SUPPORTING INFORMATION

Retention of Strong Intramolecular Hydrogen Bonds in High Polarity Solvents in Binaphthalene-benzamide Derivatives: Extensive NMR Studies

Arun Kumar Patela,b,\textcopyright, Kiran Krishnamurthyb,\$, Sandeep Kumar Mishrab,c,\& and N. Suryaprakasha,b, \#,*

aSolid State and Structural Chemistry Unit and bNMR Research Centre, Indian Institute of Science, Bangalore 560012, India

Tel: +91-80-22933300, +91-8023607344, +919845124802 (Cell); Fax: +91-80-23601550

E-mail: suryaprakash1703@gmail.com; nsp@iisc.ac.in

\copyrightORCID: 0000-0001-5949-4605; \$ORCID: 0000-0001-9103-8116

*ORCID: 0000-0002-9954-5195

\&ORCID: 0000-0002-9737-6797

\#ORCID: 0000-0002-9737-6797

cPresent Address: Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune: 411008, India

cORCID: 0000-0002-9737-6797

This journal is © The Royal Society of Chemistry 2019
Contents

1. **Fig.1S**. 400 MHz 1H-NMR spectrum of molecule 1, in the solvent CDCl$_3$.

2. **Fig.2S (a, b)**. 100 MHz 13C- NMR spectra of molecule 1, in the solvent CDCl$_3$ and the expanded crowded region of the spectrum

3. **Fig.3S**. 2D 1H-13C HSQC NMR spectrum of molecule 1, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$

4. **Fig.4S**. 2D 1H-15N HSQC NMR spectrum of molecule 1, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$

5. **Fig.5S**. 400 MHz 1H- NMR spectrum of molecule 2, in the solvent CDCl$_3$.

6. **Fig.6S (a, b)**. 100 MHz 13C- NMR spectra of molecule 2, in the solvent CDCl$_3$ and the expanded crowded region of the spectrum

7. **Fig.7S**. 2D 1H-13C HSQC NMR spectrum of molecule 2, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$

8. **Fig.8S**. 2D 1H-15N HSQC NMR spectrum of molecule 2, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$

9. **Fig.9S (a, b)**. 400 MHz 1H- NMR spectra of molecule 3, in the solvent CDCl$_3$ and the expanded crowded region of the spectrum

10. **Fig.10S (a, b)**. 100 MHz 13C- NMR spectra of molecule 3, in the solvent CDCl$_3$ and the expanded crowded region of the spectrum

11. **Fig.11S**. 2D 1H-13C HSQC NMR spectrum of molecule 3, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$

12. **Fig.12S**. 2D 1H-15N HSQC NMR spectrum of molecule 3, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$.

13. **Fig.13S**. 400 MHz 1H- NMR spectrum of molecule 4, in the solvent CDCl$_3$.

14. **Fig.14S (a, b)**. 100 MHz 13C- NMR spectra of molecule 4, in the solvent CDCl$_3$ and the expanded crowded region of the spectrum

15. **Fig 15S**. 2D 1H-13C HSQC NMR spectrum of molecule 4, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$

16. **Fig 16S**: 2D 1H-15N HSQC NMR spectrum of molecule 4, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$
17. **Fig 17S**: A plot of \(\text{sign}(\lambda_2(r))\ \rho(r) \) as function 1 vs. the RDG as function 2, and (B) a coloured isosurface plot for the molecules, 1-4.

18. **Fig 18S**: Visualization of the BCPs and the bond paths of the HBs for the molecules 1-4.
Fig. 1S: 400 MHz 1H-NMR spectrum of molecule 1, in the solvent CDCl$_3$.
Fig. 2S: (a) 100 MHz 13C-NMR spectra of molecule 1, in the solvent CDCl$_3$; (b): The expansion of the Fig. 2S(a)
Fig 3S: 2D 1H-15N HSQC NMR spectrum of molecule 1, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$.
Fig 4S: 2D 1H-13C HSQC NMR spectrum of molecule 1, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$.
Fig. 5S: 400 MHz 1H- NMR spectrum of molecule 2, in the solvent CDCl$_3$.
Fig. 6S: (a) 100 MHz 13C- NMR spectra of molecule 2, in the solvent CDCl$_3$; (b) The expanded region of Fig. 6S(a)
Fig 7S: 2D 1H-1C HSQC NMR spectrum of molecule 2, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$.
Fig 8S: 2D 1H-15N HSQC NMR spectrum of molecule 2, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$.

$^1J_{NH} = 89.91$ Hz
Fig. 9S (a): 400 MHz 1H- NMR spectra of molecule 3, in the solvent CDCl$_3$; (b) The expanded region of Fig. 9S(a)
Fig. 10S (a): 100 MHz 13C- NMR spectra of molecule 3, in the solvent CDCl$_3$; (b) The expanded region of Fig. 10S(a)
Fig 11S: 2D 1H-13C HSQC NMR spectrum of molecule 3, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$.
Fig 12S: 2D 1H-15N HSQC NMR spectrum of molecule 3, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$.
Fig. 13S: 400 MHz 1H- NMR spectrum of molecule 4, in the solvent CDCl$_3$.
Fig. 14S (a): 100 MHz 13C- NMR spectra of molecule 4, in the solvent CDCl$_3$; (b) Expanded region of Fig. 14S(a)
Fig 15S: 2D 1H-13C HSQC NMR spectrum of molecule 4, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$
Fig 16S: 2D1H-15N HSQC NMR spectrum of molecule 4, acquired on 800 MHz NMR spectrometer in the solvent CDCl$_3$.

J_{NH} = 88.63 Hz
Figure 17S: (A) A plot of \(\text{sign}(\lambda_2(r))\rho(r)\) as function 1 vs. the RDG as function 2, and (B) a coloured isosurface plot (the green colour denotes a weak HB, the dark green colour denotes a strong HB and the red colour represents the steric effect) for the molecules, 1–4 plotted using VMD programme.
Figure 18S: Visualization of the BCPs and the bond paths of the HBs for the molecules, 1–4, plotted using multiwfn software. The dots represent the CPs and the thin bars represent the path between two interacting atoms passing through the BCP of the HB interactions.