Supporting Information

Synthesis and evaluation of cytotoxic activity and pro-apoptotic effects of novel spiro-4H-pyran derivatives on A549 cancer cells

Fatemeh Safari,* Hajar Hosseini, Mohammad Bayat* and Ashkan Ranjbar

Chemistry Department, Imam Khomeini International University, Qazvin, Iran

(Phone: +98 281 33780040; fax: +98 281 33780040; e-mail: bayat_mo@yahoo.com, m.bayat@sci.ikiu.ac.ir)

The Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title, author’s name, address and table of contents</td>
<td>1</td>
</tr>
<tr>
<td>Experimental Section; General remarks</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1. Structure of all products 5</td>
<td>3</td>
</tr>
<tr>
<td>1H and 13C NMR and IR and Mass spectrums of 5a</td>
<td>4-7</td>
</tr>
<tr>
<td>1H and 13C NMR and Mass spectrums of 5b</td>
<td>8-10</td>
</tr>
<tr>
<td>1H and 13C NMR and Mass spectrums of 5c</td>
<td>11-13</td>
</tr>
<tr>
<td>1H and 13C NMR and IR and Mass and D$_2$O exchange spectrums of 5d</td>
<td>14-17</td>
</tr>
<tr>
<td>1H and 13C NMR and IR and Mass spectrums of 5e</td>
<td>18-21</td>
</tr>
<tr>
<td>1H and 13C NMR and IR and Mass spectrums of 5f</td>
<td>22-25</td>
</tr>
<tr>
<td>1H and 13C NMR and IR and Mass spectrums of 5g</td>
<td>26-29</td>
</tr>
<tr>
<td>1H and 13C NMR and IR and Mass spectrums of 5h</td>
<td>30-33</td>
</tr>
<tr>
<td>1H and 13C NMR and IR and Mass spectrums of 5i</td>
<td>34-37</td>
</tr>
<tr>
<td>1H and 13C NMR and IR spectrums of 5j</td>
<td>38-40</td>
</tr>
</tbody>
</table>
Experimental Section

General remarks:

Melting points were measured on an Electrothermal 9100 apparatus. Mass spectra were recorded with an Agilent 5975C VL MSD with Triple-Axis Detector operating at an ionization potential of 70 eV. 1H and 13C NMR spectra were measured (DMSO) with a Bruker DRX-300 AVANCE spectrometer at 300 and 75 MHz, respectively. IR spectra were recorded on a Bruker Tensor 27, $\bar{\nu}$ in cm$^{-1}$. All NMR spectra at room temperature were determined in DMSO-d_6. Chemical shifts are reported in parts per million (δ) downfield from an internal tetramethylsilane reference. Coupling constants (J values) are reported in Hertz (Hz), and spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). All chemicals were purchased from Merck or Aldrich and were used without further purification.
Figure 1. Structure of all products 5

The structures of all products 5a-j were deduced from their 1H NMR, and 13C NMR, IR and Mass spectra (see the Supporting Information)
\[1^1H \text{ NMR of 5a} \]
13C NMR of 5a
IR of 5a
Scan 479 (2.917 min): 30000044.D

MS of 5a
1H NMR of 5b
13C NMR of 5b
Scan 299 (2.047 min): 30000051.D

MS of 5b
\(^1\text{H NMR of 5c}\)
13C NMR of 5c
Scan 179 (1.677 min): 30000344.D

MS of 5c
1H NMR of 5d

1H-NMR with D2O

DMSO

EtOH

Current Data Parameters
NAME: H.Honey
EXPNO: 237
PROCNO: 1
F2 - Acquisition Parameters
Date: 20170521
Time: 13:40
INSTRUM: spect
PROBHD: 5 mm BBO BD-II
PULPROG: SE
TD: 16384
SOLVENT: DMSO
NS: 6
DS: 0
SWH: 5995.204 Hz
FIDRES: 0.365918 Hz
AQ: 1.3664756 sec
RG: 143.7
DW: 83.400 usec
TE: 6.000 usec
D1: 300.0 K
D1: 6.00000000 sec

CHANNEL 1
H1
PL: 9.00 usec
PL1: 3.00 db
SFO1: 299.8729987 MHz

F2 - Processing parameters
SF: 22768
SF: 299.8700013 MHz
WDW: 0.30 Hz
LB: 0
UC: 0
PC: 1.00
13C NMR of 5d
IR of 5d
Scan 384 (2.374 min): 30000043.D

Scn 384 (2.374 min): 30000043.D

MS of 5d

m/z->

Abundance
1H NMR of 5e
13C NMR of 5e
IR of 5e
Scan 475 (2.894 min): 30000047.D

MS of 5e
1H NMR of 5f
13C NMR of 5f
MS of 5f
13C NMR of 5g
IR of 5g
1H NMR of 5h
13C NMR of 5h
IR of 5h
1H NMR of 5i
13C NMR of 5i
IR of 5i
MS of 5i
1H NMR of 5j
13C NMR of 5j
IR of 5j