Scheme S1: The proposed mechanism of the nano linker (NL) synthesis.
Fig. S2: The mass spectrum of the nano linker (NL)
Fig. S3: The proposed fragmentation scheme of the nano linker (NL).
Fig. S4: The 1H-NMR spectrum of nano linker (NL).
Fig. S5: The 13C-NMR spectrum of nano linker (NL).
Fig. S6: The FT-IR spectrum of nano linker (NL).
Fig. S7: (a, b, and c) The electronic absorption spectra of Aip, Phen, and NL at different ranges, (d) The band gap energy of Aip, Phen, and NL.
Fig. S8: The thermogravimetric analysis (TGA-DTGA) of the NL.
Table S9: EDX analysis of the NL.

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight %</th>
<th>Atomic %</th>
<th>Net Int.</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>52.75</td>
<td>59.25</td>
<td>155.31</td>
<td>6.25</td>
</tr>
<tr>
<td>N</td>
<td>10.36</td>
<td>8.05</td>
<td>4.28</td>
<td>16.24</td>
</tr>
<tr>
<td>O</td>
<td>36.89</td>
<td>32.7</td>
<td>70.01</td>
<td>11.98</td>
</tr>
</tbody>
</table>
Scheme S10: The proposed mechanism of the Mn-MOF synthesis.
Fig. S11: The proposed fragmentation scheme of the Mn-MOF.
Fig. S12: The 1H-NMR spectrum of the Mn-MOF.
Fig. S13: The FT-IR spectra of the NL and Mn-MOF.
Fig. S14: (a, b, and c) The electronic absorption spectra of the NL and Mn-MOF at different ranges, (d) The optical band gap energy of the NL and Mn-MOF.
Fig. S15: The X-ray diffraction patterns of the Mn-MOF.
<table>
<thead>
<tr>
<th>Peak No.</th>
<th>θ value</th>
<th>Intensity</th>
<th>d value</th>
<th>Sin θ</th>
<th>Sin 2θ</th>
<th>Ratio 1</th>
<th>Ratio 2</th>
<th>(hkl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.665</td>
<td>27.5</td>
<td>7.5802</td>
<td>0.1018</td>
<td>0.1016</td>
<td>0.0103</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>14.115</td>
<td>12.7</td>
<td>6.2695</td>
<td>0.1232</td>
<td>0.1229</td>
<td>0.0151</td>
<td>1.4618</td>
<td>2.9236</td>
</tr>
<tr>
<td>3</td>
<td>15.415</td>
<td>85.2</td>
<td>5.7435</td>
<td>0.1345</td>
<td>0.1341</td>
<td>0.018</td>
<td>1.1915</td>
<td>2.383</td>
</tr>
<tr>
<td>4</td>
<td>17.62</td>
<td>15.5</td>
<td>5.0294</td>
<td>0.1538</td>
<td>0.1532</td>
<td>0.0235</td>
<td>1.3041</td>
<td>2.6083</td>
</tr>
<tr>
<td>5</td>
<td>21.052</td>
<td>60.2</td>
<td>4.2166</td>
<td>0.1837</td>
<td>0.1827</td>
<td>0.0334</td>
<td>1.4227</td>
<td>2.8454</td>
</tr>
<tr>
<td>6</td>
<td>22.671</td>
<td>19.2</td>
<td>3.919</td>
<td>0.1978</td>
<td>0.1966</td>
<td>0.0386</td>
<td>1.1576</td>
<td>2.3153</td>
</tr>
<tr>
<td>7</td>
<td>23.446</td>
<td>56.7</td>
<td>3.7912</td>
<td>0.2046</td>
<td>0.2032</td>
<td>0.0413</td>
<td>1.0686</td>
<td>2.1371</td>
</tr>
<tr>
<td>8</td>
<td>25.282</td>
<td>20.1</td>
<td>3.5199</td>
<td>0.2206</td>
<td>0.2188</td>
<td>0.0479</td>
<td>1.1601</td>
<td>2.3202</td>
</tr>
<tr>
<td>9</td>
<td>27.303</td>
<td>87.3</td>
<td>3.2638</td>
<td>0.2383</td>
<td>0.236</td>
<td>0.0557</td>
<td>1.1631</td>
<td>2.3262</td>
</tr>
<tr>
<td>10</td>
<td>28.582</td>
<td>86.6</td>
<td>3.1206</td>
<td>0.2494</td>
<td>0.2468</td>
<td>0.0609</td>
<td>1.0939</td>
<td>2.1878</td>
</tr>
<tr>
<td>11</td>
<td>31.017</td>
<td>51.6</td>
<td>2.8809</td>
<td>0.2707</td>
<td>0.2674</td>
<td>0.0715</td>
<td>1.1733</td>
<td>2.3466</td>
</tr>
<tr>
<td>12</td>
<td>32.884</td>
<td>15.1</td>
<td>2.7215</td>
<td>0.287</td>
<td>0.283</td>
<td>0.0801</td>
<td>1.1206</td>
<td>2.2412</td>
</tr>
<tr>
<td>13</td>
<td>33.801</td>
<td>26</td>
<td>2.6497</td>
<td>0.295</td>
<td>0.2907</td>
<td>0.0845</td>
<td>1.0549</td>
<td>2.1098</td>
</tr>
<tr>
<td>14</td>
<td>36.022</td>
<td>33.8</td>
<td>2.4913</td>
<td>0.3144</td>
<td>0.3092</td>
<td>0.0956</td>
<td>1.1934</td>
<td>2.3867</td>
</tr>
<tr>
<td>15</td>
<td>37.414</td>
<td>18.9</td>
<td>2.4017</td>
<td>0.3265</td>
<td>0.3207</td>
<td>0.1029</td>
<td>1.076</td>
<td>2.1519</td>
</tr>
<tr>
<td>16</td>
<td>38.38</td>
<td>13.3</td>
<td>2.3435</td>
<td>0.3349</td>
<td>0.3287</td>
<td>0.108</td>
<td>1.0503</td>
<td>2.1007</td>
</tr>
<tr>
<td>17</td>
<td>42.542</td>
<td>20.8</td>
<td>2.1233</td>
<td>0.3712</td>
<td>0.3628</td>
<td>0.1316</td>
<td>1.2181</td>
<td>2.4362</td>
</tr>
<tr>
<td>18</td>
<td>44.455</td>
<td>24.4</td>
<td>2.0363</td>
<td>0.3879</td>
<td>0.3783</td>
<td>0.1431</td>
<td>1.0873</td>
<td>2.1746</td>
</tr>
<tr>
<td>19</td>
<td>47.658</td>
<td>12.8</td>
<td>1.9066</td>
<td>0.4159</td>
<td>0.404</td>
<td>0.1632</td>
<td>1.1406</td>
<td>2.2812</td>
</tr>
<tr>
<td>20</td>
<td>50.243</td>
<td>10.2</td>
<td>1.8144</td>
<td>0.4385</td>
<td>0.4245</td>
<td>0.1802</td>
<td>1.1042</td>
<td>2.2084</td>
</tr>
<tr>
<td>21</td>
<td>50.775</td>
<td>10.2</td>
<td>1.7967</td>
<td>0.4431</td>
<td>0.4287</td>
<td>0.1838</td>
<td>1.0199</td>
<td>2.0398</td>
</tr>
<tr>
<td>22</td>
<td>53.419</td>
<td>19.1</td>
<td>1.7138</td>
<td>0.4662</td>
<td>0.4495</td>
<td>0.202</td>
<td>1.0999</td>
<td>2.1981</td>
</tr>
<tr>
<td>23</td>
<td>65.267</td>
<td>9.47</td>
<td>1.4284</td>
<td>0.5696</td>
<td>0.5393</td>
<td>0.2908</td>
<td>1.4395</td>
<td>2.879</td>
</tr>
</tbody>
</table>
Table S17: Summary of calculated crystallite size of Mn-MOF at different position on XRD patterns

<table>
<thead>
<tr>
<th>Position</th>
<th>Area</th>
<th>Cry Size L (nm)</th>
<th>Microstrain</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.602555</td>
<td>0.481147</td>
<td>152.7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>11.64649</td>
<td>4.562902</td>
<td>96.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>14.09831</td>
<td>3.330751</td>
<td>44.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>15.39315</td>
<td>22.83284</td>
<td>58.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>17.93485</td>
<td>20.21825</td>
<td>3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>21.02227</td>
<td>14.15183</td>
<td>69.7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>23.36765</td>
<td>50.80222</td>
<td>3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>23.43363</td>
<td>8.73104</td>
<td>117</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>27.28584</td>
<td>28.0254</td>
<td>49.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>28.55771</td>
<td>23.90066</td>
<td>66.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>31.00315</td>
<td>21.24583</td>
<td>32.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>32.85082</td>
<td>5.019268</td>
<td>32.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>33.80285</td>
<td>9.942127</td>
<td>36.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>35.63326</td>
<td>4.023009</td>
<td>68.6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>35.99059</td>
<td>11.05639</td>
<td>50.6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>37.36077</td>
<td>5.930203</td>
<td>53.7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>38.38768</td>
<td>2.829175</td>
<td>64.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>39.02342</td>
<td>4.984149</td>
<td>24.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>42.55086</td>
<td>5.358178</td>
<td>62.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>44.37924</td>
<td>9.889326</td>
<td>42.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>50.73838</td>
<td>2.034004</td>
<td>90.9</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>53.34017</td>
<td>14.13539</td>
<td>17</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Fig. S18: The thermogravimetric analysis (TGA-DTGA) of the Mn-MOF
Table S19: EDX analysis of the Mn-MOF.

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight %</th>
<th>Atomic %</th>
<th>Net Int.</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>44.97</td>
<td>54.09</td>
<td>104.33</td>
<td>7.37</td>
</tr>
<tr>
<td>N</td>
<td>8.44</td>
<td>7.98</td>
<td>3.89</td>
<td>29.04</td>
</tr>
<tr>
<td>O</td>
<td>37.85</td>
<td>35.88</td>
<td>69.67</td>
<td>11.78</td>
</tr>
<tr>
<td>Mn</td>
<td>8.74</td>
<td>2.05</td>
<td>29.13</td>
<td>11.49</td>
</tr>
</tbody>
</table>
Fig. S20: The magnetization curve of the Mn-MOF.
Fig. S21. The PL emission spectra at different excitation wavelength for the Mn-MOF.
Fig. S22. Excitation (black line) and emission (red line) spectra of Mn-MOF.
Scheme S23. Schematic diagram of the electrochemical cell for potentiometric measurements.
Table S24: Response characteristics of electrode utilizing various solvent mediators

<table>
<thead>
<tr>
<th>Solvent mediator</th>
<th>Linear concentration range (ng/mL)</th>
<th>Slope/mV per decade</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-NPOE</td>
<td>0.01 – 30.0</td>
<td>59.0 ± 0.99</td>
</tr>
<tr>
<td>DOP</td>
<td>0.25 – 15.0</td>
<td>50.5 ± 1.1</td>
</tr>
<tr>
<td>DOS</td>
<td>0.50 – 20.0</td>
<td>48.2 ± 1.2</td>
</tr>
</tbody>
</table>
Table S25: Comparison between the Mn-MOF biosensor and some existing methods for the determination of cTn.

<table>
<thead>
<tr>
<th>Method</th>
<th>Linear detection range (ng/mL)</th>
<th>LOD (ng/mL)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrochemiluminescent</td>
<td>0.05 – 30.0</td>
<td>0.033</td>
<td>[11]</td>
</tr>
<tr>
<td>Ultrasensitive Plasmonic Biosensors</td>
<td>-</td>
<td>0.015</td>
<td>[12]</td>
</tr>
<tr>
<td>Ultrasensitive photoelectrochemical immunosensor</td>
<td>0.000002 – 50.0</td>
<td>6.7 fg/mL</td>
<td>[13]</td>
</tr>
<tr>
<td>Ultrasensitive label-free optical microfibre</td>
<td>2.0 – 10.0 fg/mL</td>
<td>2.0 fg/mL</td>
<td>[14]</td>
</tr>
<tr>
<td>Enzyme-linked immunosorbent assay</td>
<td>-</td>
<td>0.1</td>
<td>[34]</td>
</tr>
<tr>
<td>Mn-MOF biosensor</td>
<td>0.01 – 30.0</td>
<td>0.055</td>
<td>Present work</td>
</tr>
</tbody>
</table>
Table S26: Selectivity coefficients $K^{pot}_{A,B}$ for various interfering analytes using separate solution method.

<table>
<thead>
<tr>
<th>Interfering analyte</th>
<th>$K^{pot}_{A,B}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$^{+2}$</td>
<td>3.95 x 10^{-4}</td>
</tr>
<tr>
<td>Mn$^{+2}$</td>
<td>1.39 x 10^{-4}</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>1.40 x 10^{-4}</td>
</tr>
<tr>
<td>Glucose</td>
<td>1.38 x 10^{-4}</td>
</tr>
<tr>
<td>Lactose</td>
<td>1.36 x 10^{-4}</td>
</tr>
<tr>
<td>Starch</td>
<td>1.36 x 10^{-4}</td>
</tr>
<tr>
<td>Citric acid</td>
<td>1.35 x 10^{-4}</td>
</tr>
<tr>
<td>CK-Total</td>
<td>1.42 x 10^{-4}</td>
</tr>
<tr>
<td>CK-MB</td>
<td>1.42 x 10^{-4}</td>
</tr>
<tr>
<td>PSA</td>
<td>1.43 x 10^{-4}</td>
</tr>
<tr>
<td>CEA</td>
<td>1.41 x 10^{-4}</td>
</tr>
<tr>
<td>Biotin</td>
<td>1.38 x 10^{-4}</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>1.34 x 10^{-4}</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>1.38 x 10^{-4}</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>1.34 x 10^{-4}</td>
</tr>
<tr>
<td>Caffeine</td>
<td>1.35 x 10^{-4}</td>
</tr>
</tbody>
</table>
Table S27: Evaluation of intra-day, inter-day accuracy, precision, and results of recovery study using spiking technique.

<table>
<thead>
<tr>
<th>Standard cTn Added, ng/mL*</th>
<th>Repeatability Intra-day precision</th>
<th>Reproducibility Inter-day precision</th>
<th>cTn recovery (Percent ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>SD</td>
<td>CV</td>
</tr>
<tr>
<td>0.1</td>
<td>0.101</td>
<td>0.004</td>
<td>2E-05</td>
</tr>
<tr>
<td>2.0</td>
<td>1.947</td>
<td>0.021</td>
<td>4E-04</td>
</tr>
<tr>
<td>20.0</td>
<td>19.6</td>
<td>0.203</td>
<td>0.041</td>
</tr>
</tbody>
</table>

* Each reading was repeated Five times; X, mean values; SD, standard deviation; CV, the coefficient of variation; %RE, percent of relative error.
Fig. S28: The PL spectra response for behavior of the Mn-MOF towards cTn.
Appendix A:

References: (1–62)

12. Yeon S, Duk Y, Kim K, Sik S, Yoon HC. A fluoro-microbead guiding chip for simple and

37. Habib S, Ghodsi E, Abdollahi S, Nadri S. Porous graphene oxide nanostructure as an

60. Kavsak PA. US CR. Clinical Biochemistry [Internet]. 2018;#pagerange#. Available from:

Appendix B:

2.1. Materials

All solvents and chemicals used in this study were of analytical reagent grade and were used as received. Polyvinyl chloride powder PVC of high molecular weight, o-nitrophenyl octyl ether (o-NPOE), dioctyl phthalate (DOP), dioctyl sebacate (DOS), tetrahydrofuran (THF) of purity greater than 99%, 1, 2-phenylenediamine C₆H₈N₂; melting point 100-102 °C; 99.5%; and MnCl₂.4H₂O; 99.99% were purchased from Sigma-Aldrich. 5-aminoisophthalic acid C₈H₇NO₄; melting point greater than 300 °C; 98%; was purchased from Acros-organics. Standard cardiac troponin (cTn) protein of different buffered concentrations were supplied by Monobind, USA.

2.2. Instruments

The characterization and applications were performed using different analytical techniques: The mass spectra of solid NL and Mn-MOF were recorded using a Thermo Scientific- ISQ single quadrupole mass spectrometer. The ¹H-NMR and ¹³C-NMR spectra of samples in deuterated dimethylsulfoxide (DMSO-D⁶) were performed with a 500 MHz NMR spectrometer (JEOL-ECA 500II). Elemental analysis (C-H-N) were performed using a Costech ECS-4010- analyzer. The Fourier transform-infrared (FT-IR) spectra were recorded with a JASCO FT/IR-460 spectrophotometer with use of KBr tablets in the range from 400 to 4000 cm⁻¹ at room temperature. The UV-vis spectra for samples by were obtained using V-770 UV-Visible/NIR spectrophotometer over a range from 200 to 2200 nm, and the band gap calculated with Optbandgap-204B soft wear. X-ray diffraction (XRD) of Mn-MOF was performed with a D8-AVANCE X-ray diffractometer (Bruker AXS, Germany) with Cu-Kα radiation (λ =0.154056 nm) for identification of the crystalline phase, relative crystallinity and crystal size of as-prepared Mn-MOF. The sample was identified in the 2θ range from 3.105° to 70.086° with a 0.020° step at a scan speed of 0.4 s. The crystallite size was calculated from XRD data by means of the Scherer equation. The oxidation states and species in the prepared materials were recorded by Thermo Scientific™ K-Alpha™ XPS spectrometer, Al-Kα micro-focused monochromator within an energy range up to 4 KeV. The FE-SEM images and EDX spectroscopy spectra were recorded with a combination of field emission scanning electron microscopy (FE-SEM), and element mapping by spatially resolved energy-dispersive X-ray spectroscopy (EDX)
(JEOL JSM-6510LV advanced electron microscope with a LAB-6 cathode at 520 keV). The structures of the phases formed were examined by using a high-resolution transmission electron microscope (HR-TEM) with an acceleration voltage up to 200 kV (JEM-2100-JEOL, Japan). Thermal analysis (DSC/TGA) of the samples were analyzed with a NETZSCH STA 409 C/CD, Germany with a rate of 10 °C min⁻¹ in nitrogen atmosphere. The magnetic properties of the fabricated sample was accomplished using a vibrating sample magnetometer (7400-1 VSM, U.S., Lake Shore Co., Ltd., USA) in a maximum applied field of 20 kOe. The photoluminescence (PL) spectra were investigated using a Shimadzu RF-5301PC spectrofluorophotometer. The samples were used for subsequent PL measurements at different excitation wavelengths and then at an excitation wavelength 300 nm and an emission wavelength of 422 nm. The measurements were performed in a quartz cuvette of path length 1 cm, with a scan time of 30 s, at room temperature. All potentiometric measurements were performed at room temperature with constant magnetic stirring, with an Orion Model A720 digital pH/mV meter and an Orion Ross Combination pH electrode (Model 81-02) for all pH measurements. Mn-MOF-PVC based electrode was used for all potentiometric measurements in conjunction with a double junction reference electrode (Orion Model 90-02) containing KNO₃ (10% w/v) in the outer compartment silver-silver chloride reference electrode. The data were analyzed with Origin-8. The structures, 3D geometrical structures and Schemes were drawn using "ChemBioDraw Ultra12" program.
Appendix C: Design of the device

The suggested device can be able to connect to the potentiometric electrode sensor through a calibration program. The sensor will be able to detect any changing in the potential response and send an information to the device. The device will receive the data from the sensor and will be analyze it. The smart program which prepared in an internal memory using calibrated data will be appeared on LCD screen. The new device will consist from the microcontroller board, PIC 16F887 IC, battery, keypad, project box and sensors. A small device controlled with one hand (POCT device) in the end will be fabricated, with a size approximately 15 cm length, width 10 cm and height 4 cm.