Tunable and convenient synthesis of highly dispersed Fe-N_x catalysts from graphene-supported Zn-Fe-ZIF for efficient oxygen reduction in acids

Limeng Yang^{a,*}, Zhigang Shao^{b,}

- School of Textile Science and Engineering, Xi'an Polytechnic University, 19 Jinhua Road, Xi'an 710048, China
- Dalian National Laboratories for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

† E-mail: yanglmxpu@163.com

Figure S1. LSV curves collected at room temperature in H_2 -saturated 0.1 M HClO₄ aqueous solution with a scan rate of 1 mV·s⁻¹. The experiment was performed in a H_2 -saturated electrolyte with platinum wire as working electrode. The thermodynamic equilibrium potential for H^+/H_2 reaction was determined at zero current.

Catalysts	BET surface area (m ² g ⁻¹)	Micropore area (m ² g ⁻¹)	Total Pore volume (cc g ⁻¹)
C-rGO-ZIF-1*	460	211	1.32
C-rGO-ZIF-2*	650	175	2.03
C-rGO-ZIF-3*	493	309	1.33

Table S1. The BET surface area and pore volume of different samples

Table S2. Relative contents of different elements in as-synthesized catalysts.

elements	C-rGO-	C-rGO-	C-rGO-	Zn-Fe-	C-Zn-Fe-
(at%)	ZIF-1*	ZIF-2*	ZIF-3*	ZIF-3	ZIF-3
C 1s	92.86	93.17	92.64	61.39	91.0
Fe 2p	0.37	0.40	0.38	_	0.23
N 1s	2.87	3.47	3.34	20.79	3.07
O 1s	3.90	2.95	3.64	5.23	5.30
Zn 2p				12.59	0.39

Table S3. Percentage of different N species in each catalyst.

$T_{\rm eff} = f N (st 0/)$	C-rGO-ZIF-	C-rGO-ZIF-	C-rGO-ZIF-
Types of N (at%)	1*	2*	3*
Pyridinic N	13.1	12.8	9.9
Fe-N	19.3	22.0	20.3
Pyrrollic N	4.9	5.2	5.2
Graphitic N	46.0	47.1	44.5
Oxidized N	16.7	12.9	20.8
Pyridinic +	50.1	50.0	511
Graphitic N	39.1	57.7	34.4

Fitting parameters	H ₀ (T)	$\delta_{iso} \ (mm \ s^{\text{-}1})$	$\Delta E_Q (mm s^{-1})$	Relative area (%)	Assignment
Sextet	33.1	0.02	-0.05	21.7	α-Fe
Doublet-1	-	0.20	3.64	23.7	low-spin state Fe ^{II} -N ₄
Doublet-2	-	0.42	1.39	42.2	moderate spin- state Fe ^{II} -N _{4/2+2} ¹
Singlet	-	-0.10	-	12.5	γ-Fe

Table S4. Percentage of different N species in each catalyst.

Tab. S5 ORR performance of NPMCs tested in acidic medium

Catalysts	Electroca	Half-wave	Onset	Reference
	talyst	potential	potential	
	loading	(V vs.	(V vs.	
	(mg/cm ²)	RHE)	RHE)	
Fe SAs/N-C	0.25	0.80	0.90	ACS. Catal.
				2019, 9, 2158. ²
PMF-800	1.2	0.62	0.89	J. Am. Chem. Soc.
				2015, 137, 1436. ³
Fe-N/MPC2	0.6	0.72	0.82	Appl. Catal. B-
				Environ. 2017, 205,
				637. ⁴
WC@C/N/CA-850	0.4	0.50	0.76	Electrochim Acta.
				2017, 236, 154. ⁵
CoN-CNS	0.4	0.64	0.86	J. Power Sources.
				2017, 346, 80. 6
Fe3C@C-900	0.6	0.68	0.80	Carbon 2017, 116,
				606. ⁷
Py-FCC/C-50	1.3	0.70	0.82	J. Mater. Chem. A.
				2017, 5, 9279. ⁸
Cr/N/C-950	0.6	0.77	0.82	Angew. Chem. Int.
				Ed. 2019, 58,
				12469. ⁹
C-PANI-MIL-2	0.4	0.67	0.86	Chemelectrochem.
				2018, 5, 3731.10
C-rGO-ZIF-2*	0.4	0.77	0.89	This work

Catalysts	Electrocat-	Maximum	H_2/O_2	H_2/O_2	ME	Reference
	-alyst	power	back	flow	Α	
	loading	densities	pressure	rate	area	
	(mg/cm ²)	(mW/cm ²)	(MPa)	(sccm)	(cm ²)	
TPI@Z8(Si	2.7	750	0.2	300/400	5	Nat. Catal. 2019,
O2)-650-C						2, 259. 11
H-Fe-N _x -C	2	710	0.2	100/200	5	ACS Nano 2019, 13, 8087. ¹²
Fe-N-C-	4	1060	0.14	300/400	5	Adv. Mater. 2017,
Phen-PANI						29, 1604456. ¹³
Fe/N/C-	4	1030	0.2	300/300	1	Angew. Chem.
SCN						Int. Ed. 2015, 54, 9907. ¹⁴
Fe/N/CF	3	900	0.15	300/400	5	Proc. Natl. Acad.
						Sci. U. S. A 2015,
						112, 10629. 15
Zn	2.2	620	0.1	400/400	5	Adv. Mater. 2014,
(mIm)2TPI P						26, 1093. ¹⁶
Fe/PI-1000-	4	600	0.2	300/300	1	J. Mater. Chem. A
III-NH ₃						2014, 2, 11561. 17
(CM+PANI)-Fe-C	4	940	0.1	200/200	5	Science 2017, 357, 479. ¹⁸
NC Phen	4	830	0.2	300/300	1.14	Electrochim. Acta.
Ar+NH ₃						2015, 159,
						184. ¹⁹
C-rGO-	4	301	0.18	300/400	4	This work
ZIF-2*						

Tab. S6 ORR performance of NPMCs tested in PEMFCs (all of the cell temperature is 80 °C)

References

- Y. J. Sa, D. J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yang, J. M. Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G. Kim, T. Y. Kim and S. H. Joo, *J. Am. Chem. Soc.*, 2016, **138**, 15046-15056.
- Z. Yang, Y. Wang, M. Zhu, Z. Li, W. Chen, W. Wei, T. Yuan, Y. Qu, Q. Xu, C. Zhao, X. Wang, P. Li, Y. Li, Y. Wu and Y. Li, ACS Catal., 2019, 9, 2158-2163.
- 3. W. Yang, X. Liu, X. Yue, J. Jia and S. Guo, J. Am. Chem. Soc., 2015, 137, 1436-1439.
- L. Osmieri, R. Estudero-Cid, M. Armandi, A. Videla, J. L. G. Fierro, P. Ocon and S. Specchia, *Appl. Catal. B: Environ.*, 2017, 205, 637-653.
- H. Zhu, Z. N. Sun, M. L. Chen, H. H. Cao, K. Li, Y. Z. Cai and F. H. Wang, *Electrochim.* Acta, 2017, 236, 154-160.
- 6. X. Wan, H. J. Wang, H. Yu and F. Peng, J. Power Sources, 2017, 346, 80-88.
- A. Kong, Y. Zhang, Z. Chen, A. Chen, C. Li, H. Wang and Y. Shan, *Carbon*, 2017, 116, 606-614.
- S. Samireddi, I. Shown, T.-H. Shen, H.-C. Huang, K.-T. Wong, L.-C. Chen and K.-H. Chen, J. Mater. Chem. A, 2017, 5, 9279-9286.
- E. Luo, H. Zhang, X. Wang, L. Gao, L. Gong, T. Zhao, Z. Jin, J. Ge, Z. Jiang, C. Liu and W. Xing, Angew. Chem. Int. Ed. Engl., 2019, 58, 12469-12475.
- L. Yang, Y. Zeng, X. Tang, D. Xu, D. Fang, H. Huang, Z. Shao and B. Yi, *ChemElectroChem*, 2018, 5, 3731-3740.
- X. Wan, X. F. Liu, Y. C. Li, R. H. Yu, L. R. Zheng, W. S. Yan, H. Wang, M. Xu and J. L. Shui, *Nat. Catal.*, 2019, 2, 259-268.
- H. Yang, X. Chen, W. T. Chen, Q. Wang, N. C. Cuello, A. Nafady, A. M. Al-Enizi, G. I. N. Waterhouse, G. A. Goenaga, T. A. Zawodzinski, P. E. Kruger, J. E. Clements, J. Zhang, H. Tian, S. G. Telfer and S. Ma, *ACS Nano*, 2019, **13**, 8087-8098.
- 13. X. Fu, P. Zamani, J.-Y. Choi, F. M. Hassan, G. Jiang, D. C. Higgins, Y. Zhang, M. A. Hoque and Z. Chen, *Adv. Mater.*, 2017, **29**.
- Y.-C. Wang, Y.-J. Lai, L. Song, Z.-Y. Zhou, J.-G. Liu, Q. Wang, X.-D. Yang, C. Chen, W. Shi, Y.-P. Zheng, M. Rauf and S.-G. Sun, *Angew. Chem.-Inter. Ed.*, 2015, 54, 9907-9910.
- 15. J. Shui, C. Chen, L. Grabstanowicz, D. Zhao and D.-J. Liu, *Proc. Natl. Acad. Sci. U. S. A.*, 2015, **112**, 10629-10634.
- D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu and D.-J. Liu, *Adv. Mater.*, 2014, 26, 1093-1097.
- 17. Y. Nabae, Y. Kuang, M. Chokai, T. Ichihara, A. Isoda, T. Hayakawa and T. Aoki, *J. Mater. Chem. A*, 2014, **2**, 11561-11564.
- H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More and P. Zelenay, *Science*, 2017, **357**, 479-483.
- L. Yang, N. Larouche, R. Chenitz, G. Zhang, M. Lefevre and J.-P. Dodelet, *Electrochim. Acta*, 2015, 159, 184-197.