Supporting Information

Asymmetric Synthesis of Multifunctional Aryl Allyl Ethers by Nucleophilic Catalysis
Shuai Zhao, Lei Jin, Zhi-Li Chen, Xue Rui, Jia-Yi He, Ran Xia, Ke Chen, Xiang-Xiang Chen, Zi-Jian Yin and Xin Chen*
School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
xinchen@cczu.edu.cn

Contents
1. General information ..S2
2. Optimization of the solvent of the asymmetric allylic substitution reactionS2
3. General procedure of the asymmetric allylic substitution reactions and analytical data of the products..…S3
4. Synthesis and characterization of MBH carbonate 5aS11
5. General procedure of asymmetric allylic substitution reaction of 5aS12
6. Synthesis and characterization of chiral MBH alcohol 6S12
7. General procedure of 1, 3-dipolar cycloadDITION reaction of aryl allyl ether 4a ..S13
8. 1H NMR and 13C NMR spectra of 4, 5, 6, 7 ...S14
9. Chiral HPLC chromatograms of 4, 5, 6, 7 ...S40
1. General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (160-200 mesh). 1H NMR and 13C NMR spectra were recorded using Bruker AV-300 / AV-400 spectrometers. Chemical shifts are given in δ relative to tetramethylsilane (TMS). Data for 1H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. The spectra were recorded in CDCl$_3$ as the solvent at room temperature, TMS served as internal standard (δ = 0 ppm) for 1H NMR and CDCl$_3$ used as an internal standard (δ = 77.00 ppm) for 13C NMR. Optical rotations were measured on an Autopol IV (d = 589 nm, Hg lamp, 50mm cell) instrument (Rudolph, NJ, USA). High resolution mass spectra were acquired on Thermo Orbitrap Elite, instrument (Agilent, Palo Alto, CA, USA). Enantiomeric excess values were determined by HPLC with Chiralcel OD-H, IC, ID, IB columns on Agilent LC-1260 eluting with i-PrOH and n-hexane.

2. Optimization of the solvent of the asymmetric allylic substitution reaction

\[
\begin{align*}
2a + \text{OBoc} &\quad \rightleftharpoons \quad 3a \quad 1h (20 \text{ mol\%}) \\
\text{solvent} &\quad \text{rt} \\
2a &\quad 3a &\quad 4a
\end{align*}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>t (h)</th>
<th>Yield b (%)</th>
<th>Ee c (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCM</td>
<td>84</td>
<td>92</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>PhMe</td>
<td>120</td>
<td>93</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>EA</td>
<td>72</td>
<td>92</td>
<td>87</td>
</tr>
</tbody>
</table>
4 1,4-dioxane 96 95 95
5 THF 72 92 91
6 Et\textsubscript{2}O 86 57 91
7d THF 76 90 75
8e THF 72 - -
9f Et\textsubscript{2}O 72 - -

a Unless otherwise noted, the reaction was carried out with 2a (0.1 mmol), 3a (0.3 mmol) and 1 (20 mol\%) in 2mL specified solvent at room temperature. b The isolated yield. c Determined by HPLC. d The reaction was carried out at 0 °C. e The reaction was carried out at -40 °C.

3. General procedure of the asymmetric allylic substitution reactions and analytical data of the products

A solution of phenol 2 (0.1 mmol), MBH carbonate 3 (0.3 mmol) and catalysts 1h (0.02 mmol) in 1, 4-dioxane (2 mL) was stirred at room temperature. The reaction was
monitored by TLC spectroscopy. After the reaction time given, the reaction mixture was directly purified by flash column chromatograph (eluted with EtOAc/petroleum ether: 10:1) to afford the product 4.

Methyl (S)-2-(phenoxy(phenyl)methyl)acrylate (4a) Colorless oil; 95% yield; 95% ee; [α]$_{28}^{D}$ = 128.0 (c 0.550, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane/iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_R (minor) = 11.1 min, t_R (major) = 13.5 min. 1H NMR (300 MHz, CDCl$_3$): 7.46 (d, J = 1.8 Hz, 2H), 7.44-7.20 (m, 5H), 7.04 (dd, J = 0.9, 7.5 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.37 (d, J = 7.2 Hz, 1H), 6.05 (d, J = 1.5 Hz, 1H), 6.03 (s, 2H), 5.90 (t, J = 1.2 Hz, 1H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): 166.0, 157.5, 140.1, 138.8, 129.4, 128.5, 128.1, 127.4, 126.3, 121.2, 115.9, 77.2, 52.0. HRMS(ESI) for C$_{17}$H$_{16}$NaO$_3$ [M+Na]$^+$ calcd 291.0992, found 291.0992.

Methyl (S)-2-(phenyl(o-tolyloxy)methyl)acrylate (4b) Colorless oil; 95% yield; 91% ee; [α]$_{28}^{D}$ = 82.8 (c 1.000, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane/iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_R (minor) = 11.2 min, t_R (major) = 14.7 min. 1H NMR (300 MHz, CDCl$_3$): 7.48-7.45 (m, 2H), 7.36-7.28 (m, 2H), 7.12 (dd, J = 0.6, 7.2 Hz, 1H), 7.05 (d, J = 1.5 Hz, 1H), 6.84 (dd, J = 0.9, 7.5 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.37 (d, J = 7.2 Hz, 1H), 6.05 (d, J = 1.5 Hz, 1H), 6.03 (s, 2H), 5.90 (t, J = 1.2 Hz, 1H), 3.74 (s, 3H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): 166.1, 155.5, 140.7, 139.4, 130.8, 128.5, 128.0, 127.2, 126.7, 125.7, 120.8, 112.8, 76.9, 52.0, 16.6. HRMS(ESI) for C$_{18}$H$_{18}$NaO$_3$ [M+Na]$^+$ calcd 305.1148, found 305.1147.

Methyl (S)-2-(phenyl(m-tolyloxy)methyl)acrylate (4c) Colorless oil; 94% yield; 90% ee; [α]$_{28}^{D}$ = 120.3 (c 1.185, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane/iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_R (minor) = 11.1 min, t_R (major) = 12.9 min. 1H NMR (300 MHz, CDCl$_3$): 7.45-7.43 (m, 2H), 7.37-7.28 (m, 2H), 7.10 (t, J = 7.8 Hz, 1H), 6.75-6.69 (m, 3H), 6.38 (s, 1H), 6.14 (s, 1H), 5.98 (t, J = 1.1 Hz, 1H), 3.74 (s, 3H), 2.28 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): 166.1, 157.5, 140.2, 139.4, 128.0, 127.2, 126.7, 125.7, 120.8, 112.8, 76.9, 52.0, 16.6. HRMS(ESI) for C$_{18}$H$_{18}$NaO$_3$ [M+Na]$^+$ calcd 305.1148, found 305.1147.
Methyl (S)-2-(phenyl(p-tolyloxy)methyl)acrylate (4d). Colorless oil; 93% yield; 91% ee; \([\alpha]_{28}^D = 110.0 (c 1.200, \text{CH}_2\text{Cl}_2)\); The enantiomeric excess was determined by HPLC with an OD-H column. (\text{n-hexane}:iPrOH = 95:5), 0.5 mL/min, \(\lambda = 270 \text{ nm}\), \(t_R(\text{minor}) = 11.2 \text{ min}\), \(t_R(\text{major}) = 10.1 \text{ min}\). \(^1\text{H NMR}\) (300 MHz, CDCl\(_3\)): 7.46-7.42 (m, 2H), 7.37-7.25 (m, 3H), 7.02 (d, \(J = 8.1 \text{ Hz}\), 2H), 6.82 (dd, \(J = 2.1, 6.6 \text{ Hz}\), 2H), 6.38 (s, 1H), 6.11 (s, 1H), 5.97 (t, \(J = 1.1 \text{ Hz}\), 1H), 3.74 (s, 3H); \(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)): 166.2, 155.5, 140.3, 139.0, 130.5, 129.9, 128.5, 128.1, 127.5, 126.3, 115.8, 77.4, 52.0, 20.5. HRMS(ESI) for C\(_{18}\)H\(_{18}\)NaO\(_3\) [M+Na]\(^+\) calcld 305.1148, found 305.1149.

Methyl (S)-2-((2-methoxyphenoxy)(phenyl)methyl)acrylate (4e). Colorless oil; 54% yield; 87% ee; \([\alpha]_{25}^D = 70.4 (c 0.6, \text{CHCl}_3)\); The enantiomeric excess was determined by HPLC analysis with an OD-H column. (\text{n-hexane}:iPrOH = 97:3), 0.5 mL/min, \(\lambda = 270 \text{ nm}\), \(t_R(\text{major}) = 16.5 \text{ min}\), \(t_R(\text{minor}) = 22.4 \text{ min}\). \(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): 7.52-7.50 (m, 2H), 7.38-7.29 (m, 3H), 6.95-6.83 (m, 4H), 6.45 (s, 1H), 6.19 (s, 1H), 6.18 (s, 1H), 3.87 (s, 3H), 3.76 (s, 3H); \(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)): 166.1, 150.3, 147.1, 140.3, 139.1, 128.4, 128.1, 127.5, 126.3, 122.1, 120.8, 116.5, 112.4, 78.5, 56.1, 52.0. HRMS (ESI) For C\(_{18}\)H\(_{18}\)NaO\(_4\) [M+Na]\(^+\) calcld 321.1097, found 321.1098.

Methyl (S)-2-((3-methoxyphenoxy)(phenyl)methyl)acrylate (4f). Colorless oil; 69% yield; 92% ee; \([\alpha]_{25}^D = 104.0 (c 1.0, \text{CHCl}_3)\); The enantiomeric excess was determined by HPLC analysis with an OD-H column. (\text{n-hexane}:iPrOH = 97:3), 0.5 mL/min, \(\lambda = 270 \text{ nm}\), \(t_R(\text{major}) = 16.4 \text{ min}\), \(t_R(\text{minor}) = 18.3 \text{ min}\). \(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): 7.45-7.43 (m, 2H), 7.36-7.25 (m, 3H), 7.14-7.10 (m, 1H), 6.53-6.47 (m,
Methyl (S)-2-((4-methoxyphenoxy)(phenyl)methyl)acrylate (4g) Colorless oil; 89\% yield; [\alpha]_D^{27} = 86.6 (c 1.0, CH_2Cl_2); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, \lambda = 270 nm, t_R(minor) = 11.2 min, t_R(major) = 12.4 min. _H NMR (300 MHz, CDCl_3): 7.45-7.42 (m, 2H), 7.37-7.25 (m, 3H), 6.89-6.83 (m, 2H), 6.79-6.74 (m, 2H), 6.39 (s, 1H), 6.04 (s, 1H), 5.97 (t, _J = 1.2 Hz, 1H), 3.74 (s, 3H), 3.73 (s, 3H); _C NMR (75 MHz, CDCl_3): 166.1, 154.1, 151.7, 140.3, 139.0, 128.5, 128.1, 127.4, 126.2, 117.1, 114.5, 78.2, 55.6, 52.0. HRMS (ESI) for C_{18}H_{19}O_4Na^+ calcd 321.1097, found 321.1098.

Methyl (S)-2-((2-fluorophenoxy)(phenyl)methyl)acrylate (4h) Colorless oil; 58\% yield; 95\% ee; [\alpha]_D^{28} = 107.7 (c 0.665, CH_2Cl_2); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 97:3), 0.5 mL/min, \lambda = 270 nm, t_R(minor) = 12.8 min, t_R(major) = 13.8 min. _H NMR (300 MHz, CDCl_3): 7.46 (dd, _J = 1.2, 8.1 Hz, 2H), 7.37-7.26 (m, 3H), 7.08-7.01 (m, 1H), 6.96-6.86 (m, 3H), 6.42 (s, 1H), 6.17 (s, 1H), 6.09 (t, _J = 1.1 Hz, 1H), 3.74 (s, 3H); _C NMR (100 MHz, CDCl_3): 165.9, 154.8, 151.5, 145.5, 145.4, 140.0, 138.4, 128.5, 128.3, 127.4, 126.4, 124.2, 124.1, 121.9, 121.8, 117.2, 116.5, 116.2, 78.6, 52.0. HRMS(ESI) for C_{17}H_{15}FNaO_3 [M+Na]^+ calcd 309.0897, found 309.0897.

Methyl (S)-2-((3-fluorophenoxy)(phenyl)methyl)acrylate (4i) Colorless oil; 76\% yield; 95\% ee; [\alpha]_D^{28} = 106.6 (c 0.910, CH_2Cl_2); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 97:3), 0.5 mL/min, \lambda
= 270 nm, t_{R(minor)} = 13.1 min, t_{R(major)} = 12.0 min. ¹H NMR (300 MHz, CDCl₃): 7.43 (dd, <i>J</i> = 1.7, 8.0 Hz, 2H), 7.38-7.30 (m, 3H), 7.20-7.12 (m, 1H), 6.72-6.60 (m, 3H), 6.40 (s, 1H), 6.13 (s, 1H), 5.93 (t, <i>J</i> = 1.1 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 165.1, 161.8, 158.9, 158.8, 139.9, 138.3, 130.2, 130.1, 128.6, 128.3, 127.3, 126.5, 111.6, 111.5, 108.2, 107.9, 103.9, 103.5, 77.6, 52.1. HRMS(ESI) for C₁₇H₁₅FNaO₃ [M+Na]⁺ calcd 309.0897, found 309.0894.

Methyl (S)-2-((4-fluorophenoxy)(phenyl)methyl)acrylate (4j) Colorless oil; 70% yield; [\(\alpha\)]₂₈ D = 106.5 (c 0.550, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 97:3), 0.5 mL/min, \(\lambda = 270\) nm, t_{R(minor)} = 11.5 min, t_{R(major)} = 10.1 min. ¹H NMR (300 MHz, CDCl₃): 7.44-7.41 (m, 2H), 7.38-7.29 (m, 3H), 6.94-6.84 (m, 2H), 6.39 (t, <i>J</i> = 0.8 Hz, 1H), 6.06 (s, 1H), 5.94 (t, <i>J</i> = 1.1 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.0, 159.1, 155.9, 153.7, 140.1, 138.6, 128.6, 128.2, 127.4, 126.4, 117.2, 117.1, 115.9, 115.6, 78.2, 52.1. HRMS(ESI) for C₁₇H₁₅FNaO₃ [M+Na]⁺ calcd 309.0897, found 309.0896.

Methyl (S)-2-((2-chlorophenoxy)(phenyl)methyl)acrylate (4k) Colorless oil; 79% yield; 93% ee; [\(\alpha\)]₂₈ D = 82.3 (c 0.700, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, \(\lambda = 270\) nm, t_{R(minor)} = 12.3 min, t_{R(major)} = 14.9 min. ¹H NMR (300 MHz, CDCl₃): 7.51-7.48 (m, 2H), 7.37-7.27 (m, 4H), 7.12-7.06 (m, 1H), 6.89-6.82 (m, 2H), 6.39 (s, 1H), 6.22 (s, 1H), 6.16 (d, <i>J</i> = 0.9 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 152.8, 140.1, 138.5, 130.3, 128.5, 128.2, 127.5, 127.2, 126.2, 123.6, 121.8, 115.2, 77.7, 52.0. HRMS(ESI) for C₁₇H₁₅ClNaO₃ [M+Na]⁺ calcd 325.0602, found 325.0600.

Methyl (S)-2-((3-chlorophenoxy)(phenyl)methyl)acrylate (4l) Colorless oil; 93% yield; 92% ee; [\(\alpha\)]₂₈ D = 96.0 (c 0.950, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, \(\lambda = 270\) nm, t_{R(minor)} = 13.1 min, t_{R(major)} = 12.0 min. ¹H NMR (300 MHz, CDCl₃): 7.43 (dd, <i>J</i> = 1.7, 8.0 Hz, 2H), 7.38-7.30 (m, 3H), 7.20-7.12 (m, 1H), 6.72-6.60 (m, 3H), 6.40 (s, 1H), 6.13 (s, 1H), 5.93 (t, <i>J</i> = 1.1 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 165.1, 161.8, 158.9, 158.8, 139.9, 138.3, 130.2, 130.1, 128.6, 128.3, 127.3, 126.5, 111.6, 111.5, 108.2, 107.9, 103.9, 103.5, 77.6, 52.1. HRMS(ESI) for C₁₇H₁₅ClNaO₃ [M+Na]⁺ calcd 325.0602, found 325.0600.
Methyl (S)-2-((4-chlorophenoxy)(phenyl)methyl)acrylate (4m) Colorless oil; 73% yield; 94% ee; [α]28 D = 107.8 (c 0.850, CH2Cl2); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, tR(minor) = 12.2 min, tR(major) = 10.4 min. 1H NMR (300 MHz, CDCl3): 7.44-7.41 (m, 2H), 7.38-7.30 (m, 3H), 7.17 (d, J = 9.0 Hz, 2H), 6.84 (d, J = 9.3 Hz, 2H), 6.39 (s, 1H), 6.10 (s, 1H), 5.92 (t, J = 1.1 Hz, 1H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl3): 166.0, 158.3, 139.9, 138.3, 129.3, 128.6, 128.3, 127.3, 126.4, 126.1, 117.2, 77.6, 52.1. HRMS(ESI) for C17H15ClNaO3 [M+Na]+ calcd 325.0602, found 325.0591.

Methyl (S)-2-((3-bromophenoxy)(phenyl)methyl)acrylate (4n) Colorless oil; 93% yield; 89% ee; [α]28 D = 93.1 (c 1.057, CH2Cl2); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, tR(minor) = 13.3 min, tR(major) = 11.7 min. 1H NMR (300 MHz, CDCl3): 7.42 (dd, J = 1.5, 8.1 Hz, 2H), 7.38-7.29 (m, 3H), 7.11-7.06 (m, 3H), 6.86-6.82 (m, 1H), 6.39 (s, 1H), 6.12 (s, 1H), 5.92 (t, J = 1.1 Hz, 1H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl3): 165.9, 158.3, 139.8, 138.2, 130.5, 128.6, 128.3, 127.3, 126.5, 124.4, 122.7, 119.5, 114.5, 77.5, 52.1. HRMS(ESI) for C17H14BrO3 [M-H]− calcd 345.0132, found 345.0128.

Methyl (S)-2-((naphthalen-1-yloxy)(phenyl)methyl)acrylate (4o) Colorless oil; 94%
yield; 86% ee; α 28 D = 24.9 (c 0.907, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_R(minor) = 16.1 min, t_R(major) = 12.8 min. 1H NMR (300 MHz, CDCl$_3$): 8.35-8.31 (m, 1H), 7.78-7.75 (m, 1H), 7.56-7.52 (m, 2H), 7.48-7.20 (m, 7H), 6.78 (d, J = 7.5 Hz, 1H), 6.39 (d, J = 5.1 Hz, 2H), 6.07 (t, J = 1.1 Hz, 2H), 3.73 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): 166.1, 152.9, 140.2, 139.0, 134.5, 128.5, 128.1, 127.2, 126.3, 125.9, 125.7, 125.2, 122.0, 120.7, 106.8, 77.2, 52.0. HRMS(ESI) for C$_{21}$H$_{18}$NaO$_3$ [M+Na]$^+$ calcd 341.1148, found 341.1144.

Methyl (S)-2-(phenoxy(o-tolyl)methyl)acrylate (4p) Colorless oil; 73% yield; 95% ee; α 28 D = 65.4 (c 0.700, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_R(minor) = 13.3 min, t_R(major) = 15.2 min. 1H NMR (300 MHz, CDCl$_3$): 7.41-7.37 (m, 1H), 7.25-7.19 (m, 5H), 6.94-6.88 (m, 3H), 6.44 (s, 1H), 6.34 (s, 1H), 5.74 (t, J = 1.2 Hz, 1H), 3.75 (s, 3H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): 166.3, 157.9, 139.1, 136.3, 136.2, 130.6, 129.4, 128.2, 127.6, 127.1, 126.2, 121.1, 115.6, 74.5, 52.1, 19.2. HRMS(ESI) for C$_{18}$H$_{18}$NaO$_3$ [M+Na]$^+$ calcd 305.1148, found 305.1151.

Methyl (S)-2-((3-fluorophenyl)(phenoxy)methyl)acrylate (4r) Colorless oil; 93% yield; 95% ee; α 28 D = 106.1 (c 0.867, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 97:3), 0.5 mL/min, λ = 270 nm, t_R(minor) = 10.3 min, t_R(major) = 21.9 min. 1H NMR (300 MHz, CDCl$_3$): 7.33-7.15 (m, 5H), 7.00-6.89 (m, 4H), 6.40 (s, 1H), 6.15 (s, 1H), 5.99 (t, J = 1.1 Hz, 1H),
3.75 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): 165.8, 164.4, 161.2, 157.2, 141.6, 141.5, 139.7, 130.1, 130.0, 129.4, 126.6, 123.0, 123.0, 121.4, 115.8, 115.2, 114.9, 114.4, 114.1, 76.5, 76.4, 52.1. HRMS(ESI) for C$_{18}$H$_{17}$FNaO$_3$ [M+Na]$^+$ calcd 309.0897, found 309.0898.

Methyl (S)-2-((4-fluorophenyl)(phenoxy)methyl)acrylate (4s) Colorless oil; 95% yield; 95% ee; $[^{[α}]_{28}^D = 132.5$ (c 1.135, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 97:3), 0.5 mL/min, $λ = 270$ nm, $t_R($minor$) = 10.0$ min, $t_R($major$) = 17.6$ min. 1H NMR (300 MHz, CDCl$_3$): 7.42 (dd, $J = 5.4$, 8.7 Hz, 2H), 7.26-7.21 (m, 2H), 7.02 (t, $J = 8.7$ Hz, 2H), 6.95-6.89 (m, 3H), 6.39 (s, 1H), 6.13 (s, 1H), 5.99 (t, $J = 1.1$ Hz, 1H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): 165.9, 164.1, 160.8, 157.3, 139.9, 134.7, 134.6, 129.4, 129.2, 129.1, 126.1, 121.3, 115.9, 115.6, 115.3, 76.6, 52.1. HRMS(ESI) for C$_{18}$H$_{17}$FNaO$_3$ [M+Na]$^+$ calcd 309.0897, found 309.0896.

Methyl (S)-2-((4-chlorophenyl)(phenoxy)methyl)acrylate (4t) Colorless oil; 92% yield; 91% ee; $[^{[α}]_{28}^D = 119.1$ (c 0.833, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an IA column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, $λ = 270$ nm, $t_R($minor$) = 18.8$ min, $t_R($major$) = 17.0$ min. 1H NMR (300 MHz, CDCl$_3$): 7.40-7.37 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.21 (m, 2H), 6.96-6.88 (m, 3H), 6.39 (s, 1H), 6.11 (s, 1H), 6.00 (t, $J = 1.1$ Hz, 1H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): 165.8, 157.2, 139.7, 137.4, 133.9, 129.4, 128.8, 128.7, 126.3, 121.4, 115.8, 76.5, 52.1. HRMS(ESI) for C$_{17}$H$_{15}$ClNaO$_3$ [M+Na]$^+$ calcd 325.0602, found 325.0604.

Methyl (S)-2-((4-bromophenyl)(phenoxy)methyl)acrylate (4u) Colorless oil; 79% yield; 91% ee; $[^{[α}]_{28}^D = 117.7$ (c 1.025, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 97:3), 0.5 mL/min, $λ = 270$ nm, $t_R($minor$) = 9.8$ min, $t_R($major$) = 17.5$ min. 1H NMR (300 MHz, CDCl$_3$): 7.46 (dd, $J = 2.0$, 6.8 Hz, 2H), 7.33 (dd, $J = 1.8$, 6.6 Hz, 2H), 7.23-7.20 (m, 2H), 6.95-6.88 (m,
3H), 6.39 (s, 1H), 6.10 (s, 1H), 5.99 (t, J = 1.1 Hz, 1H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl3): 165.8, 157.2, 139.7, 138.0, 131.6, 129.4, 129.1, 126.4, 122.1, 121.4, 115.8, 76.5, 52.0. HRMS(ESI) for C17H13BrNaO3 [M+Na]+ calcd 369.0097, found 369.0100.

Methyl (S)-2-((4-nitrophenyl)(phenoxy)methyl)acrylate (4v) Colorless oil; 77% yield; 93% ee; [α]28 D = 150.9 (c 0.790, CH2Cl2); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 97:3), 0.5 mL/min, λ = 270 nm, tR(minor) = 25.0 min, tR(major) = 46.8 min. 1H NMR (300 MHz, CDCl3): 8.20 (dd, J = 1.8, 6.9 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 7.25 (dd, J = 7.5, 8.7 Hz, 2H), 6.99-6.89 (m, 3H), 6.45 (s, 1H), 6.23 (s, 1H), 6.10 (s, 1H), 3.77 (s, 3H); 13C NMR (100 MHz, CDCl3): 165.6, 156.8, 147.6, 146.3, 139.2, 129.6, 128.1, 127.1, 123.7, 121.8, 115.8, 76.2, 52.2. HRMS(ESI) for C17H15NNaO5 [M+Na]+ calcd 336.0842, found 336.0847.

Methyl (S)-2-((3,5-dibromophenyl)(phenoxy)methyl)acrylate (4w) Colorless oil; 96% yield; 91% ee; [α]28 D = 90.1 (c 1.083, CH2Cl2); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, tR(minor) = 8.7 min, tR(major) = 27.9 min. 1H NMR (300 MHz, CDCl3): 7.59-7.54 (m, 3H), 7.28-7.22 (m, 2H), 6.98-6.88 (m, 3H), 6.43 (s, 1H), 6.05 (s, 1H), 6.04 (s, 1H), 3.77 (s, 3H); 13C NMR (100 MHz, CDCl3): 165.5, 156.9, 143.0, 139.0, 133.7, 129.5, 129.1, 127.0, 123.0, 121.7, 115.8, 75.8, 52.2. HRMS(ESI) for C17H14Br2NaO3 [M+Na]+ calcd 448.9181, found 448.9181.

Methyl (R)-2-(phenoxy(thiophen-2-yl)methyl)acrylate (4x) Colorless oil; 93% yield; 92% ee; [α]28 D = 145.3 (c 0.950, CH2Cl2); The enantiomeric excess was determined by HPLC with an OD-H column. (n-hexane:iPrOH = 95:5), 0.5 mL/min, λ = 270 nm, tR(minor) = 12.9 min, tR(major) = 14.6 min. 1H NMR (300 MHz, CDCl3): 7.59 (t, J = 1.7 Hz, 1H), 7.54 (d, J = 1.8 Hz, 1H), 7.28-7.23 (m, 2H), 6.99-6.88 (m, 3H), 6.43 (s, 1H), 6.05-6.04 (m, 2H), 3.77 (s, 3H); 13C NMR (100 MHz, CDCl3): 165.5, 156.9,
143.0, 139.1, 133.8, 129.6, 129.2, 127.1, 123.0, 121.8, 115.8, 75.9, 52.2. HRMS(ESI) for C$_{15}$H$_{14}$SNaO$_3$[M+Na]$^+$ calcld 297.0556, found 297.0563.

4. Synthesis and characterization of MBH carbonate 5a

To a solution of racemic MBH alcohol (10 mmol) and pyridine (1 mL) in CH$_2$Cl$_2$ (20 mL) was added Phenyl chloroformate (12 mmol) at room temperature. The reaction was monitored by TLC spectroscopy. After completion of the reaction, the reaction mixture was directly purified by flash column chromatograph to afford the product 5a.

Methyl 2-(((phenoxycarbonyl)oxy)(phenyl)methyl)acrylate (5a) Colorless solid; 70% yield. 1H NMR (300 MHz, CDCl$_3$): 7.47-7.44 (m, 2H), 7.41-7.32 (m, 5H), 7.24-7.13 (m, 3H), 6.63 (s, 1H), 6.48 (s, 1H), 6.02-6.01 (m, 1H), 3.72 (s, 3H); 13C NMR (75 MHz, CDCl$_3$): 165.1, 152.5, 151.0, 138.9, 136.7, 129.4, 128.8, 128.6, 127.7, 126.4, 126.0, 120.9, 77.5, 52.1.

5. General procedure of asymmetric allylic substitution reaction of 5a

A solution of MBH carbonate 5a (0.2 mmol) and catalyst 1h (0.04 mmol) in THF (4 mL) was stirred at room temperature. The reaction was monitored by TLC spectroscopy. After the reaction time given, the reaction mixture was directly purified by flash column chromatograph (eluted with EtOAc/petroleum ether: 10:1) to afford the product 4a.
6. Synthesis and characterization of chiral MBH alcohol 6

To a solution of 4g (0.1 mmol) in CH$_3$CN:H$_2$O (4:1, 2.5mL) was added ceric ammonium nitrate (CAN, 0.3 mmol) at room temperature. After stirring for 5 minutes at room temperature, all the solvents were removed and the residue was purified by flash column chromatograph to afford the product 6.

Methyl (S)-2-(hydroxy(phenyl)methyl)acrylate (6) Colorless oil; 71% yield; 92% ee; [α]$^\text{D}$ = 70.0 (c = 0.100, MeOH); The enantiomeric excess was determined by HPLC with an IC column. (n-hexane : iPrOH = 95:5), 0.5 mL/min, λ = 254 nm, $t_R(\text{minor})$ = 15.2 min, $t_R(\text{major})$ = 23.8 min. 1H NMR (300 MHz, CDCl$_3$): 7.39-7.26 (m, 5H), 6.34 (t, J = 0.9 Hz, 1H), 5.84 (t, J = 1.2 Hz, 1H), 5.56 (d, J = 5.7 Hz, 1H), 3.72 (s, 3H), 3.08 (d, J = 5.7 Hz, 1H); 13C NMR (75 MHz, CDCl$_3$): 166.7, 141.9, 141.2, 128.4, 127.8, 126.5, 126.1, 73.2, 51.9. HRMS(ESI) for C$_{11}$H$_{12}$NaO$_3$ [M+Na]$^+$ calcd 215.0679, found 215.0682.

7. General procedure of 1, 3-dipolar cycloaddition reaction of aryl allyl ether 4a

To a solution of 4a (0.1 mmol) and hydroximoyl chloride (0.12 mmol) in DCM (1mL) was added DIPEA (0.1 mmol) at room temperature. The reaction was monitored by TLC spectroscopy. After the reaction was complete, the reaction mixture was directly purified by flash column chromatograph to afford the products 7a and 7a'.

Methyl 5-((S)-phenoxy(phenyl)methyl)-3-phenyl-4,5-dihydroisoxazole-5-carboxylate (7a) one of the two diastereomers Colorless oil; 40% yield; 90% ee; [α]$^\text{D}$ = -69.9 (c = 0.77, CH$_2$Cl$_2$); The enantiomeric excess was determined by HPLC.
with an OD column. \((n\text{-hexane : }\text{iPrOH} = 90:10)\), 0.5 mL/min, \(\lambda = 270\) nm, \(t_{R,\text{ minor}} = 21.3\) min, \(t_{R,\text{ major}} = 28.2\) min. \(^1\)H NMR (300 MHz, CDCl\(_3\)): 7.52-7.46 (m, 5H), 7.36-7.28 (m, 3H), 7.25-7.16 (m, 4H), 6.91 (t, \(J = 7.5\) Hz, 1H), 6.84-6.81 (m, 2H), 5.86 (s, 1H), 4.05 (d, \(J = 17.4\) Hz, 1H), 3.76 (s, 3H), 3.56 (d, \(J = 17.4\) Hz, 1H); \(^1\)C NMR (75 MHz, CDCl\(_3\)): 170.0, 157.2, 156.9, 134.6, 130.3, 129.4, 128.6, 128.6, 128.4, 128.4, 127.5, 126.7, 121.7, 115.8, 90.8, 79.2, 53.2, 38.6. HRMS(ESI) for C\(_{24}\)H\(_{21}\)KNO\(_4\) [M+K]\(^+\) calcd 426.1102, found 426.1106.

Methyl 5-((5)-phenoxy(phenyl)methyl)-3-phenyl-4,5-dihydroisoxazole-5-carboxylate (7a’) another of the two diastereomers Colorless oil; 40% yield; 90% ee; \([\alpha]_{27}^D = -24.6\) (c = 0.78, CH\(_2\)Cl\(_2\)); The enantiomeric excess was determined by HPLC with an IA column. \((n\text{-hexane:iPrOH} = 90:10)\), 0.5 mL/min, \(\lambda = 270\) nm, \(t_{R,\text{ minor}} = 18.5\) min, \(t_{R,\text{ major}} = 23.7\) min. \(^1\)H NMR (300 MHz, CDCl\(_3\)): 7.62 (dd, \(J = 1.5, 5.7\) Hz, 2H), 7.47 (d, \(J = 5.1\) Hz, 2H), 7.39-7.30 (m, 6H), 7.16 (t, \(J = 6\) Hz, 2H), 6.87 (d, \(J = 5.7\) Hz, 3H), 5.69 (s, 1H), 3.78 (s, 5H); \(^1\)C NMR (75 MHz, CDCl\(_3\)): 170.4, 157.6, 156.1, 135.0, 130.3, 129.3, 129.0, 128.7, 128.7, 127.7, 126.8, 121.8, 116.6, 92.2, 81.4, 53.0, 39.0. HRMS(ESI) for C\(_{24}\)H\(_{21}\)KNO\(_4\) [M+K]\(^+\) calcd 426.1102, found 426.1106.
8. 1H NMR and 13C NMR spectra of 4, 5, 6, 7
$4b$

$\text{Joxin 3129 EN17041001 1h dce13}$

$\text{Joxin 3136 EN17041001 13c dce13}$

S16
4c

3cxin 3001 RX17042602 1h cdc13

3cxin 3137 RX17042602 13c cdc13
4d

3oxin 3131 R17042603 1h cdcl3

3oxin 3138 R17042603 13c cdcl3
4e

S19
4g

3axin 3411 JL-17080101 1h cdc13

3axin 3412 JL-17080101 13c cdc13

S21
Boxin 2558 za16111204 1h cdcl3

Boxin 2563 za16111204 13c cdcl3
4t

3cxin 2566 zsi6111703 1h cdc13

3cxin 2572 ze2016111703 13c cdc13

S34
3oxin 314I j1-ch 1h cdc13

3oxin 3410 J2-OH 13c cdc13
7a (one of the two diastereomers)
7a’ (another of the two diastereomers)
9. Chiral HPLC chromatograms of 4, 5, 6, 7

4a

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.926</td>
<td>0.3270</td>
<td>2908.53271</td>
<td>140.74579</td>
<td>50.3021</td>
</tr>
<tr>
<td>2</td>
<td>13.239</td>
<td>0.3358</td>
<td>2873.59473</td>
<td>131.08319</td>
<td>49.6979</td>
</tr>
</tbody>
</table>

CO₂Me

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.090</td>
<td>0.4481</td>
<td>105.36840</td>
<td>3.91946</td>
<td>2.7867</td>
</tr>
<tr>
<td>2</td>
<td>13.531</td>
<td>0.4302</td>
<td>3675.73633</td>
<td>134.82527</td>
<td>97.2133</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.246</td>
<td>0.3864</td>
<td>4596.95996</td>
<td>198.25998</td>
<td>50.4570</td>
</tr>
<tr>
<td>2</td>
<td>14.750</td>
<td>0.3952</td>
<td>4513.67969</td>
<td>172.67798</td>
<td>49.5430</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.203</td>
<td>0.3563</td>
<td>444.45407</td>
<td>20.78850</td>
<td>4.7365</td>
</tr>
<tr>
<td>2</td>
<td>14.678</td>
<td>0.4583</td>
<td>8939.20508</td>
<td>325.06836</td>
<td>95.2635</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>11.045</td>
<td>0.3507</td>
<td>7372.90088</td>
<td>321.32056</td>
<td>50.7051</td>
</tr>
<tr>
<td>2</td>
<td>12.981</td>
<td>0.3694</td>
<td>7167.83594</td>
<td>293.52158</td>
<td>49.2949</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.060</td>
<td>0.3897</td>
<td>512.64240</td>
<td>21.92439</td>
<td>4.8839</td>
</tr>
<tr>
<td>2</td>
<td>12.943</td>
<td>0.4553</td>
<td>9983.85742</td>
<td>365.43457</td>
<td>95.1161</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>10.116</td>
<td>0.4265</td>
<td>3487.08765</td>
<td>136.27383</td>
<td>49.5177</td>
</tr>
<tr>
<td>2</td>
<td>11.165</td>
<td>0.4237</td>
<td>3555.01099</td>
<td>139.84894</td>
<td>50.4823</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.145</td>
<td>0.4348</td>
<td>8364.76855</td>
<td>320.60620</td>
<td>95.5015</td>
</tr>
<tr>
<td>2</td>
<td>11.241</td>
<td>0.3831</td>
<td>394.00943</td>
<td>17.14189</td>
<td>4.4985</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.300</td>
<td>0.5342</td>
<td>2.04843e4</td>
<td>601.70380</td>
<td>50.0650</td>
</tr>
<tr>
<td>2</td>
<td>24.132</td>
<td>0.6420</td>
<td>2.04311e4</td>
<td>483.16162</td>
<td>49.9350</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.472</td>
<td>0.4306</td>
<td>1394.05212</td>
<td>53.95518</td>
<td>6.5345</td>
</tr>
<tr>
<td>2</td>
<td>22.380</td>
<td>0.5372</td>
<td>1.99397e4</td>
<td>556.91315</td>
<td>93.4655</td>
</tr>
</tbody>
</table>
Compound 1

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.452</td>
<td>0.4523</td>
<td>1.1179e4</td>
<td>378.64157</td>
<td>49.9188</td>
</tr>
<tr>
<td>2</td>
<td>18.724</td>
<td>0.4962</td>
<td>346.07037</td>
<td>346.07037</td>
<td>50.0812</td>
</tr>
</tbody>
</table>

Compound 2

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.382</td>
<td>0.3470</td>
<td>176.08911</td>
<td>8.45808</td>
<td>4.2297</td>
</tr>
<tr>
<td>2</td>
<td>18.326</td>
<td>0.4431</td>
<td>3987.02612</td>
<td>136.37894</td>
<td>95.7703</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>11.264</td>
<td>0.4022</td>
<td>7904.70410</td>
<td>327.56653</td>
<td>50.4611</td>
</tr>
<tr>
<td>2</td>
<td>12.513</td>
<td>0.3821</td>
<td>7760.23242</td>
<td>338.46463</td>
<td>49.5389</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.188</td>
<td>0.3802</td>
<td>6353.59570</td>
<td>263.61005</td>
<td>96.6040</td>
</tr>
<tr>
<td>2</td>
<td>12.413</td>
<td>0.3465</td>
<td>223.35489</td>
<td>10.05529</td>
<td>3.3960</td>
</tr>
</tbody>
</table>
Peak | Retention time (min) | Peak width (min) | Peak area (mAU*s) | Peak height (mAU) | Peak area (%)
---|---------------------|------------------|-------------------|------------------|----------------
1 | 12.775 | 0.3287 | 2744.57227 | 125.12720 | 49.7545
2 | 13.838 | 0.3503 | 2771.65674 | 119.02826 | 50.2455

Peak	Retention time (min)	Peak width (min)	Peak area (mAU*s)	Peak height (mAU)	Peak area (%)
1 | 12.839 | 0.3469 | 189.21298 | 9.09151 | 2.4847
2 | 13.835 | 0.4062 | 7425.78271 | 304.65503 | 97.5153

4h
<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.886</td>
<td>0.3305</td>
<td>3225.55371</td>
<td>146.01103</td>
<td>49.6637</td>
</tr>
<tr>
<td>2</td>
<td>12.949</td>
<td>0.3441</td>
<td>3269.23413</td>
<td>142.12965</td>
<td>50.3363</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.960</td>
<td>0.3851</td>
<td>7241.26611</td>
<td>313.36203</td>
<td>97.2465</td>
</tr>
<tr>
<td>2</td>
<td>13.104</td>
<td>0.3753</td>
<td>205.03076</td>
<td>9.10532</td>
<td>2.7535</td>
</tr>
</tbody>
</table>
Peak | Retention time (min) | Peak width (min) | Peak area (mAU*s) | Peak height (mAU) | Peak area (%)
--- | --- | --- | --- | --- | ---
1 | 10.220 | 0.3842 | 6486.33643 | 256.19669 | 50.3183
2 | 11.823 | 0.4032 | 6404.28076 | 243.30074 | 49.6817

Peak	Retention time (min)	Peak width (min)	Peak area (mAU*s)	Peak height (mAU)	Peak area (%)
1 | 10.135 | 0.4351 | 9939.78809 | 380.73264 | 96.5366
2 | 11.507 | 0.4003 | 356.60742 | 14.84893 | 3.4634
<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.153</td>
<td>0.4416</td>
<td>2134.69653</td>
<td>78.35691</td>
<td>49.8179</td>
</tr>
<tr>
<td>2</td>
<td>14.741</td>
<td>0.4204</td>
<td>2150.30176</td>
<td>79.13994</td>
<td>50.1821</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.343</td>
<td>0.3986</td>
<td>296.41531</td>
<td>12.39357</td>
<td>3.3056</td>
</tr>
<tr>
<td>2</td>
<td>14.850</td>
<td>0.4599</td>
<td>8670.57910</td>
<td>314.20038</td>
<td>96.6944</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>11.098</td>
<td>0.2986</td>
<td>2280.16846</td>
<td>114.14850</td>
<td>49.7457</td>
</tr>
<tr>
<td>2</td>
<td>12.144</td>
<td>0.3106</td>
<td>2303.47925</td>
<td>110.28749</td>
<td>50.2543</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.106</td>
<td>0.3167</td>
<td>5411.88965</td>
<td>284.79822</td>
<td>96.1250</td>
</tr>
<tr>
<td>2</td>
<td>12.182</td>
<td>0.4188</td>
<td>218.16431</td>
<td>8.68181</td>
<td>3.8750</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>10.367</td>
<td>0.2838</td>
<td>2528.86841</td>
<td>132.52623</td>
<td>50.0958</td>
</tr>
<tr>
<td>2</td>
<td>12.183</td>
<td>0.2997</td>
<td>2519.19604</td>
<td>126.31319</td>
<td>49.9042</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.369</td>
<td>0.3292</td>
<td>4703.67578</td>
<td>238.12540</td>
<td>96.7446</td>
</tr>
<tr>
<td>2</td>
<td>12.228</td>
<td>0.3564</td>
<td>158.27824</td>
<td>7.40176</td>
<td>3.2554</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>12.007</td>
<td>0.3475</td>
<td>1546.70667</td>
<td>74.18143</td>
<td>51.0978</td>
</tr>
<tr>
<td>2</td>
<td>13.643</td>
<td>0.3699</td>
<td>1480.24805</td>
<td>66.68851</td>
<td>48.9022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.730</td>
<td>0.3845</td>
<td>5077.42383</td>
<td>220.09152</td>
<td>94.5441</td>
</tr>
<tr>
<td>2</td>
<td>13.334</td>
<td>0.3886</td>
<td>293.00720</td>
<td>12.56534</td>
<td>5.4559</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>12.846</td>
<td>0.3268</td>
<td>6494.76025</td>
<td>301.73441</td>
<td>49.9794</td>
</tr>
<tr>
<td>2</td>
<td>16.053</td>
<td>0.3928</td>
<td>6500.11963</td>
<td>250.66284</td>
<td>50.0206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.843</td>
<td>0.4296</td>
<td>1.52262e4</td>
<td>590.74146</td>
<td>93.1997</td>
</tr>
<tr>
<td>2</td>
<td>16.119</td>
<td>0.4621</td>
<td>1110.98511</td>
<td>40.07385</td>
<td>6.8003</td>
</tr>
</tbody>
</table>
Peak 1
- Retention time (min): 14.395
- Peak width (min): 0.4241
- Peak area (mAU*s): 1.06802e4
- Peak height (mAU): 379.88190
- Peak area (%): 49.7665

Peak 2
- Retention time (min): 16.366
- Peak width (min): 0.4854
- Peak area (mAU*s): 1.07805e4
- Peak height (mAU): 331.77011
- Peak area (%): 50.2335

Peak 1
- Retention time (min): 13.326
- Peak width (min): 0.3924
- Peak area (mAU*s): 170.46632
- Peak height (mAU): 7.24092
- Peak area (%): 2.7786

Peak 2
- Retention time (min): 15.230
- Peak width (min): 0.4345
- Peak area (mAU*s): 5964.57568
- Peak height (mAU): 228.81248
- Peak area (%): 97.2214
<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.029</td>
<td>0.3585</td>
<td>1.02686e4</td>
<td>459.08438</td>
<td>50.8175</td>
</tr>
<tr>
<td>2</td>
<td>17.011</td>
<td>0.6015</td>
<td>9938.23047</td>
<td>275.38965</td>
<td>49.1825</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.093</td>
<td>0.3545</td>
<td>218.29822</td>
<td>9.85504</td>
<td>2.9879</td>
</tr>
<tr>
<td>2</td>
<td>17.385</td>
<td>0.6184</td>
<td>7087.77588</td>
<td>191.03847</td>
<td>97.0121</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>10.212</td>
<td>0.3671</td>
<td>3787.50513</td>
<td>141.72729</td>
<td>50.3130</td>
</tr>
<tr>
<td>2</td>
<td>21.982</td>
<td>0.6134</td>
<td>3740.38501</td>
<td>92.14016</td>
<td>49.6870</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.343</td>
<td>0.4226</td>
<td>233.51581</td>
<td>9.20975</td>
<td>2.4791</td>
</tr>
<tr>
<td>2</td>
<td>21.873</td>
<td>0.6442</td>
<td>9185.68164</td>
<td>211.85397</td>
<td>97.5209</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>10.040</td>
<td>0.3167</td>
<td>2082.56421</td>
<td>92.95475</td>
<td>50.0886</td>
</tr>
<tr>
<td>2</td>
<td>17.684</td>
<td>0.4482</td>
<td>2075.19604</td>
<td>69.90784</td>
<td>49.9114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.018</td>
<td>0.5026</td>
<td>292.65170</td>
<td>9.70524</td>
<td>2.5938</td>
</tr>
<tr>
<td>2</td>
<td>17.555</td>
<td>0.6372</td>
<td>1.09900e4</td>
<td>287.44113</td>
<td>97.4062</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>16.867</td>
<td>0.4295</td>
<td>1.01320e4</td>
<td>393.18872</td>
<td>49.8571</td>
</tr>
<tr>
<td>2</td>
<td>18.615</td>
<td>0.4288</td>
<td>1.01901e4</td>
<td>396.07187</td>
<td>50.1429</td>
</tr>
</tbody>
</table>
Peak | Retention time (min) | Peak width (min) | Peak area (mAU*s) | Peak height (mAU) | Peak area (%)
--- | --- | --- | --- | --- | ---
1 | 9.797 | 0.5448 | 4800.68457 | 146.85161 | 49.9841
2 | 17.329 | 0.5063 | 4803.73633 | 143.75893 | 50.0159

Peak	Retention time (min)	Peak width (min)	Peak area (mAU*s)	Peak height (mAU)	Peak area (%)
1 | 9.842 | 0.4379 | 262.86804 | 9.96642 | 4.6244
2 | 17.475 | 0.4949 | 5400.86914 | 163.98764 | 95.3756
<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.922</td>
<td>0.6503</td>
<td>1.98673e4</td>
<td>461.88550</td>
<td>48.2647</td>
</tr>
<tr>
<td>2</td>
<td>47.786</td>
<td>1.6466</td>
<td>2.12959e4</td>
<td>180.21129</td>
<td>51.7353</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.044</td>
<td>0.7147</td>
<td>1649.63867</td>
<td>38.47055</td>
<td>3.7671</td>
</tr>
<tr>
<td>2</td>
<td>46.834</td>
<td>2.1239</td>
<td>4.21413e4</td>
<td>330.69049</td>
<td>96.2329</td>
</tr>
</tbody>
</table>
Table 1: Peak Characteristics

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.688</td>
<td>0.3835</td>
<td>3117.49341</td>
<td>131.21957</td>
<td>49.5354</td>
</tr>
<tr>
<td>2</td>
<td>28.927</td>
<td>1.1363</td>
<td>3175.97144</td>
<td>38.65076</td>
<td>50.4646</td>
</tr>
</tbody>
</table>

Table 2: Peak Characteristics

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.720</td>
<td>0.3991</td>
<td>147.12061</td>
<td>6.14407</td>
<td>4.5930</td>
</tr>
<tr>
<td>2</td>
<td>27.891</td>
<td>1.2367</td>
<td>3056.04199</td>
<td>41.18658</td>
<td>95.4070</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>12.899</td>
<td>0.3167</td>
<td>7216.15723</td>
<td>343.13583</td>
<td>49.7554</td>
</tr>
<tr>
<td>2</td>
<td>14.590</td>
<td>0.3580</td>
<td>7287.10107</td>
<td>305.86911</td>
<td>50.2446</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.932</td>
<td>0.3671</td>
<td>230.50516</td>
<td>10.46448</td>
<td>3.8655</td>
</tr>
<tr>
<td>2</td>
<td>14.628</td>
<td>0.4099</td>
<td>5732.70654</td>
<td>233.11172</td>
<td>96.1345</td>
</tr>
<tr>
<td>Peak</td>
<td>Retention time (min)</td>
<td>Peak width (min)</td>
<td>Peak area (mAU*s)</td>
<td>Peak height (mAU)</td>
<td>Peak area (%)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>15.237</td>
<td>0.1049</td>
<td>2044.51758</td>
<td>292.38458</td>
<td>49.9294</td>
</tr>
<tr>
<td>2</td>
<td>23.891</td>
<td>0.4325</td>
<td>2050.30005</td>
<td>74.32244</td>
<td>50.0706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.178</td>
<td>0.1346</td>
<td>3610.95264</td>
<td>447.27509</td>
<td>95.8056</td>
</tr>
<tr>
<td>2</td>
<td>23.753</td>
<td>0.4660</td>
<td>158.08810</td>
<td>5.65353</td>
<td>4.1944</td>
</tr>
</tbody>
</table>
7a (one of the two diastereomers)

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.430</td>
<td>0.3764</td>
<td>3.07325e4</td>
<td>1259.31506</td>
<td>49.7615</td>
</tr>
<tr>
<td>2</td>
<td>28.268</td>
<td>0.4996</td>
<td>3.10271e4</td>
<td>948.53583</td>
<td>50.2385</td>
</tr>
</tbody>
</table>

Peak 1:

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.291</td>
<td>0.4070</td>
<td>6.07554e4</td>
<td>2345.75171</td>
<td>95.0603</td>
</tr>
<tr>
<td>2</td>
<td>28.156</td>
<td>0.5208</td>
<td>3157.06812</td>
<td>101.03548</td>
<td>4.9397</td>
</tr>
</tbody>
</table>
7a’ (another of the two diastereomers)

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.207</td>
<td>0.5382</td>
<td>1.80674e4</td>
<td>501.54471</td>
<td>49.8384</td>
</tr>
<tr>
<td>2</td>
<td>23.721</td>
<td>0.7535</td>
<td>1.81846e4</td>
<td>369.33075</td>
<td>50.1616</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>Peak width (min)</th>
<th>Peak area (mAU*s)</th>
<th>Peak height (mAU)</th>
<th>Peak area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.514</td>
<td>0.5385</td>
<td>1983.33643</td>
<td>55.02317</td>
<td>4.9661</td>
</tr>
<tr>
<td>2</td>
<td>23.721</td>
<td>0.7240</td>
<td>3.79538e4</td>
<td>783.32397</td>
<td>95.0339</td>
</tr>
</tbody>
</table>