Electronic Supplementary Information for

Enhanced efficiency and high temperature stability of hybrid quantum dot light-emitting diodes using molybdenum oxide doped hole transport layer

Jinyoung Yun,a Jeayun Kim,b Byung Jun Jung,c Gyutae Kim*a and Jeonghun Kwak*d

aSchool of Electrical Engineering, Korea University, Seoul 02841, South Korea.
bSchool of Electrical and Computer Engineering, University of Seoul, Seoul 02504, South Korea.
cDepartment of Materials Science and Engineering, University of Seoul, Seoul 02504, South Korea.
dDepartment of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea.

* Corresponding authors.
E-mail address: gtkim@korea.ac.kr (G. Kim), jkwak@snu.ac.kr (J. Kwak).
Fig. S1. (a) UV–Vis absorption, PL, and EL spectra of CdZnSeS/ZnS QDs and (b) EL spectrum of the QLEDs.

Fig. S2. (a) Current density–voltage characteristics and (b) conductance of the HODs consisting of ITO/MoO$_3$ (10 nm)/CBP (30 nm)/CBP:MoO$_3$ (20 nm, 10 vol%) or CBP (20 nm)/MoO$_3$ (10 nm)/Al (80 nm).
Fig. S3. (a) Capacitance–voltage and (b) resistance–voltage characteristics of Devices B1 and B2.

Fig. S4. The surface morphology (2 μm × 2 μm) of the (a) CBP (50 nm) and (b) CBP (30 nm)/CBP:MoO₃ (20 nm,10 vol%) films measured using an AFM at various annealing temperatures from 300 K to 350 K.