Supplementary material for:

Isolation and identification of an antioxidant collagen peptide from skipjack tuna (*Katsuwonus pelamis*) bone

Ding Ding, **Bowie Du**, **Chao Zhang**, **Fakhar Zaman**, **Yaqin Huang**

Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China.

*Corresponding Author:
Tel: +86-10-64438266; Fax: +86-10-64438266;
E-mail address: huangyq@mail.buct.edu.cn

*These authors contributed equally to this work and should be considered co-first authors.
The degree of hydrolysis, enzymolysis conditions and antioxidant activities of skipjack tuna bone collagen hydrolysates. Results are reported as mean values ± SD.

<table>
<thead>
<tr>
<th>Collagen peptide</th>
<th>Protease*</th>
<th>DH (%)</th>
<th>pH</th>
<th>T(°C)</th>
<th>Reaction Time (h)</th>
<th>DPPH radical scavenging activity IC₅₀ (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STCH-TC</td>
<td>TC</td>
<td>16.28±0.074</td>
<td>8.0</td>
<td>40</td>
<td>2</td>
<td>4.211±0.11ᵃ</td>
</tr>
<tr>
<td>STCH-T+C</td>
<td>T+C</td>
<td>15.29±0.074</td>
<td>8.0</td>
<td>40</td>
<td>2+2</td>
<td>5.549±0.07ᵇ</td>
</tr>
<tr>
<td>STCH-C+T</td>
<td>C+T</td>
<td>15.35±0.028</td>
<td>8.0</td>
<td>40</td>
<td>2+2</td>
<td>5.428±0.29ᵇ</td>
</tr>
</tbody>
</table>

* In this work, E:S (E represents enzyme, and S represents substrate) ratio for trypsin and chymotrypsin is 0.5 % (w/w) and 0.1 % (w/w), respectively.
Fig. S1 Identification of the amino acid sequence using MALDI-TOF/TOF mass spectrometry. (A) SSGPVPGMGPMGPR; (B) GEQGSTGPAGF; (C) GFPGER.
Fig. S2 Antioxidant activities of the GSH. (A) The GSH (0-1.0mM) was used as the standard of DPPH radical; (B) The GSH (0-1.0mM) was used as the standard of superoxide radical; (C) The GSH (0-0.4mM) was used as the standard of ABTS radical.
Fig. S3 The MALDI-TOF/TOF mass spectrometry of SSGPPVPGMGPMGPR after reaction with DPPH radical.
Fig.S4 Effects of the peptides on cytotoxicity in HepG2 cells.
Fig. S5 The time evolution of the potential energy of the system including one peptide of SSGPPVPGMGPMGPR and one DPPH radical.