Supporting Information

Controlling the electric permittivity of honeycomb-like core-shell Ni/CuSiO$_3$

composite nanospheres to enhance microwave absorption properties

Rambabu Kuchia,b,c,1, Taha Latifh,1, Sung Woo Leea, Viet Dongquoca, Phuoc Cao Vana, Dongsoo Kimb,c, Jong-Ryul Jeonga,*

a Department of Materials Science and Engineering, Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, South Korea

b Powder & Ceramics Division, Korea Institute of Materials Science, Changwon, Gyeongnam 51508, South Korea

c Convergence research center for development of mineral resources, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea

*Corresponding author: Tel: +82-42-821-6633, Fax: +82-42-822-5850

E-mail: jrjeong@cnu.ac.kr (J.-R. Jeong)

1 These authors contributed equally to this work.
Figure S1. Images of Ni/SiO$_2$ nanospheres. (a) Bright-field high-angle angular dark-field STEM image and (b–e) elemental maps.
Figure S2. Ni/SiO$_2$ nanospheres prepared with Ni concentrations of (a, b) 0.3 g, (c, d) 0.5 g, and (e, f) 0.6 g.
Figure S3. Loss tangents of the core-shell Ni/CuSiO$_3$ composite nanospheres.
Figure S4. Ni/SiO$_2$ nanospheres prepared with Ni concentrations of (a, b) 0.3 g, (c, d) 0.5 g, and (e, f) 0.6 g.