Rationally designing coupling mechanism of physical adsorption and chemical charge effect for high performance Lithium sulfur batteries

Guilin Feng, Xiaohong Liu, Yasai Wang, Zhenguow Wu, Chen Wu, Rong Li, Yanxiao Chen, Xiaodong Guo, Benhe Zhong, Jianshu Li

*a School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.

*b College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China.

Corresponding Authors:
Tel: +86-28-85406702; Fax: +86-28-85406702;
E-mail address: yxchen888@163.com
Fig. S1 The diagrammatic drawing of prepared SPS.

Fig. S2 TGA curve of S/C composite under Argon atmosphere
Fig. S3 SEM image of prepared NACC.

Fig. S4. (a) Nitrogen adsorption–desorption isotherms for prepared NACC, (b) BJH pore size distribution profiles.
Fig.S5 The Raman spectra of (a) NACC, (b) S-NACC coated separator

Fig.S6 The dQ/dV result of three different separators.
Fig.S7 Self-discharge behavior of Li–S batteries with different separators

Fig.S8 The rate performance of different addition of NACC
Fig.S9 the cycling performance of S-NACC-50% at 1600 mA g$^{-1}$