Supporting Information

Biological activity evaluation and action mechanism of chalcone derivatives containing thiophene sulfonate

Tao Guo, Rongjiao Xia, Mei Chen, Jun He, Shijun Su, Liwei Liu, Xiangyang Li, Wei Xue*

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China;

* Corresponding author: Wei Xue; e-mail: wxue@gzu.edu.cn (W. X.); Tel/Fax: 0086-851-88292090
Content

1. Antibacterial activity in vitro ...3
2. Antiviral activities in vivo ...3
3. Scanning electron microscopy ..4
4. Interaction studies between 2e, 2h, 2n and ningnanmycin with TMV-CP4
5. Molecular Docking study ...4
6. The physical properties of compounds 2a-2v5
7. The data of title compounds 2a–2v ..5
8. Spectrogram of title compounds 2a-2v ...12
1. Antibacterial activity in vitro

Antibacterial activities of the title compounds 2a-2v against Xanthomonas axonopodis pv. citri (Xac), Xanthomonas oryzae pv. oryzae (Xoo) and Ralstonia solanacearum (Rs) were evaluated by using the turbidimeter test in vitro, commercial agricultural antibacterial Bismuthiazol and Thiourea-Copper were used as control. The test compounds were dissolved in 150 µL of dimethylformamide and diluted with 0.1 % (v/v) Tween-20 to prepare two concentrations of 200 and 100 µg/mL. 1 mL of the liquid sample was added to the non-toxic nutrient broth (NB: 1.5 g of beef extract, 2.5 g of peptone, 0.5 g of yeast powder, 5.0 g of glucose and 500 mL of distilled water, pH 7.0–7.2) liquid medium in 4 mL tubes. Then, 40 µL of NB containing Xac was added to 5 mL of solvent NB containing the test compounds or bismuthiazol. The inoculated test tubes were incubated at (30±1) °C under continuous shaking at 180/min for 48 h. The culture growth was monitored spectrophotometrically by measuring the optical density at 595 nm (OD_{595}) and expressed as corrected turbidity. The relative inhibitory rate (I%) compared with a blank assay was calculated as follows: I% = (C_{tur}−T_{tur})/C_{tur}×100%. C_{tur}: the corrected turbidity value of bacterial growth on untreated NB; T_{tur}: the corrected turbidity value of bacterial growth on treated NB.

Similarly, the solvent of Xoo and Rs were SM (10.0 g of peptone, 5.0 g of glucose, 1.0 g of casein acid hydrolysate, 1000 mL of distilled water, pH 7.0–7.2). Several of the target compounds were tested against Xoo and Xac at five double-declining concentrations (100, 50, 25, 12.5 and 6.25 µg/mL), and their corresponding EC_{50} values were obtained via software SPSS 17.0. Each experiment was computed at least three times.

2. Antiviral activities in vivo

Curative activity of the title compounds against TMV in vivo

Growing N. tabacum L. leaves of the same age were selected. The leaves were inoculated with TMV (concentration of 6×10^{-3} mg/mL) by dipping and brushing the whole leaves, which had previously been scattered with silicon carbide. The leaves were then washed with water after inoculation for 0.5 h. The compound solution was smeared on the left side of the leaves, and the solvent was smeared on the right side as the control. The number of local lesions was counted and recorded 3–4 d after inoculation[38-40]. Three replicates were set up for each.

Protection activity of the title compounds against TMV in vivo

The compound solutions were smeared on the left side of the N. tabacum L. leaves, and the solvents were smeared on the right side as the control sample for growing N. tabacum L. leaves. After 12 h, crude TMV (concentration of 6×10^{-3} mg/mL) was inoculated on whole leaves at the same concentration on each side of the leaves, which were previously scattered with silicon carbide. After 0.5 h, the leaves were washed with water and then dried. The number of local lesions was recorded 3–4 d after inoculation. Three replicates were used for each compound[38-40]. The inhibitory rate (I%) of the compound was calculated according to the following formula: (I %)= (C_{num} − T_{num})/ C_{num}×100%. C_{num}: average local lesion number of control(not treated with compounds); T_{num}: average local lesion number smeared with drugs.

Inactivation activity of the title compounds against TMV in vivo

The virus was inhibited after it was mixed with a compound solution of the same volume for 30 min. The right side of the N. tabacum L. leaves was then inoculated with the solvent and virus mixture for control. All of the leaves were previously scattered with silicon carbide. The number of local lesions was recorded three to four days after the inoculation. Three replications were reproduced for each compound. The inhibition rates (I%) of the compounds were calculated according to the following formula: (I %) = (C_{num} − T_{num})/ C_{num}×100%. C_{num}: average local lesion number of control(not treated with compounds); T_{num}: average local lesion number smeared with drugs.
treated with compounds); \(T_{\text{num}} \): average local lesion number smeared with compounds.

3. Scanning electron microscopy

In this assay, 1.5 mL \emph{Xanthomonas axonopodis pv. citri} (Xac) cells incubated at the logarithmic phase were centrifuged and washed with PBS (pH = 7.1), and re-suspended in 1.5 mL of PBS buffer (pH = 7.1). After that, bacteria \emph{Xanthomonas axonopodis pv. citri} (Xac) was incubated with compound 2 at concentration of 50.0 \(\mu \text{g/mL} \), 100.0 \(\mu \text{g/mL} \), and an equivalent volume of DMSO (solvent control) for 4 h at room temperature. After incubation, these samples were washed 3 times with PBS (pH = 7.1). Subsequently, the bacterial cells were fixed for 8 h at 4°C with 2.5 % glutaraldehyde, and then dehydrated with graded ethanol series and pure tert-butanol (2 times with 10 min/time). Following dehydration, samples were freezing dried and coated with gold, and visualized using Nova Nano SEM 450.

4. Interaction studies between 2e, 2h, 2n and ningnanmycin with TMV-CP

The binding was calculated for MST Monolith NT. 115. A range of ligands from 0 \(\mu \text{M} \) to 5 \(\mu \text{M} \) were incubated with 0.5 \(\mu \text{M} \) of purified recombinant proteins for 5 min with a NT-647 dye and was used in the thermophoresis experiment at a final concentration of 20 nM. A 16 point dilution series was made for selected compounds in DMSO. Each compound dilution series was subsequently transferred to protein solutions in 10 mM Tris-HCl and 100 mM sodium chloride pH 7.5, 0.05% Tween-20. After a 15 min incubation of the labeled TMV-CP with each dilution point (1:1 mix) at room temperature, samples were filled into standard capillaries. Measurements were taken on a Monolith NT.115 microscale thermophoresis system under a setting of 20% LED and 40% IR laser. Laser on time was set at 30 s, and laser-off time was set at 5 min. The Kd values were calculated from the duplicate reads of three separate experiments using the mass action equation in the Nano Temper software.

5. Molecular Docking study

Molecule docking study were obtained by using DS-CDocking implemented in Discovery Studio (version 4.5). Through the UniProt database, we searching the coat protein subunit amino acid sequence of TMV. Using the protein BLAST server to search the template protein and homologies of TMV-CP sequence were aligned. Homology modeling of TMV-CP was constructed using Create Homology Models, which is a model integrated in Discovery Studio. Using Ramachandran plots evaluate the obtained models. The 3D structures of the compounds were carried out using the Sketching module and optimized by the Full Minimization module. During the docking process all parameters were default.
6. The physical properties of compounds 2a-2v

Table 1 The physical properties of compounds 2a-2v

<table>
<thead>
<tr>
<th>Compounds</th>
<th>R</th>
<th>Appearance</th>
<th>Yield /%</th>
<th>m.p./°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>Ph</td>
<td>Yellow solid</td>
<td>65</td>
<td>99.2-100.7</td>
</tr>
<tr>
<td>2b</td>
<td>4-Cl-Ph</td>
<td>Yellow solid</td>
<td>65</td>
<td>88.3-89.4</td>
</tr>
<tr>
<td>2c</td>
<td>2-Cl-Ph</td>
<td>Yellow solid</td>
<td>72</td>
<td>98.6-99.8</td>
</tr>
<tr>
<td>2d</td>
<td>3-Cl-Ph</td>
<td>Yellow solid</td>
<td>68</td>
<td>95.2-96.5</td>
</tr>
<tr>
<td>2e</td>
<td>2-F-Ph</td>
<td>Yellow solid</td>
<td>68</td>
<td>90.3-91.6</td>
</tr>
<tr>
<td>2f</td>
<td>3-F-Ph</td>
<td>Yellow solid</td>
<td>66</td>
<td>81.2-82.8</td>
</tr>
<tr>
<td>2g</td>
<td>4-F-Ph</td>
<td>Yellow solid</td>
<td>62</td>
<td>115.1-116.6</td>
</tr>
<tr>
<td>2h</td>
<td>2-Br-Ph</td>
<td>Yellow solid</td>
<td>71</td>
<td>94.2-95.7</td>
</tr>
<tr>
<td>2i</td>
<td>3-Br-Ph</td>
<td>Yellow solid</td>
<td>74</td>
<td>94.2-95.4</td>
</tr>
<tr>
<td>2j</td>
<td>4-Br-Ph</td>
<td>Yellow solid</td>
<td>63</td>
<td>95.1-96.2</td>
</tr>
<tr>
<td>2k</td>
<td>2-Py</td>
<td>White solid</td>
<td>64</td>
<td>105.4-106.6</td>
</tr>
<tr>
<td>2l</td>
<td>3-NO₂-Ph</td>
<td>Yellow solid</td>
<td>63</td>
<td>86.2-87.7</td>
</tr>
<tr>
<td>2m</td>
<td>3-CH₃-Ph</td>
<td>White solid</td>
<td>56</td>
<td>87.2-88.0</td>
</tr>
<tr>
<td>2n</td>
<td>4-CH₃-Ph</td>
<td>Yellow solid</td>
<td>68</td>
<td>90.1-91.5</td>
</tr>
<tr>
<td>2o</td>
<td>3,4-di-OCH₃-Ph</td>
<td>Yellow solid</td>
<td>63</td>
<td>98.1-99.8</td>
</tr>
<tr>
<td>2p</td>
<td>2,4-di-Cl-Ph</td>
<td>Yellow solid</td>
<td>71</td>
<td>101.2-102.9</td>
</tr>
<tr>
<td>2q</td>
<td>3,4-di-Cl-Ph</td>
<td>Yellow solid</td>
<td>67</td>
<td>96.5-97.4</td>
</tr>
<tr>
<td>2r</td>
<td>C₆H₇-Ph</td>
<td>White solid</td>
<td>63</td>
<td>86.1-87.6</td>
</tr>
<tr>
<td>2s</td>
<td>2-Th</td>
<td>Yellow solid</td>
<td>72</td>
<td>105.2-106.4</td>
</tr>
<tr>
<td>2t</td>
<td>4-Py</td>
<td>Yellow solid</td>
<td>76</td>
<td>88.2-89.8</td>
</tr>
<tr>
<td>2u</td>
<td>3,4-di-CH₂-Ph</td>
<td>Yellow solid</td>
<td>58</td>
<td>98.1-99.9</td>
</tr>
<tr>
<td>2v</td>
<td>2-OCH₂-Ph</td>
<td>Yellow solid</td>
<td>75</td>
<td>87.2-88.7</td>
</tr>
</tbody>
</table>

7. The data of title compounds 2a–2v

![Data for 2a-2v](image)
4-cinnamoylphenyl thiophene-2-sulfonate(2a): Yellow solid, m.p. 99.2-100.7 °C, yield 65%. 1H NMR (400 MHz, DMSO-d6) δ 8.26 (dd, J = 5.0, 1.4 Hz, 1H, Ph-CH=), 8.23 (d, J = 8.8 Hz, 2H, Ar(4-O)-2,6-H), 7.95 (dd, J = 14.6, 3.6 Hz, 1H, Ph-C=CH), 7.92-7.89 (m, 2H, Ph-2,6-H), 7.88 (dd, J = 3.9, 1.3 Hz, 1H, Th-5-H), 7.78 (d, J = 15.6 Hz, 1H, Ph-3-H), 7.50-7.46 (m, 3H, Ph-5-H, Ph-4-H, Th-3-H), 7.32 (dd, J = 4.9, 3.9 Hz, 1H, Ar(4-O)-3-H), 7.29 (d, J = 8.8 Hz, 2H, Ar(4-O)-5-H, Th-4-H). 13C NMR (101 MHz, DMSO-d6) δ 188.38, 152.62, 145.08, 138.14, 137.37, 137.08, 135.00, 133.02, 131.29, 129.50, 129.41, 129.12, 122.82, 122.14. HRMS (m/z): Calcd. For C19H14O4S2 [M + H]+ 371.0406, meas. 371.0399.

Data for (E)-4-(3-(4-chlorophenyl)acryloyl)phenyl thiophene-2-sulfonate(2b): Yellow solid, m.p. 88.3-89.4 °C, yield 65%. 1H NMR (400 MHz, DMSO-d6) δ 8.27 (dd, J = 5.0, 1.4 Hz, 1H, Ar-CH=), 8.23 (d, J = 8.8 Hz, 2H, Ar(4-O)-2,6-H), 8.01-7.95 (m, 2H, Ar(4-Cl)-2,6-H), 7.94 (s, 1H, Ar(4-Cl)-3-H), 7.87 (dd, J = 3.9, 1.4 Hz, 1H, Ar(4-Cl)-5-H), 7.75 (d, J = 15.6 Hz, 1H, Ar-C=CH), 7.54 (d, J = 8.5 Hz, 2H, Th-5-H, Th-3-H), 7.32 (dd, J = 4.9, 3.9 Hz, 1H, Ar(4-O)-3-H), 7.28 (d, J = 8.8 Hz, 2H, Ar(4-O)-5-H, Th-4-H). 13C NMR (101 MHz, DMSO-d6) δ 188.26, 152.66, 143.58, 138.19, 137.40, 136.95, 135.77, 133.98, 132.97, 131.24, 131.21, 129.45, 129.14, 122.84. HRMS (m/z): Calcd. For C19H13ClO4S2 [M + H]+ 405.0016, meas. 405.0006.

Data for (E)-4-(3-(3-chlorophenyl)acryloyl)phenyl thiophene-2-sulfonate(2d): Yellow solid, m.p. 95.2-96.5 °C, yield 68%. 1H NMR (400 MHz, DMSO-d6) δ 8.28-8.25 (m, 2H, Ar-CH=), 8.11 (s, 1H, Ar(4-O)-6-H), 8.04 (d, J = 15.6 Hz, 1H, Th-5-H), 7.60-7.56 (m, 1H, Ar(2-Cl)-6-H), 7.52-7.44 (m, 2H, Th-3-H), 7.34-7.29 (m, 2H, Ar(2-Cl)-5-H), 7.30 (d, J = 8.8 Hz, 2H, Ar(4-O)-3-H), 7.30 (d, J = 8.8 Hz, 2H, Ar(4-O)-3-H). 13C NMR (101 MHz, DMSO-d6) δ 188.19, 152.77, 139.45, 138.13, 137.36, 136.76, 134.97, 133.02, 132.63, 132.57, 131.32, 130.51, 129.10, 128.13, 124.79, 122.86. HRMS (m/z): Calcd. For C19H13ClO4S2 [M + H]+ 405.0016, meas. 405.0007.
7.88 (dd, J = 3.9, 1.4 Hz, 1H, Ar(3-Cl)-6-H), 7.84 (d, J = 7.1 Hz, 1H, Ar(3-Cl)-5-H), 7.74 (d, J = 15.6 Hz, 1H, Ar(3-Cl)-3-H), 7.51 (dd, J = 6.5, 4.5 Hz, 2H, Ar(3-Cl)-2-H, Th-3-H), 7.32 (dd, J = 5.0, 3.9 Hz, 1H, Ar(4-O)-3-H), 7.29 (d, J = 8.8 Hz, 2H, Ar(4-O)-5-H, Th-4-H). 13C NMR (101 MHz, DMSO-d_6) δ 188.46, 152.98, 143.54, 138.40, 137.61, 137.11, 134.54, 133.26, 131.56, 131.04, 129.37, 128.91, 128.74, 123.85, 123.07. HRMS (m/z): Calcd. For C$_{19}$H$_{13}$ClO$_4$S$_2$ [M + H]$^+$ 405.0016, meas. 405.0009.

Data for

(E)-4-(3-(2-fluorophenyl)acryloyl)phenyl thiophene-2-sulfonate(2e): Yellow solid, m.p. 90.3-91.6 °C, yield 68%. 1H NMR (400 MHz, DMSO-d_6) δ 8.27 (dd, J = 5.0, 1.4 Hz, 1H, Ar-CH=), 8.22 (dd, J = 8.8 Hz, 2H, Ar(4-O)-2,6-H), 8.17-8.10 (m, 1H, Th-5-H), 7.99 (d, J = 15.7 Hz, 1H, Ar-C=CH), 7.90-7.87 (m, 2H, Ar(2-F)-6,3-H), 7.54 (tdd, J = 7.2, 5.5, 1.7 Hz, 1H, Ar(2-F)-4-H), 7.51 (dd, J = 6.5, 4.5 Hz, 2H, Ar(2-F)-2-H, Th-3-H), 7.30 (d, J = 8.9 Hz, 2H, Ar(2-F)-5-H, Th-4-H). 13C NMR (101 MHz, DMSO-d_6) δ 188.21, 162.68, 160.18, 152.73, 138.13, 137.36, 136.81, 136.09, 133.38, 133.02, 131.24, 129.61, 129.59, 129.10, 125.44, 125.41, 124.18, 124.14, 122.87, 122.68, 122.57, 116.68, 116.46. 19F NMR (376 MHz, DMSO-d_6) δ -116.10. HRMS (m/z): Calcd. For C$_{19}$H$_{13}$FO$_4$S$_2$ [M + H]$^+$ 389.0312, meas. 389.0307.

Data for

(E)-4-(3-(3-fluorophenyl)acryloyl)phenyl thiophene-2-sulfonate(2f): Yellow solid, m.p. 81.2-82.8 °C, yield 66%. 1H NMR (400 MHz, DMSO-d_6) δ 8.26 (s, 2H, Ar-CH=, Ar(4-O)-2-H), 8.24 (s, 1H, Ar(4-O)-6-H), 8.02 (d, J = 15.6 Hz, 1H, Ar-C=CH), 7.89 (d, J = 1.4 Hz, 1H, Th-5-H), 7.88 (dd, J = 3.9, 1.4 Hz, 1H, Ar(3-F)-6-H), 7.74 (d, J = 15.6 Hz, 1H, Ar(3-F)-5-H), 7.72 (d, J = 7.8 Hz, 1H, Th-3-H), 7.55-7.48 (m, 1H, Ar(4-O)-3-H), 7.34-7.31 (m, 2H, Ar(4-O)-5-H, Th-4-H), 7.29 (d, J = 8.8 Hz, 2H, Ar(3-F)-4-H, Ar(3-F)-2-H). 13C NMR (101 MHz, DMSO-d_6) δ 188.26, 164.16, 161.74, 152.62, 143.84, 138.14, 137.37, 136.88, 133.01, 131.94, 131.85, 131.72, 131.69, 131.19, 129.12, 122.81, 122.02, 122.00, 116.56, 116.34. 19F NMR (376 MHz, DMSO-d_6) δ -109.62. HRMS (m/z): Calcd. For C$_{19}$H$_{13}$FO$_4$S$_2$ [M + H]$^+$ 389.0312, meas. 389.0305.

Data for

(E)-4-(3-(4-fluorophenyl)acryloyl)phenyl thiophene-2-sulfonate(2g): Yellow solid, m.p. 115.1-116.6 °C, yield 62%. 1H NMR (400 MHz, DMSO-d_6) δ 8.26 (dd, J = 5.0, 1.4 Hz, 1H, Ar-C=CH), 8.22 (dd, J = 8.8 Hz, 2H, Ar(4-O)-2,6-H), 8.02 (d, J = 15.6 Hz, 1H, Ar(4-O)-3-H), 7.94-7.89 (m, 1H, Th-5-H), 7.88 (dd, J = 3.9, 1.4 Hz, 1H, Ar(3-F)-6-H), 7.77 (d, J = 7.8 Hz, 1H, Th-3-H), 7.55-7.48 (m, 1H, Ar(4-O)-3-H), 7.35-7.31 (m, 2H, Ar(4-F)-2,6-H), 7.30 (d, J = 1.9 Hz, 1H, Ar(4-O)-3-H), 7.28 (d, J = 8.8 Hz, 2H, Ar(4-O)-5-H, Th-4-H). 13C NMR (101 MHz, DMSO-d_6) δ 188.28, 165.23, 162.76, 152.62, 143.84, 138.14, 137.37, 137.05, 133.01, 131.94, 131.85, 131.72, 131.69, 131.19, 129.12, 122.81, 122.02, 122.00, 116.56, 116.34. 19F NMR (376 MHz, DMSO-d_6) δ -109.62. HRMS (m/z): Calcd. For C$_{19}$H$_{13}$FO$_4$S$_2$ [M + H]$^+$ 389.0312, meas. 389.0305.
Data for (E)-4-(3-(2-bromophenyl)acryloyl)phenyl thiophene-2-sulfonate (2h):
Yellow solid, m.p. 94.2-95.7 °C, yield 62%. ¹H NMR (400 MHz, DMSO-d₆) δ 8.27 (dd, J = 5.0, 1.4 Hz, 1H, Ar-CH=), 8.26-8.23 (m, 2H, Ar(4-O)-2,6-H), 8.21 (dd, J = 7.9, 1.5 Hz, 1H, Th-5-H), 8.01-7.93 (m, 2H, Ar(2-Br)-3-H, Ar-C=CH), 7.88 (dd, J = 3.9, 1.4 Hz, 1H, Ar(2-Br)-5-H), 7.77-7.73 (m, 1H, Ar(2-Br)-4-H), 7.53-7.48 (m, 1H, Ar(2-Br)-6-H), 7.43-7.38 (m, 1H, Th-3-H), 7.33 (dd, J = 4.0, 2.9 Hz, 1H, Ar(4-O)-3-H), 7.30 (d, J = 8.8 Hz, 2H, Ar(4-O)-5-H, Th-4-H). ¹³C NMR (101 MHz, DMSO-d₆) δ 188.19, 152.77, 142.22, 138.16, 137.38, 136.76, 134.23, 133.79, 133.00, 132.82, 129.30, 128.69, 126.01, 124.97, 122.87. HRMS (m/z): Calcd. For C₁₉H₁₃BrO₄S₂ [M + H]+ 448.9511, meas. 448.9506.

Data for (E)-4-(3-(3-bromophenyl)acryloyl)phenyl thiophene-2-sulfonate (2i):
Yellow solid, m.p. 94.2-95.4 °C, yield 74%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (t, J = 7.6 Hz, 1H, Ar-CH=), 8.00 (d, J = 8.7 Hz, 1H, Ar(4-O)-2-H), 7.82-7.69 (m, 3H, Ar(4-O)-6-H, Ar-C=CH, Th-5-H), 7.62 (dd, J = 3.7, 1.1 Hz, 1H, Ar(3-Br)-6-H), 7.57-7.50 (m, 2H, Ar(3-Br)-2-H, Ar(3-Br)-4-H), 7.49-7.36 (m, 2H, Ar(3-Br)-5-H, Th-3-H), 7.30 (td, J = 7.9, 2.6 Hz, 1H, Ar(4-O)-3-H), 7.20 (d, J = 8.7 Hz, 1H, Ar(4-O)-5-H), 7.15-7.10 (m, 1H, Th-4-H). ¹³C NMR (101 MHz, CDCl₃) δ 188.59, 154.34, 152.78, 143.75, 143.38, 135.83, 135.11, 130.91, 130.58, 130.56, 130.34, 127.78, 127.42, 127.38, 122.60, 122.51, 122.02. HRMS (m/z): Calcd. For C₁₉H₁₃BrO₄S₂ [M + H]+ 448.9511, meas. 448.9508.

Data for (E)-4-(3-(4-bromophenyl)acryloyl)phenyl thiophene-2-sulfonate (2j):
Yellow solid, m.p. 95.1-96.2 °C, yield 63%. ¹H NMR (400 MHz, DMSO-d₆) δ 8.25 (dd, J = 5.0, 1.4 Hz, 1H, Ar-CH=), 8.21 (d, J = 8.8 Hz, 2H, Ar(4-O)-2,6-H), 7.97 (d, J = 15.6 Hz, 1H, Ar(4-Br)-3-H), 7.88-7.85 (m, 3H, Ar(4-O)-6-H, Ar-C=CH, Th-5-H), 7.62 (dd, J = 3.7, 1.1 Hz, 1H, Ar(3-Br)-6-H), 7.57-7.50 (m, 2H, Ar(3-Br)-2-H, Ar(3-Br)-4-H), 7.49-7.36 (m, 2H, Ar(3-Br)-5-H, Th-3-H), 7.31 (dd, J = 5.0, 3.9 Hz, 1H, Ar(4-Br)-3-H), 7.28 (d, J = 8.8 Hz, 2H, Ar(4-O)-5-H, Th-4-H). ¹³C NMR (101 MHz, DMSO-d₆) δ 187.27, 151.59, 142.63, 137.05, 136.31, 135.87, 135.11, 130.91, 130.58, 130.56, 130.34, 127.78, 127.42, 127.38, 122.60, 122.51, 122.02. HRMS (m/z): Calcd. For C₁₉H₁₃BrO₄S₂ [M + H]+ 448.9511, meas. 448.9506.

Data for (E)-4-(3-(pyridin-2-yl)acryloyl)phenyl thiophene-2-sulfonate (2k):
White solid, m.p. 105.4-106.6 °C, yield 64%. ¹H NMR (400 MHz, DMSO-d₆) δ 8.70 (dd, J = 5.9, 2.5 Hz, 1H, Py-3-H), 8.27 (dd, J = 5.0, 1.4 Hz, Ar-CH=), 8.02-7.92 (m, 2H, Ar(4-O)-2,6-H), 7.97 (d, J = 15.6 Hz, 1H, Ar(4-O)-3-H), 7.68 (d, J = 8.5 Hz, 2H, Ar(4-O)-5-H, Th-4-H). ¹³C NMR (101 MHz, DMSO-d₆) δ 188.27, 151.59, 142.63, 137.05, 136.31, 135.87, 133.20, 131.89, 131.32, 130.31, 130.16, 128.08, 123.63, 121.81, 121.77. HRMS (m/z): Calcd. For C₁₉H₁₃BrO₄S₂ [M + H]+ 448.9511, meas. 448.9506.
Hz, 1H, Py-C=CH), 8.17 (d, J = 8.8 Hz, 2H, Py-CH=, Ar(4-O)-2-H), 8.13 (d, J = 15.4 Hz, 1H, Ar(4-O)-6-H), 7.93 (dd, J = 6.5, 1.4 Hz, 2H, Th-5-H, Py-6-H), 7.90-7.87 (m, 1H, Py-5-H), 7.74 (d, J = 15.4 Hz, 1H, Py-4-H), 7.46 (ddd, J = 6.5, 4.8, 2.5 Hz, 1H, Th-3-H), 7.33 (dd, J = 3.6, 2.5 Hz, 1H, Ar(4-O)-3-H), 7.30 (d, J = 8.9 Hz, 2H, Ar(4-O)-5-H, Th-4-H). ¹³C NMR (101 MHz, DMSO-d₆) δ 188.77, 153.07, 152.71, 150.53, 144.04, 138.16, 137.70, 136.84, 133.01, 131.20, 129.12, 125.58, 125.45, 125.26, 122.95. HRMS (m/z): Calcd. For C₁₈H₁₃NO₄S₂ [M + H]⁺ 372.0359, meas. 372.0352.

Data for (E)-4-(3-(3-nitrophenyl)acryloyl)phenyl thiophene-2-sulfonate(2l):
Yellow solid, m.p. 86.2-87.7 °C, yield 63%. ¹H NMR (400 MHz, DMSO-d₆) δ 8.81 (s, 1H, Ar(3-NO₂)-2-H), 8.34 (d, J = 7.8 Hz, 1H, Ar-CH=), 8.28 (d, J = 1.9 Hz, 1H, Ar(3-NO₂)-4-H), 8.17 (d, J = 15.7 Hz, 1H, Ar-C=CH), 7.90-7.85 (m, 2H, Ar(3-NO₂)-5,6-H, Th-5-H), 7.76 (t, J = 7.9 Hz, 1H, Th-3-H), 7.32 (dt, J = 5.1, 2.5 Hz, 1H, Ar(4-O)-3-H), 7.29 (d, J = 8.8 Hz, 2H, Ar(4-O)-5,6-H, Th-4-H). ¹³C NMR (101 MHz, DMSO-d₆) δ 188.24, 152.80, 148.87, 142.46, 138.17, 137.39, 136.90, 136.74, 135.76, 133.00, 131.41, 130.84, 129.13, 125.31, 124.83, 123.55, 122.84. HRMS (m/z): Calcd. For C₁₉H₁₃NO₆S₂ [M + H]⁺ 416.0272, meas. 416.0257.

Data for (E)-4-(3-(m-tolyl)acryloyl)phenyl thiophene-2-sulfonate(2m): White solid, m.p. 87.2-88.0 °C, yield 56%. ¹H NMR (400 MHz, DMSO-d₆) δ 8.26 (dd, J = 5.0, 1.4 Hz, 1H, Ar-CH=), 8.22 (d, J = 8.8 Hz, 2H, Ar(4-O)-2,6-H), 7.92 (d, J = 15.6 Hz, 1H, Ar-C=CH), 7.87 (dd, J = 3.9, 1.4 Hz, 1H, Th-5-H), 7.77-7.70 (m, 2H, Ar(3-CH₃)-6-H, Ar(3-CH₃)-2-H), 7.67 (d, J = 7.5 Hz, 1H, Ar(3-CH₃)-5-H), 7.38-7.33 (m, 1H, Th-3-H), 7.33-7.29 (m, 2H, Ar(4-O)-3,5-H), 7.29-7.26 (m, 2H, Th-4-H, Ar(3-CH₃)-4-H), 2.36 (s, 3H, CH₃). ¹³C NMR (101 MHz, DMSO-d₆) δ 187.27, 151.53, 144.15, 137.59, 137.08, 136.31, 136.04, 133.85, 131.95, 130.96, 130.10, 128.65, 128.22, 128.05, 125.91, 121.73, 120.84, 20.27. HRMS (m/z): Calcd. For C₂₀H₁₆O₄S₂ [M + H]⁺ 385.0563, meas. 385.0554.

Data for (E)-4-(3-(p-tolyl)acryloyl)phenyl thiophene-2-sulfonate(2n): Yellow solid, m.p. 90.1-91.5 °C, yield 68%. ¹H NMR (400 MHz, DMSO-d₆) δ 8.26 (dd, J = 5.0, 1.4 Hz, 1H, Ar-CH=), 8.22 (d, J = 8.8 Hz, 2H, Ar(4-O)-2,6-H), 7.89 (dd, J = 10.4, 2.9 Hz, 1H, Ar-C=CH), 7.87 (d, J = 1.4 Hz, 1H, Ar(4-CH₃)-2-H), 7.80 (d, J = 8.1 Hz, 2H, Ar(4-CH₃)-6-H, Th-5-H), 7.74 (d, J = 15.5 Hz, 1H, Ar(4-CH₃)-3-H), 7.33-7.29 (m, 2H, Ar(4-CH₃)-5,6-H, Th-3-H), 7.29-7.27 (m, 2H, Ar(4-O)-3,5-H), 7.26 (d, J = 2.0 Hz, 1H, Th-4-H), 2.36 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 187.24, 151.49, 144.10, 140.37, 137.06, 136.30, 136.14, 131.98, 131.24, 130.06, 128.98, 128.49, 128.05, 121.72, 120.00, 20.53. HRMS (m/z): Calcd. For C₂₀H₁₆O₄S₂ [M + H]⁺ 385.0563, meas. 385.0553.
Data for

(E)-4-(3-(3,4-dimethoxyphenyl)acryloyl)phenyl thiophene-2-sulfonate(2o): Yellow solid, m.p. 98.1-99.8 °C, yield 63%. 1H NMR (400 MHz, DMSO-d_6) δ 8.26 (dd, $J = 5.0, 1.3$ Hz, 1H, Ar-CH=), 8.22 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-2,6-H), 7.87 (dd, $J = 3.8, 1.3$ Hz, 1H, Ar-C=CH), 7.83 (d, $J = 15.5$ Hz, 1H, Th-5-H), 7.73 (d, $J = 15.5$ Hz, 1H, Ar(3,4-di-OCH$_3$)-2-H), 7.56 (d, $J = 1.8$ Hz, 1H, Ar(3,4-di-OCH$_3$)-5-H), 7.40 (dt, $J = 6.5, 3.3$ Hz, 1H, Th-3-H), 7.32 (dd, $J = 4.9, 3.9$ Hz, 1H, Ar(3,4-di-OCH$_3$)-6-H), 7.03 (d, $J = 8.4$ Hz, 1H, Th-4-H), 3.85 (d, $J = 16.2$ Hz, 6H, OCH$_3$). 13C NMR (101 MHz, DMSO-d_6) δ 187.09, 151.41, 150.87, 148.41, 144.59, 137.07, 136.34, 136.30, 131.98, 129.99, 128.06, 126.76, 123.76, 121.68, 118.53, 110.88, 110.05, 55.13, 55.00. HRMS (m/z): Calcd. For C$_{21}$H$_{18}$O$_6$S$_2$ [M + H]$^+$ 431.0618, meas. 431.0610.

Data for

(E)-4-(3-(2,4-dichlorophenyl)acryloyl)phenyl thiophene-2-sulfonate(2p): Yellow solid, m.p. 101.2-102.9 °C, yield 71%. 1H NMR (400 MHz, DMSO-d_6) δ 8.27 (d, $J = 1.5$ Hz, 1H, Ar-CH=), 8.25 (s, 2H, Ar(4-O)-2,6-H), 8.23 (s, 1H, Ar(2,4-di-Cl)-3-H), 8.05-8.00 (m, 1H, Ar(2,4-di-Cl)-6-H), 7.96 (d, $J = 15.6$ Hz, 1H, Th-5-H), 7.88 (dd, $J = 3.9, 1.4$ Hz, 1H, Ar-C=CH), 7.55 (dd, $J = 8.5, 2.0$ Hz, 1H, Th-3-H), 7.32 (dd, $J = 5.0, 3.9$ Hz, 1H, Ar(4-O)-3-H), 7.29 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-5-H, Th-4-H). 13C NMR (101 MHz, DMSO-d_6) δ 186.96, 151.77, 137.10, 136.32, 135.60, 135.24, 134.69, 131.97, 130.58, 130.30, 129.27, 128.93, 128.06, 127.35, 124.24, 121.81. HRMS (m/z): Calcd. For C$_{19}$H$_{12}$Cl$_2$O$_4$S$_2$ [M + H]$^+$ 438.9627, meas. 438.9617.

Data for

(E)-4-(3-(3,4-dichlorophenyl)acryloyl)phenyl thiophene-2-sulfonate(2q): Yellow solid, m.p. 96.5-97.4 °C, yield 67%. 1H NMR (400 MHz, DMSO-d_6) δ 8.31 (d, $J = 1.9$ Hz, 1H, Ar-CH=), 8.28-8.24 (m, 2H, Ar(4-O)-2,6-H), 8.24-8.22 (m, 1H, Ar-C=CH), 8.06 (d, $J = 15.6$ Hz, 1H, Ar(3,4-di-Cl)-6-H), 7.91 – 7.86 (m, 2H, Th-5-H, Ar(3,4-di-Cl)-5-H), 7.7-7.70 (m, 2H, Ar(3,4-di-Cl)-2-H, Th-3-H), 7.31 (dd, $J = 5.0, 3.9$ Hz, 1H, Ar(4-O)-3-H), 7.28 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-5-H, Th-4-H). 13C NMR (101 MHz, DMSO-d_6) δ 187.06, 151.69, 141.12, 137.10, 136.32, 135.60, 135.24, 134.69, 131.97, 130.58, 130.30, 135.72, 134.83, 132.30, 131.92, 131.23, 130.42, 130.26, 129.63, 128.73, 128.06, 123.05, 121.77. HRMS (m/z): Calcd. For C$_{19}$H$_{12}$Cl$_2$O$_4$S$_2$ [M + H]$^+$ 438.9627, meas. 438.9622.

Data for

(E)-4-(3-(4-isopropylphenyl)acryloyl)phenyl thiophene-2-sulfonate(2r): White solid, m.p. 86.1-87.6 °C, yield 63%. 1H NMR (400 MHz, DMSO-d_6) δ 8.26 (dd, $J = 5.0, 1.3$ Hz, 1H, Ar-CH=), 8.22 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-2,6-H), 7.87 (dd, $J = 3.8, 1.3$ Hz, 1H, Ar-C=CH), 7.83 (d, $J = 15.5$ Hz, 1H, Th-5-H), 7.73 (d, $J = 15.5$ Hz, 1H, Ar(3,4-di-OCH$_3$)-2-H), 7.56 (d, $J = 1.8$ Hz, 1H, Ar(3,4-di-OCH$_3$)-5-H), 7.40 (dt, $J = 6.5, 3.3$ Hz, 1H, Th-3-H), 7.32 (dd, $J = 4.9, 3.9$ Hz, 1H, Ar(3,4-di-OCH$_3$)-6-H), 7.03 (d, $J = 8.4$ Hz, 1H, Th-4-H), 3.85 (d, $J = 16.2$ Hz, 6H, OCH$_3$). 13C NMR (101 MHz, DMSO-d_6) δ 187.09, 151.41, 150.87, 148.41, 144.59, 137.07, 136.34, 136.30, 131.98, 129.99, 128.06, 126.76, 123.76, 121.68, 118.53, 110.88, 110.05, 55.13, 55.00. HRMS (m/z): Calcd. For C$_{21}$H$_{18}$O$_6$S$_2$ [M + H]$^+$ 431.0618, meas. 431.0610.
(400 MHz, DMSO-d$_6$) δ 8.27 (dd, $J = 5.0, 1.4$ Hz, 1H, Ar-CH=), 8.23 (s, 1H, Ar(4-O)-2-H), 8.21 (s, 1H, Ar(4-O)-6-H), 7.88 (dt, $J = 5.2, 1.9$ Hz, 2H, Ar(4-C$_3$H$_7$)-2,6-H), 7.82 (d, $J = 8.2$ Hz, 2H, Ar-C=CH, Th-5-H), 7.75 (d, $J = 15.6$ Hz, 1H, Ar(4-C$_3$H$_7$)-3-H), 7.35 (s, 1H, Ar(4-C$_3$H$_7$)-5-H), 7.33 (s, 1H, Th-3-H), 7.32-7.31 (m, 1H, Ar(4-O)-3-H), 7.28 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-5-H, Th-4-H), 2.93 (dt, $J = 13.8, 6.9$ Hz, 1H, -CH=), 1.22 (d, $J = 6.9$ Hz, 6H, CH$_3$).

13C NMR (101 MHz, DMSO-d$_6$) δ 187.27, 151.51, 151.11, 144.12, 137.07, 136.30, 136.15, 132.00, 131.67, 130.07, 128.62, 128.05, 126.34, 121.74, 120.11, 32.88, 23.01. HRMS (m/z): Calcd. For C$_{22}$H$_{20}$O$_4$S$_2$ [M + H]$^+$ 413.0876, meas. 413.0867.

Data for (E)-4-(3-(thiophen-2-yl)acryloyl)phenyl thiophene-2-sulfonate(2s):

Yellow solid, m.p. 105.2-106.4 °C, yield 72%. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.25 (dd, $J = 5.0, 1.4$ Hz, 1H, Ar(4-O)-2-H), 8.16 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-6-H, Th-CH=), 7.93 (d, $J = 15.3$ Hz, 1H, Th-5-H), 7.86 (dd, $J = 3.9, 1.4$ Hz, 1H, Th-3-H), 7.82 (d, $J = 5.0$ Hz, 1H, Th-C=CH), 7.72 (d, $J = 3.5$ Hz, 1H, Th-5-H), 7.56 (d, $J = 15.3$ Hz, 1H, Th-4-H), 7.31 (dd, $J = 5.0, 3.9$ Hz, 1H, Th-3-H), 7.26 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-3,5-H), 7.21 (dd, $J = 5.0, 3.6$ Hz, 1H, Th-4-H). 13C NMR (101 MHz, DMSO-d$_6$) δ 186.79, 151.46, 138.99, 137.07, 136.72, 136.30, 135.95, 132.69, 131.93, 130.33, 129.97, 128.18, 128.05, 121.73, 119.31. HRMS (m/z): Calcd. For C$_{17}$H$_{12}$O$_4$S$_3$ [M + H]$^+$ 376.9971, meas. 376.9961.

Data for (E)-4-(3-(pyridin-4-yl)acryloyl)phenyl thiophene-2-sulfonate(2t):

Yellow solid, m.p. 88.2-89.8 °C, yield 76%. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.69 (d, $J = 5.6$ Hz, 2H, Py-2,6-H), 8.26 (dt, $J = 3.2, 1.6$ Hz, 2H, Ar(4-O)-2,6-H), 8.24 (d, $J = 1.9$ Hz, 1H, Py-CH=), 8.16 (d, $J = 15.7$ Hz, 1H, Py-C=CH), 7.88 (dd, $J = 3.9, 1.4$ Hz, 1H, Th-5-H), 7.85 (d, $J = 6.0$ Hz, 2H, Py-3,5-H), 7.71 (d, $J = 15.7$ Hz, 1H, Th-3-H), 7.32 (dd, $J = 3.4, 2.5$ Hz, 1H, Ar(4-O)-3-H), 7.30 (dd, $J = 7.1, 1.7$ Hz, 2H, Ar(4-O)-5-H, Th-4-H). 13C NMR (101 MHz, DMSO-d$_6$) δ 187.30, 151.79, 150.43, 141.03, 140.97, 137.12, 136.34, 135.52, 131.92, 130.35, 128.07, 125.39, 121.98, 121.85. HRMS (m/z): Calcd. For C$_{18}$H$_{13}$NO$_4$S$_2$ [M + H]$^+$ 372.0359, meas. 372.0352.

Data for (E)-4-(3-(3,4-dimethylphenyl)acryloyl)phenyl thiophene-2-sulfonate(2u):

Yellow solid, m.p. 98.1-99.9 °C, yield 58%. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.26 (dd, $J = 5.0, 1.4$ Hz, 1H, Ar-CH=), 8.21 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-5-H, Th-4-H), 7.73-7.67 (m, 2H, Ar(4-C$_3$H$_7$)-5,6-H), 7.60 (dd, $J = 7.9, 1.3$ Hz, 1H, Ar(3,4-di-CH$_3$)-2,6-H), 7.31 (dd, $J = 5.0, 3.9$ Hz, 1H, Th-3-H), 7.27 (d, $J = 8.8$ Hz, 2H, Ar(4-O)-3,5-H), 7.23 (d, $J = 7.8$ Hz, 1H, Th-4-H), 2.27 (d, $J = 2.9$ Hz, 6H, CH$_3$). 13C NMR (101 MHz, DMSO-d$_6$) δ 187.19, 151.47, 144.32, 139.27, 137.07, 136.32, 136.30, 136.17, 131.97, 131.54, 130.03, 129.45.
129.20, 128.05, 126.34, 121.71, 119.75, 18.91, 18.69. HRMS (m/z): Calcd. For C_{21}H_{18}O_{4}S_{2} [M + H]^+ 399.0720, meas. 399.0714.

Data for

(E)-4-(3-(2-methoxyphenyl)acryloyl)phenyl thiophene-2-sulfonate(2v): Yellow solid, m.p. 87.2-88.7 °C, yield 75%. H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 8.26 (dd, \(J = 5.0, 1.4\) Hz, 1H, Ar-CH=), 8.19 (d, \(J = 6.8\) Hz, 2H, Ar(4-O)-2,6-H), 8.08 (d, \(J = 15.8\) Hz, 1H, Ar(2-OCH\(_3\))-6-H), 7.99 (dd, \(J = 7.8, 1.5\) Hz, 1H, Th-5-H), 7.91-7.86 (m, 2H, Ar(2-OCH\(_3\))-4-H, Ar-C=CH), 7.50-7.44 (m, 1H, Th-3-H), 7.32 (dd, \(J = 5.0, 3.9\) Hz, 1H, Ar(2-OCH\(_3\))-3-H), 7.28 (d, \(J = 8.8\) Hz, 2H, Ar(2-OCH\(_3\))-5-H, Ar(4-O)-3-H), 7.13 (d, \(J = 7.9\) Hz, 1H, Ar(4-O)-5-H), 7.05 (dd, \(J = 9.8, 5.1\) Hz, 1H, Th-4-H), 3.91 (s, 3H, CH\(_3\)). C NMR (101 MHz, DMSO-\(d_6\)) \(\delta\) 187.41, 157.75, 151.47, 138.47, 138.47, 138.47, 137.07, 136.30, 136.19, 131.99, 130.02, 128.05, 127.99, 122.15, 121.75, 120.78, 120.11, 114.83, 111.22, 55.14. HRMS (m/z): Calcd. For C_{20}H_{16}O_{5}S_{2} [M + H]^+ 399.0720, meas. 399.0714.
8. Spectrogram of title compounds 2a-2v

1H NMR spectrum of compound 2a
13C NMR spectrum of compound 2a

HRMS spectrum of compound 2a
1H NMR spectrum of compound 2b
13C NMR spectrum of compound 2b

HRMS spectrum of compound 2b
1H NMR spectrum of compound 2c

13C NMR spectrum of compound 2c
HRMS spectrum of compound 2c

1H NMR spectrum of compound 2d
13C NMR spectrum of compound 2d

HRMS spectrum of compound 2d
1H NMR spectrum of compound 2e

13C NMR spectrum of compound 2e
19F NMR spectrum of compound 2e

HRMS spectrum of compound 2e
1H NMR spectrum of compound 2f

13C NMR spectrum of compound 2f
19F NMR spectrum of compound 2f

HRMS spectrum of compound 2f
1H NMR spectrum of compound 2g

13C NMR spectrum of compound 2g
19F NMR spectrum of compound 2g

HRMS spectrum of compound 2g
^{1}H NMR spectrum of compound 2h

^{13}C NMR spectrum of compound 2h
HRMS spectrum of compound 2h

^1H NMR spectrum of compound 2i
13C NMR spectrum of compound 2i

HRMS spectrum of compound 2i
1H NMR spectrum of compound 2j

13C NMR
13C NMR spectrum of compound 2j

HRMS spectrum of compound 2j

1H NMR spectrum of compound 2k
13C NMR spectrum of compound 2k
HRMS spectrum of compound 2k

1H NMR spectrum of compound 2l
13C NMR spectrum of compound 2l

HRMS spectrum of compound 2l
1H NMR spectrum of compound 2m

13C NMR spectrum of compound 2m
13C NMR spectrum of compound 2m

HRMS spectrum of compound 2m
1H NMR spectrum of compound 2n

13C NMR spectrum of compound 2n
HRMS spectrum of compound 2n

\[\text{HRMS: } m/z = 388.0570 \]
\[\text{C}_{27}H_{32}O_5, \text{calcd: } 388.05626, \text{found: } 388.0570 \]

\[\text{mass error: } 0.56 \text{ ppm} \]

\[\text{NMR spectra for compound } 2n \]
13C NMR spectrum of compound 2o

HRMS spectrum of compound 2o
1H NMR spectrum of compound 2p
13C NMR spectrum of compound $2p$

HRMS spectrum of compound $2p$
1H NMR spectrum of compound 2q

13C NMR
13C NMR spectrum of compound 2q

HRMS spectrum of compound 2q
\(^1\)H NMR spectrum of compound 2r

\(^{13}\)C NMR spectrum of compound 2r
HRMS spectrum of compound 2r

1H NMR spectrum of compound 2s
13C NMR spectrum of compound 2s

HRMS spectrum of compound 2s
1H NMR spectrum of compound 2t
13C NMR spectrum of compound 2t

HRMS spectrum of compound 2t
1H NMR spectrum of compound 2u

13C NMR
13C NMR spectrum of compound 2u

HRMS spectrum of compound 2u
1H NMR spectrum of compound 2v

13C NMR spectrum of compound 2v
HRMS spectrum of compound 2v