Unravelling the Role of Temperature in a Redox Supercapacitor Composed of Multifarious Nanoporous Carbon@Hydroquinone

Aditi Barua and Amit Paul

Department of Chemistry, Indian Institute of Science Education and Research

Bhopal

E-mail: apaul@iiserb.ac.in

<table>
<thead>
<tr>
<th>Figure/Table</th>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1</td>
<td>PXRD patterns of MNC and $MNC-H_2Q$</td>
<td>S2</td>
</tr>
<tr>
<td>Figure S2</td>
<td>BET analysis of MNC</td>
<td>S2</td>
</tr>
<tr>
<td>Figures S3 and S4</td>
<td>TGA and DSC curve of $MNC-H_2Q$</td>
<td>S3</td>
</tr>
<tr>
<td>Figure S5</td>
<td>Cyclic Voltammetry plots of MNC, H_2Q and $MNC-H_2Q$</td>
<td>S4</td>
</tr>
<tr>
<td>Figure S6</td>
<td>CVs overlays of $MNC-H_2Q$ during Cyclic test at 20 and 50 °C</td>
<td>S4</td>
</tr>
<tr>
<td>Table S1</td>
<td>Specific Capacitance values of MNC</td>
<td>S5</td>
</tr>
<tr>
<td>Figure S7</td>
<td>Cyclic Voltammetry plots of $MNC-H_2Q$ at different temperatures</td>
<td>S5-S6</td>
</tr>
<tr>
<td>Table S2</td>
<td>Specific Capacitance values of $MNC-H_2Q$ at different current densities and temperatures</td>
<td>S6</td>
</tr>
</tbody>
</table>
Powder X-Ray Diffraction (PXRD) Results of MNC and MNC-H₂O

Figure S1: PXRD patterns of MNC and MNC-H₂O. Spikes in the spectra were presumably due to slight metal impurity in the MNC.

Brunauer-Emmett-Teller (BET) Analysis of MNC

Figure S2: Characterizations of MNC using BET. (a) N₂ adsorption/desorption isotherms, (b) Pore size distribution and (c) Cumulative pore volume.
Thermogravimetric Analysis (TGA) curve of $MNC-H_2Q$

Figure S3: TGA curve of $MNC-H_2Q$.

Differential scanning calorimetry (DSC) curve of $MNC-H_2Q$

Figure S4: DSC curve of $MNC-H_2Q$.
Cyclic voltammetry (CV) overlays of MNC, H₂Q and MNC-H₂Q in three electrodes system

Figure S5: Overlay of CVs of MNC, H₂Q and MNC-H₂Q at 100 mV s⁻¹. Current for H₂Q has been multiplied by 100 for better visibility.

Figure S6. CV overlays of MNC-H₂Q during cyclic tests of the 10th and 1000th cycles at (a) 20 °C and at (b) 50°C. (Scan rate100 mV s⁻¹).
Table S1: Specific Capacitances of MNC at different scan rates.

<table>
<thead>
<tr>
<th>Scan Rate (mV s(^{-1}))</th>
<th>Specific Capacitance (F g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>199</td>
</tr>
<tr>
<td>50</td>
<td>206</td>
</tr>
<tr>
<td>20</td>
<td>214</td>
</tr>
<tr>
<td>10</td>
<td>220</td>
</tr>
<tr>
<td>5</td>
<td>226</td>
</tr>
<tr>
<td>1</td>
<td>248</td>
</tr>
</tbody>
</table>

Cyclic voltammetry (CV) overlays of MNC-H\(_2\)O in three electrodes system at different temperatures
Figure S7: CVs of MNC-H₂Q at (a) 50, (b) 40, (c) 30, (d) 20, (e) 10, (f) 0, and (g) -10 °C. (h). Variation of specific capacitance values at different temperatures at 100 and 1 mV s⁻¹.

Table S2: Specific Capacitances of MNC-H₂Q at different current densities and temperatures

<table>
<thead>
<tr>
<th>Current Density (A g⁻¹)</th>
<th>-10 °C</th>
<th>0 °C</th>
<th>10 °C</th>
<th>20 °C</th>
<th>30 °C</th>
<th>40 °C</th>
<th>50 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>192</td>
<td>195</td>
<td>197</td>
<td>218</td>
<td>220</td>
<td>226</td>
<td>229</td>
</tr>
<tr>
<td>5</td>
<td>195</td>
<td>198</td>
<td>200</td>
<td>226</td>
<td>230</td>
<td>233</td>
<td>237</td>
</tr>
<tr>
<td>2</td>
<td>202</td>
<td>206</td>
<td>212</td>
<td>234</td>
<td>241</td>
<td>248</td>
<td>254</td>
</tr>
<tr>
<td>1.5</td>
<td>204</td>
<td>212</td>
<td>215</td>
<td>238</td>
<td>248</td>
<td>260</td>
<td>264</td>
</tr>
<tr>
<td>1</td>
<td>205</td>
<td>220</td>
<td>235</td>
<td>256</td>
<td>265</td>
<td>275</td>
<td>295</td>
</tr>
</tbody>
</table>