SUPPLEMENTARY MATERIAL

UPLC-QTOF-MS-guided isolation of anti-COPD ginsenosides from Wild Ginseng

Hailin Zhu¹, Junli Liu¹, Hongqiang Lin¹, Ying Zhang¹c, Na Yang¹, Baisong Zhou¹, Zhongyao Wang¹, Alan Chen-Yu Hsu¹, Jinping Liu¹b,⁎, Pingya Li²⁎

¹School of Pharmaceutical Sciences, Jilin University, Changchun 130021, Jilin, China
²Research Center of Natural Drug, Jilin University, Changchun 130021, Jilin, China
³The First Hospital of Jilin University, Changchun 130021, Jilin, China
⁴Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia

⁎Co-Correspondence authors: Prof. Jinping Liu and Prof. Pingya Li, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China, E-mail: liujp@jlu.edu.cn (J.L.); lipy@jlu.edu.cn (P.L.) Tel.: +86-431-85619803 (J.L.)

Contents of Supplementary Information

Figure S1-1. ¹H NMR spectrum of Rm1 in DMSO-D₆ (600 MHz).
Figure S1-2. ¹³C-DEPT NMR spectrum of Rm1 in DMSO-D₆ (150 MHz).
Figure S1-3. Heteronuclear multiple quantum correlation (HMQC) spectrum of Rm1.
Figure S1-4. Heteronuclear multiple bond coherence (HMBC) spectrum of Rm1.
Figure S1-5. High resolution electrospray ionization mass spectroscopy (HRESIMS) spectrum of MS⁵ fragment ions of Rm1.
Figure S2-1. ¹H NMR spectrum of Rm2 in DMSO-D₆ (600 MHz).
Figure S2-2. ¹³C-DEPT NMR spectrum of Rm2 in DMSO-D₆ (150 MHz).
Figure S2-3. Heteronuclear multiple quantum correlation (HMQC) spectrum of Rm2.
Figure S2-4. Heteronuclear multiple bond coherence (HMBC) spectrum of Rm2.
Figure S2-5. High resolution electrospray ionization mass spectroscopy (HRESIMS) spectrum of MS⁵ fragment ions of Rm2.
Figure S3-1. ¹H NMR spectrum of Rm3 in DMSO-D₆ (600 MHz).
Figure S3-2. ¹³C-DEPT NMR spectrum of Rm3 in DMSO-D₆ (150 MHz).
Figure S3-3. Heteronuclear multiple quantum correlation (HMQC) spectrum of Rm3.
Figure S3-4. Heteronuclear multiple bond coherence (HMBC) spectrum of Rm3.
Figure S3-5. High resolution electrospray ionization mass spectroscopy (HRESIMS) spectrum of MS⁵ fragment ions of Rm3.
Figure S4-1. ¹H NMR spectrum of Rm4 in DMSO-D₆ (600 MHz).
Figure S4-2. ¹³C-DEPT NMR spectrum of Rm4 in DMSO-D₆ (150 MHz).
Figure S4-3. Heteronuclear multiple quantum correlation (HMQC) spectrum of Rm4.
Figure S4-4. Heteronuclear multiple bond coherence (HMBC) spectrum of Rm4.
Figure S4-5. High resolution electrospray ionization mass spectroscopy (HRESIMS) spectrum of MSe fragment ions of Rm4.
Figure S5-1. 1H NMR spectrum of Rb2 in Pyridine-D$_3$(600 MHz).
Figure S5-2. 13C-DEPT NMR spectrum of Rb2 in Pyridine-D$_3$ (150 MHz).
Figure S6-1. 1H NMR spectrum of Rd in Pyridine-D$_3$(600 MHz).
Figure S6-2. 13C-DEPT NMR spectrum of Rd in Pyridine-D$_3$ (150 MHz).
Figure S7-1. 1H NMR spectrum of Rg3 in DMSO-D$_6$ (600 MHz).
Figure S7-2. 13C-DEPT NMR spectrum of Rg3 in DMSO-D$_6$ (150 MHz).
Figure S8-1. 1H NMR spectrum of Rg1 in DMSO-D$_6$ (600 MHz).
Figure S8-2. 13C-DEPT NMR spectrum of Rg1 in Pyridine-D$_6$ (150 MHz).
Figure S9-1. 1H NMR spectrum of Rh2 in DMSO-D$_6$ (600 MHz).
Figure S9-2. 13C-DEPT NMR spectrum of Rh2 in DMSO-D$_6$ (150 MHz).
Figure S10. Anti-inflammatory effect of petroleum ether soluble extracts (PEe), ethyl acetate soluble extracts(ASe), n-butanol soluble extracts(BSe) (200 μM)(A), FrA-J(B) and G1-6(C) on the inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in CSE-exposed A549 cells.
Figure S1-2. 13C-DEPT NMR spectrum of Rm1 in DMSO-D$_6$ (150 MHz).

Figure S1-3. Heteronuclear multiple quantum correlation (HMQC) spectrum of Rm1.
Figure S1-4. Heteronuclear multiple bond coherence (HMBC) spectrum of Rm1.

Figure S1-5. High resolution electrospray ionization mass spectroscopy (HRESIMS) spectrum of MS^E fragment ions of Rm1.
Figure S2-1. 1H NMR spectrum of Rm2 in DMSO-D$_6$ (600 MHz).

Figure S2-2. 13C-DEPT NMR spectrum of Rm2 in DMSO-D$_6$ (150 MHz).
Figure S2-3. Heteronuclear multiple quantum correlation (HMQC) spectrum of Rm2.

Figure S2-4. Heteronuclear multiple bond coherence (HMBC) spectrum of Rm2.
Figure S2-5. High resolution electrospray ionization mass spectroscopy (HRESIMS) spectrum of MS$_E$ fragment ions of Rm2.

Figure S3-1. 1H NMR spectrum of Rm3 in DMSO-D$_6$ (600 MHz).
Figure S3-2. 13C-DEPT NMR spectrum of Rm3 in DMSO-D$_6$ (150 MHz).

Figure S3-3. Heteronuclear multiple quantum correlation (HMOC) spectrum of Rm3.
Figure S3-4. Heteronuclear multiple bond coherence (HMBC) spectrum of Rm3.

Figure S3-5. High resolution electrospray ionization mass spectroscopy (HRESIMS) spectrum of MS_E fragment ions of Rm3.
Figure S4-1. 1H NMR spectrum of Rm4 in DMSO-D$_6$ (600 MHz).

Figure S4-2. 13C-DEPT NMR spectrum of Rm4 in DMSO-D$_6$ (150 MHz).
Figure S4-3. Heteronuclear multiple quantum correlation (HMQC) spectrum of Rm4.

Figure S4-4. Heteronuclear multiple bond coherence (HMBC) spectrum of Rm4.
Figure S4-5. High resolution electrospray ionization mass spectroscopy (HRESIMS) spectrum of MS_E fragment ions of Rm4.

Figure S5-1. ¹H NMR spectrum of Rb2 in Pyridine-D₅(600 MHz).
Figure S5-2. $\text{^{13}C}$-DEPT NMR spectrum of Rb2 in Pyridine-D$_5$ (150 MHz).

Figure S6-1. ^1H NMR spectrum of Rd in Pyridine-D$_5$(600 MHz).
Figure S6-2. 13C-DEPT NMR spectrum of Rd in Pyridine-d_5 (150 MHz).

Figure S7-1. 1H NMR spectrum of Rg3 in DMSO-d_6 (600 MHz).
Figure S7-2. 13C-DEPT NMR spectrum of Rd in DMSO-D$_6$ (150 MHz).

Figure S8-1. 1H NMR spectrum of Rg1 in DMSO-D$_6$ (600 MHz).
Figure S8-2. 13C-DEPT NMR spectrum of Rg1 in Pyridine-D$_6$ (150 MHz).

Figure S9-1. 1H NMR spectrum of Rh2 in DMSO-D6 (600 MHz).
Figure S9-2. 13C-DEPT NMR spectrum of Rh in DMSO-D6 (150 MHz).
Figure S10. Anti-inflammatory effect of petroleum ether soluble extracts (PEe), ethyl acetate soluble extracts (ASe), n-butanol soluble extracts (BSe) (200 μM)(A), FrA-J(B) and G1-6(C) on the inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in CSE-exposed A549 cells. The results are expressed as mean ± S.D., n=6. ## p < 0.01, compared with control group; ** p < 0.01, compared with CSE group; * p < 0.05, compared with CSE group.