Supplementary Information

Effects of size on the photocatalytic property of high-index faceted pseudocubic and rhombohedral α-Fe$_2$O$_3$ nanocrystals

aMinistry Key Laboratory of Oil and Gas Fine Chemicals, College of the Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China.

bGuangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.

cThe Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.

*Corresponding author:

Email: jerryyang1924@163.com

Quantum yield calculation

$$\Phi = 4 \times \frac{\text{initial rate of O}_2 \text{ production (mol s}^{-1})}{\text{photo flux (mol s}^{-1})}$$

(4 photons absorbed per O$_2$).

Taking the Fe$_2$O$_3$-6.0 as an example

Using a wavelength of 420 nm, the intensity of light measured at 100 mW/cm2, impinging on 7 cm2 surface area. O$_2$ released at the 2 min reaction time was used for determining.

Energy of a single photon at 420 nm = $h.c/\lambda = 6.626 \times 10^{-34} \times 2.998 \times 10^8 / (420 \times 10^{-9}) = 4.730 \times 10^{-19}$ J
Total power absorbed = $7 \text{ cm}^2 \times 100 \text{ mW/cm}^2 \times 2 \times 60 \text{ s} = 84 \text{ J}$

Number of O_2 molecules produced = $7.32 \mu\text{mol} \times 6.022 \times 10^{23} = 4.41 \times 10^{18}$

Quantum Yield $O_2 = \frac{4.41 \times 10^{18}/(84 \text{ J}/4.73 \times 10^{-19} \text{ J})}{400} = 9.93 \%$

Turn over Frequency calculation

Taking the Fe_2O_3-6.0 as an example

Moles of Fe = $2 \times 5 \text{ mg}/159.6882 \text{ g mol}^{-1} = 6.26 \times 10^{-5}$ mol

The production of $O_2 = 7.32 \mu\text{mol} (2 \text{ min})$

$\text{TOF} = \frac{7.32 \mu\text{mol}}{6.26 \times 10^{-5} \text{ mol}/120 \text{ s}}$

$\text{TOF} = 0.97 \times 10^{-3} \text{ mol} (O_2)/\text{mol (Fe)} \text{ s}$

TOF for other catalysts were determined similarly.

The computational process of the valence band and conduction band of α-Fe_2O_3:

\[E_{CB} = X - E_C - \frac{1}{2} E_g \]

\[X = \sqrt[3]{X_{Fe}^x \times X_O^y} \]

\[= \sqrt[3]{4.06^2 \times 7.54^3} \]

\[= 5.886 \text{ eV} \]

Taking the Fe_2O_3-6.0 as an example

$E_g = 1.964 \text{ eV}$

$E_{CB} = 5.886 - 4.5 - 0.5 \times 1.964$

\[= 0.404 \text{ eV} \]

$E_{VB} = E_{CB} + E_g$

\[= 0.404 + 1.964 \]

\[= 2.368 \text{ eV} \]