Supporting Information

Percolation analysis of the electrical conductive network in a polymer nanocomposites by nanorod functionalization

Ruibin Ma, Guangyao Mu, Huan Zhang, Jun Liu, Yangyang Gao, Xiuying Zhao, Liqun Zhang

1 Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, China
2 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, China
3 Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, China

* Corresponding author: gaoyy@mail.buct.edu.cn or zhaoxy@mail.buct.edu.cn or zhanglq@mail.buct.edu.cn
Fig. S1 The distribution of A and B beads in each nanorod (NR) at different NR functionalization degree λ_A. The red spheres denote the A beads and the blue spheres denote the B beads.

Fig. S2(a) The coordination number and (b) snapshots for different nanorods (NR) functionalization degree λ_A, where the polymer chains are neglected for clarity and the red spheres denote the NRs. ($T^* = 1.0, \varphi = 4.0\%$)
Fig. S3(a) The local order structure $\langle P_z(r) \rangle$ of the nanorod (NR) aggregation and (b) the probability distribution P_n of the nearest neighbor NRs surrounding one NR at a separation closer than 1.5σ (Nnum) for different NR functionalization degree λ_A. $(T^*=1.0$, $\varphi=4.0\%$, $\tilde{Y}=0.0)$
Fig. S4 RDF of nanorods for different interaction ε_{PA} between polymer and A beads. ($\bar{T}=1.0$, $\varphi=4.0\%$)
Fig. S5(a) The local order structure \(< P_z(r) >\) of the nanorod (NR) aggregation and (b) the probability distribution \(P_N\) of the nearest neighbor NRs surrounding one NR at a separation closer than \(1.5\sigma\) (Nnum) for different interaction \(\varepsilon_{pd}\) between polymer and A beads. \((T^* = 1.0, \varphi = 0.0, \gamma = 0.0)\)

Fig. S6 Change of the main cluster size \(C_n\) as a function of the nanorod (NR) volume fraction \(\varphi\) for different interaction \(\varepsilon_{pd}\) between polymer and A beads. \((T^* = 1.0, \gamma = 0.0)\)
Fig. S7 RDF of nanorods (NR) for different NR functionalization degree λ_{Λ}. ($T^*=1.0$, $\varphi=4.0\%$, $\dot{\gamma}=0.1$)
Fig. S8(a) The local order structure $< P_2(r) >$ of the nanorod (NR) aggregation and (b) the probability distribution (P_N) of the nearest neighbor NRs surrounding one NR at a separation closer than 1.5σ (Nnum) for different NR functionalization degree (λ_A). ($T^*=1.0$, $\varphi=4.0\%$, $\dot{\gamma}=0.1$)

Fig. S9 The orientation degree $< P_2 >$ of the nanorods (NR) with respect to the NR functionalization degree (λ_A). ($T^*=1.0$, $\varphi=4.0\%$, $\dot{\gamma}=0.1$)
Fig. S10 Change of the main cluster size C_n as a function of the nanorod (NR) volume fraction φ for different NR functionalization degree (λ_A). ($T^* = 1.0$, $\dot{\gamma} = 0.1$)

Fig. 11 The percolation threshold φ_c with respect to the shear rate $\dot{\gamma}$. ($T^* = 1.0$, $\lambda_A = 0.1$)
Fig. S12 Change of the main cluster size C_n as a function of the nanorod volume fraction φ for different shear rate $\dot{\gamma}$. ($T^*=1.0, \lambda_d=0.1$)

Fig. S13 the NR orientation $\langle P_z \rangle$ with respect to the shear rate $\dot{\gamma}$. ($T^*=1.0, \varphi=4.0\%, \lambda_d=0.1$)
Fig. S14 RDF of nanorods with respect to the shear rate $\dot{\gamma}$. ($T^*=1.0$, $\varphi=4.0\%$, $\lambda_u=0.1$)

Table S1 Nonbonded interaction parameters used in this work.

<table>
<thead>
<tr>
<th>Interaction types</th>
<th>ε_{ij}^a (ε)</th>
<th>r_{cutoff}^b (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*-PB*</td>
<td>1.0</td>
<td>$2 \times 2^{1/6}$</td>
</tr>
<tr>
<td>PB*-NRu</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>PB*-NRf</td>
<td>1.0-5.0</td>
<td>2.5</td>
</tr>
<tr>
<td>NRu-NRu</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>NRu-NRf</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>NRf-NRf</td>
<td>1.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

a ε_{ij} the energy parameters between interacting sites i and j.

b r_{cutoff} is the cut-off distance.

c PB is the bead on polymer chain.

d NR is the unfunctionalized bead on nanorod.

e NR is the functionalized bead on nanorod.