Supporting information for

Thermal- and Salt-Activated Shape Memory Hydrogels Based on Gelatin/Polyacrylamide Double Network

Fang Chen,a Kaixiang Yang,a Dinglei Zhao,a and Haiyang Yang*a

a CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
E-mail: yhy@ustc.edu.cn

Fig. S1 (a) The shape transition of the hydrogel with time at freezing temperature. (b) Shape fixity ratio (R_f) of the hydrogel shown as a function of time at freezing temperature.

Fig. S2 (a) Images demonstrating the transition of the hydrogel from the temporary shape to the permanent shape for the salt-activated SME. b) Shape recovery ratio (R_r) for G10AM3 hydrogels shown as a function of time at room temperature.
Fig. S3 Tensile stress-strain curves of hydrogels treated with solutions containing different anions at room temperature.

Fig. S4 (a) R_f for hydrogels treated with solutions that contain different anions at room temperature. (b) R_r for hydrogels treated with solutions containing different anions at room temperature.
Fig. S5 (a) Tensile stress-strain curves of hydrogels treated with solutions containing different cations at room temperature. (b) R_f and R_r for hydrogels treated with solutions containing different cations at room temperature.