Supporting Information

Gram scale production of 1-azido-β-D-glucose via enzyme catalysis for the synthesis of 1,2,3-triazole-glucosides

Jaggaiah N. Gorantla,1 Salila Pengthaisong,1 Sunaree Choknud,2 Teadkait Kaewpuang,2 Tanaporn Manym,1 Vinich Promarak,2 James R. Ketudat Cairns*.2

1School of Chemistry, Institute of Science, & Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
2School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand

*Corresponding author:
Prof. James R. Ketudat Cairns, School of Chemistry, Institute of Science, & Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

(Email: cairns@sut.ac.th), Phone: +66 44 224193; +66 83 1001112, Fax +66 44 224185

Table of Contents

1. Figure S1. Reaction and first purification - - - - - S2
2. Figure S2. Second purification - - - - - S3
3. Figure S3. 1H-NMR spectra of compound 1 at 600 & 400 MHz- - - S3
4. Figure S4. NMR spectrum of compounds 1 - - - - S4
5. Figure S5. 1H and 13C NMR spectra of compounds 2-16 - - S5-S34
6. Figure S6. HR-ESI-MS spectrum of compound 16 - - - S35
Figure S1. Reaction and first purification. (A). Transglucosylation reaction from 0 hr to 24 hrs, (B) H₂O drying by lyophilization, (C) Silica gel column purification, (D) Glc-N₃ 1 [Impure (top), 800 mg pure (bottom)], (E) TLC profile of final fractions from silica gel column.

Figure S2. Second purification. (A). Sephadex LH-20 column (B) TLC profile of fractions from column (C) H₂O drying using lyophilization (D) Pure 1-azido-β-D-glucose (1).
Figure S3. 1H NMR Spectra of compound 1 at 600 and 400 MHz
Figure S4. 13C NMR Spectrum of Compound 1.
Figure S5 1H and 13C NMR Spectra of Compounds 2-16.
Figure S6. HR-ESI-MS Spectrum of Compound 16