Supporting Information for

Organic-inorganic hybrid perovskite quantum dot light-emitting diodes using graphene electrode and modified PEDOT:PSS

Qing Zhang, a Hongtao Yu, a Ziwei Liu, a Yao Lu, a Danqing Ye, a Jie Qian, a
Yanan Wu, a Wenwen Gu, a Ben Ma, a Liuquan Zhang, a Yu Duan, b Lihui Liu, a Kun Cao, a Shufen Chen*ac and Wei Huang*ac

a Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China. E-mail: iamsfchen@njupt.edu.cn
b State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
c Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shaanxi, China. E-mail: provost@nwpu.edu.cn, iamdirector@fudan.edu.cn

Fig. S1 Optical microscopy images and corresponding contact angles of (a) PEDOT:PSS, (b) PEDOT:PSS with 2 vol% DMSO, and (c) PEDOT:PSS with 2 vol% DMSO and 0.05 wt% Triton X-100 solutions on graphene/glass substrates.
Fig. S2 Photographs of PEDOT:PSS films doped with (a) 2 vol% DMSO and (b) 2 vol% DMSO and 0.05 wt% Triton X-100. The Si/SiO$_2$ substrates need to treat 10 min with UV-ozone prior to the spincoating of the following PEDOT:PSS film. Optical microscope images of PEDOT:PSS films doped with (c) 2 vol% DMSO and (d) 2 vol% DMSO and 0.05 wt% Triton X-100.
Fig. S3 AFM phase mode images of (a) the pristine PEDOT:PSS film and the PEDOT:PSS films doped with (b) 0.05 wt% Triton X-100, (c) 2 vol% DMSO, and (d) 0.05 wt% Triton X-100 and 2 vol% DMSO. All images have a size of 2 μm × 2 μm.
Fig. S4 Thickness statistics on (a) PEDOT:PSS, PEDOT:PSS/poly-TPD and toluene-washed PEDOT:PSS/poly-TPD films and (b) modified PEDOT:PSS, modified PEDOT:PSS/poly-TPD and toluene-washed modified PEDOT:PSS/poly-TPD films. The PEDOT:PSS and modified PEDOT:PSS solution were spin-coated onto the substrates at 2000 rpm for 45 s, followed by a thermal annealing of 120 °C and 30 min. The poly-TPD was spin-coated at 1500 rpm for 60 s, followed by a thermal annealing of 140 °C and 30 min. Finally, the pure toluene solution was spin-coated onto the poly-TPD layer at 2000 rpm for 45 s and this step was repeated three times. AFM images of (c) PEDOT:PSS/poly-TPD ($R_q=1.70$ nm) and (d) modified PEDOT:PSS/poly-TPD ($R_q=1.40$ nm) after washing with toluene.
Fig. S5 (a) Current density, (b) luminance and (c) current efficiency curves of PQDs LEDs with 0.01 wt% Triton X-100 and various concentrations of DMSO. (d) The energy level diagram of our PQDs LEDs.

Fig. S6 Ultraviolet photoelectron spectroscopy of MLG, MLG/PEDOT:PSS and MLG/modified PEDOT:PSS.
Fig. S7 (a) Current density, (b) luminance and (c) current efficiency curves of PQDs LEDs with 2 vol% DMSO and various concentrations of Triton X-100.

Table S1 Device parameters with different Triton X-100 doping concentrations.

<table>
<thead>
<tr>
<th>Triton X-100 [wt%]</th>
<th>V_{on} [V]</th>
<th>L_{max} [cd m$^{-2}$]</th>
<th>CE_{max} [cd A$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>4</td>
<td>46.4</td>
<td>0.52</td>
</tr>
<tr>
<td>0.05</td>
<td>3.8</td>
<td>431.2</td>
<td>2.12</td>
</tr>
<tr>
<td>0.25</td>
<td>5.1</td>
<td>11.5</td>
<td>0.15</td>
</tr>
</tbody>
</table>