Support information for

Two AIEE-active α-cyanostilbene derivatives containing BF$_2$ unit for detecting explosive picric acid in aqueous medium

Shengmei Guoa, Jingting Pana,b, Jianyan Huanga, Lin Konga, Jiaxiang Yang*a

Contents:

1. Photophysical data in different polar solvents.

2. UV-Vis spectra (A) and fluorescence spectra (B) of the compound TPA-B in different solvents.

3. Lippert-Mataga diagram of compounds TPA-B and TPA-BN.

4. UV-Vis spectra of TPA-B (a) and TPA-BN (b) in THF/H$_2$O mixtures.

5. PL emission (a) spectra changes of TPA-B in THF/H$_2$O mixtures.

6. Photophysical properties of PA detection for compound TPA-BN.

7. UV-vis absorption spectra of PA and Normalized Fluorescence of TPA-B and TPA-BN

8. Performance comparison of organoboron chemosensors reported for PA.
Fig. S1. UV-Vis spectra (A) and fluorescence spectra (B) of the compound TPA-B in different solvents.

Fig. S2. Lippert-Mataga diagram of compounds TPA-B and TPA-BN.
Fig. S3 UV-Vis spectra of TPA-B (a) and TPA-BN (b) in THF/water mixtures with different water volume fractions.

Fig. S4. PL emission (a) spectra changes of TPA-B ($5.0 \times 10^{-5} \text{ M}$) in THF/\text{H}_2\text{O} mixtures with different water volume fractions; Plots of fluorescence intensity determined in THF-H_2O solutions versus water fractions (b). Insets: photos of TPA-B in THF-H_2O mixtures ($f_w = 0\%$, 30\% and 99\%) taken under 365 nm UV lamp.

Fig. S5 The particle size analysis of TPA-B (A) in THF-\text{H}_2\text{O} mixtures ($f_w = 30\%$) and TPA-BN (B) in THF-\text{H}_2\text{O} mixtures ($f_w = 80\%$).
Fig. S6 (a) FL emission spectra obtained for different analytes (100 pm); (b) quenching percentages of compound TPA-B (10 mM) with different analytes (100 ppm) in THF/water (v/v=2:8) mixtures before (black) and after (red) the addition of 100 ppm. a: p-MP, b: o-NP, c: TNT, d: m-DOB, e: p-NP, f: p-DOB, g: PhOH, h: p-NA, i: NT, j: NB; (c) FL spectra of TPA-B in THF/water (v/v = 7 : 3) containing different amounts of PA; (d) corresponding Stern-Volmer plot for PA detection. Inset: Stern-Volmer plot obtained at a lower concentration of PA.

Fig. S7 The linear relationship of TPA-B (a) and TPA-BN (b) between the fluorescence intensity and the PA concentration.
<table>
<thead>
<tr>
<th>Compounds</th>
<th>Detecting system</th>
<th>K_{sv}/M^{-1}</th>
<th>Limit of detection (LOD)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure DCM solution</td>
<td></td>
<td>0.5×10^4</td>
<td>21.5×10^{-6}</td>
<td>[58]</td>
</tr>
<tr>
<td>test paper (toluene solution)</td>
<td></td>
<td>2.1×10^6</td>
<td>49.8×10^{-9}</td>
<td>[56]</td>
</tr>
<tr>
<td>In CH$_3$CN/H$_2$O solution</td>
<td></td>
<td>9.2×10^6</td>
<td>35.8×10^{-8}</td>
<td>[59]</td>
</tr>
<tr>
<td>Pure THF solution</td>
<td></td>
<td>0.7×10^4</td>
<td>/</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0×10^4</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>TPA-BN/TPA-B</td>
<td>THF/H$_2$O mixtures</td>
<td>1.28×10^4 / 1.07×10^4</td>
<td>1.26×10^{-6} / 1.51×10^{-6}</td>
<td>This work</td>
</tr>
</tbody>
</table>
Fig. S8. UV-vis absorption spectra of PA; Normalized Fluorescence of TPA-B and TPA-BN.