$ Hz, 2H), 7.53 (s, 1H), 7.48 (d, $J = 7.8$ Hz, 1H), 7.33 (t, $J = 7.4$ Hz, 1H), 7.25 (d, $J = 7.0$ Hz, 1H), 7.20 (d, $J = 8.2$ Hz, 2H), 5.86 (s, 1H), 5.60 (s, 1H), 3.61 (s, 2H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 172.4, 145.2, 135.2, 135.0, 130.1, 130.0, 126.8, 125.2, 124.89 (s), 123.5, 119.5, 115.8, 113.7, 32.7, 21.6; IR (neat) 3386, 1654, 1374, 1169, 744, 579, 536; HRMS (ESI$^+$) calculated for C$_{17}$H$_{17}$N$_2$O$_3$S$^+$ ([M+H]$^+$): 329.0954, found: 329.0982
2-(1-Tosyl-1H-indol-3-yl)acetonitrile (6): To a test tube equipped with a stir bar was charged with acetamide 1a (0.20 mmol), tert-butyl isocyanide 2 (0.30 mmol), Pd(OAc)$_2$ (0.02 mmol, 10 mol%), Cs$_2$CO$_3$ (0.40 mmol, 2.0 equiv.), and dry MeCN (2.0 mL). The reaction was stirred at 60 °C for 14-22 h under N$_2$ until complete consumption of the acetamide 1a. The reaction was allowed to cool to room temperature. The reaction mixture was filtered through a short pad of Celite and concentrated under reduced pressure. The crude product was dissolved in dichloroethane (2 mL) and BF$_3$·Et$_2$O (27 μL, 0.22 mmol, 1.1 equiv) was added at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred until complete consumption of the acetamide. The reaction mixture was quenched with sat. aqueous NaHCO$_3$, extracted with DCM and the combined organic layers were washed with brine, dried over Na$_2$SO$_4$ and concentrated under reduced pressure. The crude product was purified by column chromatography with PE/EtOAc = 4:1 as eluent to afford 6 as a yellow solid (33.0 mg, 53% yield over two steps).

1H NMR (400 MHz, CDCl$_3$) δ 8.01 (d, $J = 8.2$ Hz, 1H), 7.78 (d, $J = 8.4$ Hz, 2H), 7.61 (s, 1H), 7.49 (d, $J = 7.8$ Hz, 1H), 7.38 (t, $J = 7.4$ Hz, 1H), 7.29 (d, $J = 7.4$ Hz, 1H), 7.25-7.23 (m, 2H), 3.74 (s, 2H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 145.3, 135.1, 134.9, 130.0, 128.7, 126.9, 125.5, 124.4, 123.6, 118.8, 116.7, 113.9, 111.4, 21.6, 14.4; IR (neat) 3417, 1363, 1174, 979, 671, 585, 532; HRMS (ESI$^+$) calculated for C$_{17}$H$_{15}$N$_2$O$_2$S$^+$ ([M+H]$^+$): 311.0849, found: 311.0853.
3-(1-(Tert-butyl)-1H-tetrazol-5-yl)-1-tosyl-1H-indole (7): To a test tube equipped with a stir bar was charged with acetamide 1a (0.20 mmol), tert-butyl isocyanide 2 (0.30 mmol), Pd(OAc)$_2$ (0.02 mmol, 10 mol%), Cs$_2$CO$_3$ (0.40 mmol, 2.0 equiv.), and dry MeCN (2.0 mL). The reaction was stirred at 60 °C for 14-22 h under N$_2$ until complete consumption of the acetamide 1a. The reaction was allowed to cool to room temperature, filtered through a short pad of Celite and concentrated under reduced pressure. A solution of TMSN$_3$ (1.1 eq) in tBuOH (2.0 mL), prepared according to a reported procedure, was then added at 0 °C and the reaction mixture was warmed to room temperature and stirred until complete consumption of the 3a. The reaction mixture was concentrated under reduced pressure, then partitioned between sat. aqueous NaHCO$_3$ and EtOAc. The combined organic layers were washed with brine, dried over Na$_2$SO$_4$ and concentrated under reduced pressure. The crude product was purified by column chromatography with PE/EtOAc=10:1 as eluent to afford 7 as a white solid (47.5 mg, 60 % yield over two steps).

1H NMR (400 MHz, CDCl$_3$) δ 7.97 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 7.8 Hz, 1H), 7.34-7.28 (m 2H), 7.22 (d, J = 7.4 Hz, 1H), 7.18 (t, J = 6.6 Hz, 2H), 4.43 (s, 2H), 2.29 (s, 3H), 1.62 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 151.7, 145.2, 135.1, 135.0, 129.9, 129.6, 126.8, 125.3, 124.4, 123.5, 119.4, 116.6, 113.8, 61.3, 29.7, 22.3, 21.5; IR (neat) 3112, 2921, 1364, 1176, 743, 586, 569; HRMS (ESI$^+$) calculated for C$_{21}$H$_{24}$N$_5$O$_2$S$^+$ ([M+H]$^+$): 410.1645, found: 410.1625.

N'(tert-Butyl)-N-phenyl-2-(1-tosyl-1H-indol-3-yl)acetimidamide (8). To a test tube equipped with a stir bar was charged with acetamide 1a (0.20 mmol), tert-butyl isocyanide 2a (0.30 mmol), Pd(OAc)$_2$ (0.02 mmol, 10 mol%), Cs$_2$CO$_3$ (0.40 mmol,
2.0 equiv.), and dry MeCN (2.0 mL). The reaction was stirred at 60 °C for 14-22 h under N₂ until complete consumption of the acetamide 1a. Upon completion, aniline (1.2 equiv) was added, and the reaction mixture was stirred at 90 °C until complete consumption of the α–oxo-ketenimine. The reaction mixture was partitioned between sat. aqueous NH₄Cl and EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography with PE/EtOAc as eluent to afford the desired 8 as a yellow solid (38.0 mg, yield: 49%).

^1^H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.29-7.23 (m, 3H), 7.17-7.09 (m, 5H), 6.84 (t, J = 7.4 Hz, 1H), 6.71 (d, J = 7.4 Hz, 2H), 3.91 (s, 1H), 3.37 (s, 2H), 2.23 (s, 3H), 1.21 (s, 9H).

^13^C NMR (100 MHz, CDCl₃) δ 152.3, 151.5, 145.0, 135.4, 135.1, 130.2, 129.9, 128.9, 126.7, 125.2, 124.6, 123.5, 121.8, 121.5, 119.5, 118.5, 113.9, 51.3, 28.5, 27.6, 21.5. HRMS (ESI⁺) calculated for C₂₇H₃₀N₃O₂S⁺ ([M+H]⁺): 460.2053, found: 460.2058.

Benzyl 2-(1-tosyl-1H-indol-3-yl)acetate (9). To a test tube equipped with a stir bar was charged with acetamide 1a (0.20 mmol), tert-butyl isocyanide 2a (0.30 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol%), Cs₂CO₃ (0.40 mmol, 2.0 equiv.), and dry MeCN (2.0 mL). The reaction was stirred at 60 °C for 14 h until complete consumption of the acetamide 1a, then benzyl alcohol (1.2 equiv) was added and the reaction mixture was stirred at 90 °C until complete reaction. The reaction mixture was partitioned between sat. aqueous NH₄Cl and EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography with PE/EtOAc as eluent to afford the desired 9 as a yellow solid (42.0 mg, yield: 42%).

^1^H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.49 (s, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.26-7.20 (m, 6H), 7.18-7.14 (m, 1H), 7.10 (d, J =
8.2 Hz, 2H), 5.07 (s, 2H), 3.66 (s, 2H), 2.24 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 170.4, 144.9, 135.6, 135.3, 135.0, 130.4, 129.9, 128.6, 128.4, 128.3, 126.8, 124.9, 124.8, 123.2, 119.6, 115.0, 113.7, 66.9, 31.1, 21.6. HRMS (ESI$^+$) calculated for C$_{24}$H$_{22}$NO$_4$S$^+$ ([M+H]$^+$): 420.1264, found: 420.1269.

![Image of 2-(Benzofuran-3-yl)-N-(tert-butyl)acetamide (11)]

Yield 60%, 41.6 mg; colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.57 (s, 1H), 7.54 (d, $J = 7.6$ Hz, 1H), 7.48 (d, $J = 7.8$ Hz, 1H), 7.32 (t, $J = 7.6$ Hz, 1H), 7.25 (t, $J = 7.4$ Hz, 1H), 5.48 (s, 1H), 3.54 (s, 2H), 1.27 (s, 9H). 13C NMR (100MHz, CDCl$_3$) δ 168.9, 155.4, 142.9, 127.3, 124.7, 122.8, 119.6, 114.4, 111.6, 51.3, 32.9, 28.6; IR (neat) 3267, 2924, 1640, 1453, 1363, 1088, 756; HRMS (ESI$^+$) calculated for C$_{14}$H$_{18}$NO$_2$+ ([M+H]$^+$): 232.1332, found: 232.1318.

![Image of N-(tert-Butyl)-2-(1-oxo-2-phenyl-1,2-dihydroisoquinolin-4-yl)acetamide (13)]

Yield 50%, 50.2 mg; yellow solid.1H NMR (400 MHz, CDCl$_3$) δ 8.51 (d, $J = 8.0$ Hz, 1H), 7.71 (t, $J = 7.6$ Hz, 1H), 7.61 (d, $J = 8.0$ Hz, 1H), 7.55 (t, $J = 7.5$ Hz, 1H), 7.49(t, $J = 7.6$ Hz ,2H), 7.44-7.39 (m, 3H), 7.15 (s, 1H), 5.53 (s, 1H), 3.50 (s, 2H), 1.27 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 169.3, 161.7, 141.0, 136.3, 132.8, 132.3, 129.3, 128.8, 128.2, 127.5, 126.8, 126.6, 123.1, 110.7, 51.5, 39.0, 28.6; IR (neat) 3324, 2963, 1656, 1545, 1490, 1273, 762, 694; HRMS (ESI$^+$) calculated for C$_{21}$H$_{23}$N$_2$O$_2$+ ([M+H]$^+$): 335.1754, found: 335.1756.

Crude 1H NMR spectrum (400 MHz, CDCl$_3$) of intermediate 3a
Crude13C NMR spectrum (100 MHz, CDCl$_3$) of 3a

1H NMR spectrum (400 MHz, CDCl$_3$) of 4a
13C NMR spectrum (100 MHz, CDCl$_3$) of 4a
1H NMR spectrum (400 MHz, CDCl$_3$) of 4b

13C NMR spectrum (100 MHz, CDCl$_3$) of 4b
1H NMR spectrum (400 MHz, CDCl$_3$) of 4d

13C NMR spectrum (100 MHz, CDCl$_3$) of 4d
1H NMR spectrum (400 MHz, CDCl$_3$) of 4e

13C NMR spectrum (100 MHz, CDCl$_3$) of 4e
1H NMR spectrum (400 MHz, CDCl$_3$) of 4f

13C NMR spectrum (100 MHz, CDCl$_3$) of 4f
1H NMR spectrum (400 MHz, CDCl$_3$) of 4g

13C NMR spectrum (100 MHz, CDCl$_3$) of 4g
1H NMR spectrum (400 MHz, CDCl$_3$) of 4h

13C NMR spectrum (100 MHz, CDCl$_3$) of 4h
1H NMR spectrum (400 MHz, CDCl$_3$) of 4i

13C NMR spectrum (100 MHz, CDCl$_3$) of 4i
1H NMR spectrum (400 MHz, CDCl$_3$) of 4j

13C NMR spectrum (100 MHz, CDCl$_3$) of 4j
1H NMR spectrum (400 MHz, CDCl$_3$) of 4k

13C NMR spectrum (100 MHz, CDCl$_3$) of 4k
1H NMR spectrum (400 MHz, CDCl$_3$) of 4l

13C NMR spectrum (100 MHz, CDCl$_3$) of 4l
1H NMR spectrum (400 MHz, CDCl$_3$) of 4m

13C NMR spectrum (100 MHz, CDCl$_3$) of 4m
1H NMR spectrum (400 MHz, CDCl$_3$) of 4n

1C NMR spectrum (100 MHz, CDCl$_3$) of 4m
1H NMR spectrum (400 MHz, CDCl$_3$) of 4o

13C NMR spectrum (100 MHz, CDCl$_3$) of 4o
^{1}H NMR spectrum (400 MHz, CDCl$_3$) of 4p

^{13}C NMR spectrum (100 MHz, CDCl$_3$) of 4p
1H NMR spectrum (400 MHz, CDCl$_3$) of 4q

13C NMR spectrum (100 MHz, CDCl$_3$) of 4q
1H NMR spectrum (400 MHz, CDCl$_3$) of 4r

13C NMR spectrum (100 MHz, CDCl$_3$) of 4r
1H NMR spectrum (400 MHz, CDCl$_3$) of 4s

13C NMR spectrum (100 MHz, CDCl$_3$) of 4s
1H NMR spectrum (400 MHz, CDCl$_3$) of 4t

13C NMR spectrum (100 MHz, CDCl$_3$) of 4t
1H NMR spectrum (400 MHz, CDCl$_3$) of 4u

13C NMR spectrum (100 MHz, CDCl$_3$) of 4u
1H NMR spectrum (400 MHz, CDCl$_3$) of 4v

13C NMR spectrum (100 MHz, CDCl$_3$) of 4v
^{1}H NMR spectrum (400 MHz, CDCl$_3$) of 5

^{13}C NMR spectrum (100 MHz, CDCl$_3$) of 5
$\text{H NMR spectrum (400 MHz, CDCl}_3\text{) of 6}$

$\text{13C NMR spectrum (100 MHz, CDCl}_3\text{) of 6}$
1H NMR spectrum (400 MHz, CDCl$_3$) of 7

13C NMR spectrum (100 MHz, CDCl$_3$) of 7
^{1}H NMR spectrum (400 MHz, CDCl$_3$) of 8

^{13}C NMR spectrum (100 MHz, CDCl$_3$) of 8
1H NMR spectrum (400 MHz, CDCl$_3$) of 9

13C NMR spectrum (100 MHz, CDCl$_3$) of 9
\(^1\)H NMR spectrum (400 MHz, CDCl\(_3\)) of 11

\(^{13}\)C NMR spectrum (100 MHz, CDCl\(_3\)) of 11
1H NMR spectrum (400 MHz, CDCl$_3$) of 13

13C NMR spectrum (100 MHz, CDCl$_3$) of 13
5. X-ray crystal structure of 4a.
Datablock: ga_90422a_a

Bond precision: C-C = 0.0036 Å
Wavelength: 1.3413 Å

<table>
<thead>
<tr>
<th>Cell:</th>
<th>a=9.6428(9)</th>
<th>b=13.1230(18)</th>
<th>c=33.188(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha-90</td>
<td>P b c a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beta-90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gamma-90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature:</td>
<td>298 K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Calculated: 4199.7(9)</th>
<th>Reported: 4199.7(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P b c a</td>
<td>P b c a</td>
</tr>
<tr>
<td>Hall group</td>
<td>P 2ac 2ab</td>
<td>P 2ac 2ab</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C21 H24 N2 O3 S</td>
<td>?</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C21 H24 N2 O3 S</td>
<td>C21 H24 N2 O3 S</td>
</tr>
<tr>
<td>Mr</td>
<td>384.48</td>
<td>384.48</td>
</tr>
<tr>
<td>Dx, g cm⁻³</td>
<td>1.216</td>
<td>1.216</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Mu (mm⁻¹)</td>
<td>1.011</td>
<td>1.011</td>
</tr>
<tr>
<td>F000</td>
<td>1632.0</td>
<td>1632.0</td>
</tr>
<tr>
<td>F000'</td>
<td>1637.72</td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>12,16,41</td>
<td>12,16,41</td>
</tr>
<tr>
<td>Nref</td>
<td>4297</td>
<td>4295</td>
</tr>
<tr>
<td>Tmin, Tmax</td>
<td>0.865, 0.922</td>
<td>0.646, 0.751</td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.769</td>
<td></td>
</tr>
</tbody>
</table>