Supporting Information

Hollow Cu-doped NiO microspheres as anode materials with enhanced lithium storage performance

Qiwen Hu,a Wenyao Li*,a Dina Ibrahim Abouelamaiem,b Chaoting Xu,c Haishun Jiang,a Weihua Han*d and Guanjie He*b

a School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
b Materials Chemistry Centre, Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
c State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
d School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

E-mail: liwenyao314@gmail.com; guanjie.he.14@ucl.ac.uk; hanwh@lzu.edu.cn

Fig. S1 Low magnification SEM images of (a) NiO and (b) Cu-doped NiO.
Fig. S2 EDS pattern of Cu-doped NiO.

Fig. S3 First three consecutive CV curves of Cu-doped NiO at 0.1 mV s$^{-1}$ scan rate.
Fig. S4 First three consecutive CV curves of NiO at 0.1 mV s\(^{-1}\).

Fig. S5 Galvanostatic discharge and charge profiles of the 1\(^{st}\), 2\(^{nd}\) and 3\(^{rd}\) cycles of NiO at a current density of 100 mA g\(^{-1}\),