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Table S1. Computational performance of 10 considered force fields in molecular dynamics 

simulations of n-eicosane samples at T = 450K in the NVT ensemble. All simulations were 

carried out on 70 cores (Intel Xeon CPU E5-2697 v3 (2.60 GHz)) of the Lomonosov-2 

supercomputer. United-atom models are much faster than their all-atom counter-parts due to a 

smaller system size (20,000 vs 60,000 atoms) as well as zero partial charges (the united-atom 

models of eicosane do not require calculations of electrostatic interactions). The force field-

specific cut-off radius of the van der Waals interactions also matters. 

 

Force field Performance, ns/day 

GAFF2 85.7±0.4 

GAFF 83.6±0.4 

CHARMM36 52.4±0.1 

L-OPLS-AA 47.4±0.2 

OPLS-AA 46.9±0.2 

PYS 693.4±0.9 

NERD 556.3±4.8 

GROMOS 463.6±3.5 

TraPPE 443.1±1.3 

OPLS-UA 395.9±0.2 
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Fig. S1. The ratio sim/exp between computational and experimental
1
 values of density of n-

eicosane samples as a function of temperature. Shown are results for all-atom (a) and united-

atom (b) force fields. 
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Fig. S2. Fractions of gauche conformers along the hydrocarbon chain for all-atom force fields in 

the temperature range from 250 to 450 K. Positions of curves become lower with decreasing 

temperature. 
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Fig. S3. Fractions of gauche conformers along the hydrocarbon chain for united-atom force 

fields in the temperature range from 250 to 450 K. Positions of curves become lower with 

decreasing temperature. 
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Fig. S4. The probability distribution of the dihedral angle  for different force fields at T = 450 

K.  
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Fig. S5. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of all-atom models. Show are results for configuration 2.  
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Fig. S6. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of all-atom models. Show are results for configuration 3.  
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Fig. S7. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of united-atom models. Show are results for configuration 2.  
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Fig. S8. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of united-atom models. Show are results for configuration 3.  
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Fig. S9. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of all-atom models at temperatures that are 30-35 K lower than the crystallization 

temperature. Show are results for configuration 1.  

 

 

 

 

 



S12 

 

 

 

 
 

 

 

 

 

 

Fig. S10. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of all-atom models at temperatures that are 30-35 K lower than the crystallization 

temperature. Show are results for configuration 2. 
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Fig. S11. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of all-atom models at temperatures that are 30-35 K lower than the crystallization 

temperature. Show are results for configuration 3. 
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Fig. S12. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of united-atom models at temperatures that are 30-35 K lower than the crystallization 

temperature. Show are results for configuration 1. 
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Fig. S13. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of united-atom models at temperatures that are 30-35 K lower than the crystallization 

temperature. Show are results for configuration 2. 
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Fig. S14. The probability distribution P(θ1,θ2) for the n-eicosane crystalline phase simulated with 

the use of united-atom models at temperatures that are 30-35 K lower than the crystallization 

temperature. Show are results for configuration 3. 
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