Electronic Supplementary Information

Field-plate engineering for high breakdown voltage β-Ga$_2$O$_3$ nanolayer field-effect transistors

Jinho Bae1, Hyoung Woo Kim2, In Ho Kang2, and Jihyun Kim1,*

1 Department of Chemical and Biological Engineering, Korea University, Anamdong-5-Ga, Seoul 02841, South Korea

2 Korea Electrotechnology Research Institute (KERI), Seongsan-gu, Changwon-si, Gyeongsangnam-do 51543, South Korea

* Corresponding author: J. Kim (hyunhyun7@korea.ac.kr)

Figure S1 DC output characteristics of the β-Ga$_2$O$_3$ nanoFET (a) without and (b) with the field-modulating plate
Figure S2 DC output and off-state three-terminal hard-breakdown results of the β-Ga_2O_3 nanoFETs with the field-modulating plate.

The materials parameters for the device simulation are below.

- Dielectric constant for β-Ga_2O_3 : 10
- Carrier concentration : $3.7 \times 10^{17}/\text{cm}^3$
- Electron affinity : 4.0
- Energy gap @ 300 K : 4.9
- Conduction band density : $3.72 \times 10^{18}/\text{cm}^3$
- Valance band density : $3.72 \times 10^{18}/\text{cm}^3$
- Electron mobility : 118 $\text{cm}^2/\text{V} \cdot \text{s}$

Impact ionization coefficient model: $\alpha_n = 0.79 \times 10^6 \text{cm}^{-1} \exp\left(-\frac{2.92 \times 10^7 \text{V/cm}}{E}\right)$