Supporting Information

for

Oxadiazole Derivatives as Bipolar Host Materials for High-performance Blue and Green Phosphorescent Organic Light-emitting Diodes

Yanming Wang a, b *, Keke Duan a, Guoxiang Li a, Gewen Yu a

a School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, 7 Aldine Street, Baotou 014010, Inner Mongolia, PR China
b School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
E-mail: wymygw@163.com
Fig. S1 TGA thermograms of PyOxd-mCz and PyOxd-pCz, recorded at a heating rate of 10 °C min⁻¹.
Fig. S2 Chemical structures of related materials and energy level diagram for the single carrier devices and blue and green PHOLEDs.

Fig. S3 1H NMR of the intermediate
Fig. S4 13C NMR of the intermediate

Fig. S5 1H NMR of PyOxd-mCz
Fig. S6 13C NMR of PyOxd-mCz

Fig. S7 1H NMR of PyOxd-pCz
Fig. S8 13C NMR of PyOxd-pCz

Fig. S9 UV−vis absorption of FIrpic and Ir(ppy)$_3$, room-temperature photoluminescence of PyOxd-mCz and PyOxd-pCz spectra in dilute dichloromethane solutions