Supporting Information for

Three new metal coordination polymers of bifunctional imidazolate/tetrazolate bridges: the only example of three-dimensional framework based on rare $[\text{Co}_4(\mu_3-\text{OH})_2(\mu_2-\text{Cl})_2]^{4+}$ mixed oxo-chloro-clusters

Lili Yang, Jian Zhou, Hua-Hong Zou, and Qiuling Tang
Fig. S1 Simulated and experimental powder XRD patterns of 1-3.

![Simulated and experimental powder XRD patterns of 1-3.](image)

Fig. S2 The asymmetric units of 1 (a) and 2 (b) with labeling scheme. H atoms bonded to C atoms are omitted for clarity.

![Asymmetric units of 1 (a) and 2 (b) with labeling scheme.](image)
Fig. S3 The bridging modes of L' ligand in 3. [Symmetry operation: (i) x, 1+y, z; (ii) −x, 1−y, 1−z; (iii) −0.5+x, 0.5−y, −0.5+y]

Fig. S4 a) 1-D chilopod [(H$_2$O)$_7$]$_n$ chain. The single (H$_2$O)$_6$ cluster unit {left, top view (b); right, side view(c)}.
Fig. S5. Temperature dependence of in-phase and out-of-phase ac susceptibilities of 1 (left) and 2 (right) at different frequency in zero dc field and 2.5 Oe ac field.

Fig. S6 The magnetization versus the dc field in the temperature range of 2–5 K for 1.
Fig. S7 Temperature dependence of the field-cooled magnetic susceptibility of 3.