Supporting information

Preparation of large-area ultrathin carbon semiconductor converted from conjugated microporous polymer film

Shang Ju, Yamei Ding, Yuhang Yin, Shuai Cheng, Xiangjing Wang, Huwu Mao, Zhe Zhou, Mengya Song, Qing Chang, Chaoyi Ban, Zhengdong Liu, and Juqing Liu

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
E-mail: iamzdliu@njtech.edu.cn; iamjqliu@njtech.edu.cn
Fig. S1 Optical images of CMP and CNF grown on SiO$_2$/Si substrates under different annealing temperature (a) 25 °C, (b) 400 °C, (c) 600 °C, (d) 700 °C, (e) 750 °C and (f) 800 °C, respectively. Scale bar, 20 μm.
Fig. S2 Optical micrographs of patterned CNFs on SiO2/Si substrates, including (a) circular, (b) square, and (c) oblong geometries were prepared by annealing patterned CMP nanofilms. Scale bars: 100 μm.
Fig. S3 Optical micrographs of monomers and polymer before and after 800 °C annealing. The spin-coated monomer film on a SiO$_2$/Si substrate before (a) and after (b) annealing; the polymer film on a SiO$_2$/Si substrate before (c) and after (d) annealing. Scale bar, 40 μm.
Fig. S4 (a) Optical micrograph of CNF-800. Scale bar, 10 μm. (b) TEM of CNF-800. Scale bar, 1 μm.
Fig. S5 HRTEM of CDs.
Fig. S6 FTIR spectra of monomer, CMP and CNF-750. The peaks at 723/750 cm$^{-1}$ and 724/752 cm$^{-1}$ in monomer and CMP samples can be designated to the vibrational bands of C–H bonds of ortho-bisubstituted carbazole ring. The FTIR peaks at 828 cm$^{-1}$ in monomer sample and 829 cm$^{-1}$ in CMP are attributed to the para-disubstituted phenyl ring.
Fig. S7 a) C 1s and b) N 1s of the CMP, c) C 1s and d) N 1s of the CNF-750. The deconvolution of C 1s signal reveals three components centered at 284.5, 285.0 and 288.2 eV (Fig. S7a), which corresponds to C=C, C-C, and C-N (sp3), respectively. After annealing at 750 °C, the peak at 284.5 eV corresponds to the graphite-like sp2 carbon (Fig. S7c), indicating most of carbon atoms are arranged in a conjugated honeycomb lattice.1 The high content of graphitic-like sp2 carbon has contributed to the increase of electrical conductivity. The small peaks at 285.0, 286.1 and 288.5 eV are attributed to C-C, C-N (sp2) and C-N (sp3) (Fig. S7c), respectively. There are two peaks at 400.4 eV and 401.2 eV, which represent graphitic-N and quaternary N (Fig. S7b), respectively. As shown in Fig. S7d, the major part of nitrogen is allocated between pyrrolic-N (at 399.2 eV) and graphitic-N (at 400.8 eV).2
Fig. S8 AFM images of CNF grown on SiO$_2$/Si substrates under different annealing temperature. (a) 400 ºC, (b) 600 ºC, (c) 700 ºC and (d) 800 ºC, respectively. Scale bar, 1 µm.
Fig. S9 Optical micrograph of the FET device. Scale bar, 50 μm.
Fig. S10 Normalized UV-vis absorption spectra of CDs.

Notes and references