Catalyst screening for the Oxidative Coupling of

Methane: from isothermal to adiabatic operation via

microkinetic simulations

Supplementary Information

Laura Pirro[†], Pedro S. F. Mendes[†], Bart D. Vandegehuchte[‡], Guy B. Marin[†], Joris W. Thybaut^{*,†}

† Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
 ‡ Total Research & Technology Feluy, Zone Industrielle Feluy C B-7181, Seneffe, Belgium

Table of Contents

S1. Overview of the OCM microkinetic and reactor model	2
S2. Catalysts and <i>realistic</i> sets of catalyst descriptors	6
S3. Additional results about catalyst ranking in isothermal operation	10
S4. Additional results about the feed composition effect in isothermal operation	14
S5. Results about catalyst ranking in adiabatic operation	18
S6. Additional results about catalyst ranking in isothermal vs adiabatic operation	20
S7. Additional results about the comparison of 1st quadrant and 2nd quadrant catalysts	21
References	27

1 S1. Overview of the OCM microkinetic and reactor model

The OCM microkinetic model adopted in the present work accounts for the complex chemistry 2 of the reaction via 78 gas-phase and 52 catalytic elementary steps¹. The reaction network is 3 herein reported in Tables S1.1 and S1.2. It includes 13 molecules (H₂, H₂O, H₂O₂, O₂, CH₄, 4 CH₂O, CO, CO₂, C₂H₂, C₂H₄, C₂H₆, C₃H₆, C₃H₈), 10 radicals (H•, O•, OH•, HO₂•, CHO•, 5 CH₃O•, CH₃•, C₂H₃•, C₂H₅•, C₃H₇•), 10 surface species (O*, OH*, H₂O*, CO*, CO₂*, CHO*, 6 CH₂O*, CH₃O*, C₂H₃O*, C₂H₄O*) and the free active sites *. The incorporation of catalyst 7 descriptors, such as chemisorption enthalpies, sticking probabilities and active site density, 8 allows to establish a link between catalyst properties and their performance in the OCM 9 reaction². This model was validated using experimental data from five different catalysts 10 (Li/MgO³, Sn-Li/MgO³, Sr/La₂O₃⁴, La-Sr/CaO⁴, Na-Mn-W/SiO₂^{4, 5}) at a broad range of 11 operating conditions. 12

The catalytic fixed-bed reactor model, in which the above mentioned microkinetic model is 13 14 incorporated, consists of a 1-dimensional plug flow reactor, i.e. no radial concentration and temperature gradients were considered on the reactor scale. The reactor model allows 15 simulation in both isothermal¹ and adiabatic mode⁶. Axial diffusion and thermal conduction on 16 the reactor scale were considered negligible, as typical for tubular reactors of high aspect ratio⁷. 17 Given the fact that the participating gas-phase intermediates are highly reactive and cause 18 irreducible mass transport limitations on the particle scale, the model is heterogeneous. Two 19 phases are considered⁸: the *intraparticle* phase consists of the catalyst particles and the gas 20 contained in their pores; the *interstitial* phase accounts for the gas phase around the particles 21 and flowing along the reactor axis. Particle-scale concentration gradients for gas-phase 22 molecules and, more significantly, for radicals and surface species, are accounted for in the 23 reactor model¹. Only external heat transport limitations in the gas phase surrounding the 24

25 particles are considered, with no temperature gradients inside the catalyst particles in view of

26 the high thermal conductivity of the catalytic materials 6 .

Primary initiation	Dehydrogenation of C ₂ -C ₃
$G1. CH_4 + O_2 \rightleftharpoons CH_3 \bullet + HO_2 \bullet$	G19. $C_2H_6 + H^{\bullet} \rightleftharpoons C_2H_5^{\bullet} + H_2$
CH ₃ • generation	$G20. C_2H_6 + OH^{\bullet} \rightleftharpoons C_2H_5^{\bullet} + H_2O$
$G2. CH_4 + H \bullet \rightleftharpoons CH_3 \bullet + H_2$	$G21. C_2H_6 + CH_3 \bullet \rightleftharpoons C_2H_5 \bullet + CH_4$
G3. $CH_4 + O\bullet \rightleftharpoons CH_3 \bullet + OH\bullet$	G22. $C_2H_5 \bullet + M \rightleftharpoons C_2H_4 + H \bullet + M$
G4. CH ₄ +OH• \rightleftharpoons CH ₃ • + H ₂ O	$G23. C_2H_5 \bullet + O_2 \rightleftharpoons C_2H_4 + HO_2 \bullet$
$G5. CH_4 + HO_2 \bullet \rightleftharpoons CH_3 \bullet + H_2O_2$	$G24. C_2H_4 + O_2 \rightleftharpoons C_2H_3 \bullet + HO_2 \bullet$
CH ₃ • oxidation	$G25. C_2H_4 + H\bullet \rightleftharpoons C_2H_3\bullet + H_2$
$G6. CH_3 \bullet + O_2 \rightleftharpoons CH_3 O \bullet + O \bullet$	$G26. C_2H_4 + OH \bullet \rightleftharpoons C_2H_3 \bullet + H_2O$
$G7. CH_3 \bullet + O_2 \rightleftharpoons CH_2O + OH \bullet$	$G27. C_2H_4 + CH_3 \bullet \rightleftharpoons C_2H_3 \bullet + CH_4$
$G8. CH_3 \bullet + HO_2 \bullet \rightleftharpoons CH_3O \bullet + OH \bullet$	G28. $C_2H_3 \bullet + M \rightleftharpoons C_2H_2 + H \bullet + M$
Coupling Reactions	$G29. C_2H_3 \bullet + O_2 \rightleftharpoons C_2H_2 + HO_2 \bullet$
$G9. CH_3 \bullet + CH_3 \bullet + M \rightleftharpoons C_2H_6 + M$	$G30. C_3H_8 + H \bullet \rightleftharpoons C_3H_7 \bullet + H_2$
G10. $C_2H_5 \bullet + CH_3 \bullet + M \rightleftharpoons C_3H_8 + M$	$G31. C_3H_7 \bullet + M \rightleftharpoons C_3H_6 + H \bullet + M$
$G11. C_2H_4 + CH_3 \bullet + M \rightleftharpoons C_3H_7 \bullet + M$	$G32. C_2H_6 \rightleftharpoons C_2H_5 \bullet + H \bullet$
Oxidation of CH ₃ O• and CH ₂ O	C ₂ Oxidation
G12. $CH_3O \bullet + M \rightleftharpoons CH_2O + H \bullet + M$	G33. $C_2H_5 \bullet + HO_2 \bullet \rightleftharpoons CH_3 \bullet + CH_2O + OH \bullet$
G13. $CH_2O + OH \bullet \rightleftharpoons CHO \bullet + H_2O$	$G34. C_2H_4 + OH \bullet \rightleftharpoons CH_3 \bullet + CH_2O$
G14. $CH_2O + HO_2 \bullet \rightleftharpoons CHO \bullet + H_2O_2$	G35. $C_2H_3 \bullet + O_2 \rightleftharpoons CH_2O + CHO \bullet$
G15. $CH_2O + CH_3 \bullet \rightleftharpoons CHO \bullet + CH_4$	Hydrogen-oxygen reactions
G16. CHO• + M \rightleftharpoons CO + H• + M	G36. $O_2 + H \bullet \rightleftharpoons OH \bullet + O \bullet$
G17. CHO• + $O_2 \rightleftharpoons CO + HO_2$ •	$G37. O_2 + H \bullet + M \rightleftharpoons HO_2 \bullet + M$
G18. CO + HO ₂ • \rightleftharpoons CO ₂ + OH•	G38. $HO_2 \bullet + HO_2 \bullet \rightleftharpoons O_2 + H_2O_2$
	G39. $H_2O_2 + M \rightleftharpoons OH \bullet + OH \bullet + M$

50 Table S1.1. Gas-phase reaction network; kinetic parameters are reported by Chen et al.⁹.

⁵¹ M is any molecule which acts as third body, stabilizing the collision product.

Oxygen activation	C13. CHO* + O* \rightleftharpoons CO* + OH*
C1. $O_2 + 2^* \rightleftharpoons 2O^*$	C14. $CO^* + O^* \rightleftharpoons CO_2^* + *$
Radical generation	C15. CO + * \rightleftharpoons CO*
C2. $CH_4 + O^* \rightleftharpoons CH_3 \bullet + OH^*$	C16. $C_2H_4 + O^* \rightleftharpoons C_2H_4O^*$
C3. $C_2H_6 + O^* \rightleftharpoons C_2H_5 \bullet + OH^*$	C17. $C_2H_4O^* + O^* \rightleftharpoons C_2H_3O^* + OH^*$
Regeneration of active sites	C18. C ₂ H ₃ O* + O* \rightleftharpoons CH ₂ O* + HCO*
C4. 2OH* \rightleftharpoons H ₂ O* + O*	C19. CH ₃ O• + O* \rightleftharpoons CH ₂ O + OH*
C5. $H_2O^* \rightleftharpoons H_2O + *$	C20. CH ₂ O + O* \rightleftharpoons CHO• + OH*
Dehydrogenation to ethylene	C21. CHO• + O* \rightleftharpoons CO + OH*
C6. $C_2H_5 \bullet + O^* \rightleftharpoons C_2H_4 + OH^*$	Coverage of active site
Radical quenching	C22. CO ₂ + * \rightleftharpoons CO ₂ *
C7. $HO_2 \bullet + O^* \rightleftharpoons O_2 + OH^*$	Generation of HO ₂ radical
C8. $HO_2 \bullet + * \rightleftharpoons OH \bullet + O*$	C23. $H_2O_2 + O^* \rightleftharpoons HO_2 \bullet + OH^*$
Non-selective oxidation	Consumption of active O*
Non-selective oxidation C9. $C_2H_4 + O^* \rightleftharpoons C_2H_3 \bullet + OH^*$	Consumption of active O* C24. $H_2 + O^* \rightleftharpoons H^{\bullet} + OH^*$
Non-selective oxidation C9. $C_2H_4 + O^* \rightleftharpoons C_2H_3 \bullet + OH^*$ C10. $CH_3 \bullet + O^* \rightleftharpoons CH_3O^*$	Consumption of active O* C24. $H_2 + O^* \rightleftharpoons H^{\bullet} + OH^*$ C25. $OH^{\bullet} + O^* \rightleftharpoons O^{\bullet} + OH^*$
Non-selective oxidation C9. $C_2H_4 + O^* \rightleftharpoons C_2H_3 \bullet + OH^*$ C10. $CH_3 \bullet + O^* \rightleftharpoons CH_3O^*$ C11. $CH_3O^* + O^* \rightleftharpoons CH_2O^* + OH^*$	Consumption of active O* C24. $H_2 + O^* \rightleftharpoons H^{\bullet} + OH^*$ C25. $OH^{\bullet} + O^* \rightleftharpoons O^{\bullet} + OH^*$ C26. $H_2O + O^* \rightleftharpoons OH^{\bullet} + OH^*$

62 S2. Catalysts and *realistic* sets of catalyst descriptors

63 *Table S2.1. OCM real catalysts used in the present work in order to identify realistic combinations of catalyst* 64 *descriptors for the microkinetic simulations.*

Dataset	Reference work	Catalysts
1	Kondratenko et al. ¹⁰	$ \begin{array}{l} La_2O_3, \ 0.1\%Mn-9.1\%Sr/La_2O_3, \ 0.1\%Ba-9.1\%Sr/La_2O_3, \\ \ 0.1\%Li-9.1\%Sr/La_2O_3, \ 0.1\%Na-9.1\%Sr/La_2O_3, \\ \ 0.1\%Cs-9.1\%Sr/La_2O_3, \ 0.1\%Mn-1.0\%Ba/La_2O_3, \\ \ 0.1\%Li-0.1\%Ba/La_2O_3, \ 9.1\%Na-0.1\%Ba/La_2O_3, \\ \ 0.1\%Cs-0.1\%Ba/La_2O_3, \ 0.1\%Mn-9.1\%Mg/La_2O_3, \\ \ 0.1\%Cs-0.1\%Ba/La_2O_3, \ 0.1\%Mn-9.1\%Mg/La_2O_3, \\ \ 0.1\%Cs-0.1\%Ba/La_2O_3, \ 0.1\%Mn-9.1\%Mg/La_2O_3, \\ \ 0.1\%Li-9.1\%Mg/La_2O_3, \ 0.1\%Na-9.1\%Mg/La_2O_3, \\ \ 0.1\%Li-9.1\%Mg/La_2O_3, \ 0.1\%Na-8.3\%Li/La_2O_3, \\ \ 0.1\%Mn-9.0\%Na/La_2O_3, \ 8.3\%Mn-8.3\%Cs/La_2O_3, \\ \ 0.1\%Mn-9.0\%Na/La_2O_3, \ 0.1\%Cs-9.1\%Na/La_2O_3, \\ \ 0.1\%Li-9.1\%Cs/La_2O_3, \ MgO, \ 8.3\%Cs-8.3\%Ba/MgO, \\ \ 0.1\%Mn-9.1\%La/MgO, \ 8.3\%Cs-8.3\%La/MgO, \\ \ 0.1\%Mn-9.1\%La/MgO, \ 8.3\%Cs-8.3\%La/MgO, \\ \ 8.3\%Na-8.3\%La/MgO, \ 8.3\%Cs-8.3\%La/MgO, \\ \ 0.1\%Mn-9.1\%Cs/MgO, \ 0.1\%Na-9.1\%Cs/MgO \\ \ 0.1\%Mn-9.1\%Cs/MgO \\ \ 0.1\%M$
2	Olivier et al. ¹¹	12.5%Sr/La ₂ O ₃ , 10%Sn-20%Li/MgO, 20%La/MgO, 10%La-20%Sr/CaO, 20%La/MgO, 10%La/CaO, 20%(Pt-V-Li)/MgO, 10%La/MgO
3	Kondratenko et al. ¹⁰	10%Li/MgO, 20%Li/MgO, 30%Li/MgO
4	Olivier et al. ¹¹	9.1%Li-0.1%Ba/MgO, 9.1%Li-0.1%Na/MgO, 9.1%Li-0.1%Cs/MgO
5	Huang et al. ¹²	$\begin{array}{c} 3.6\% Na-1.8\% S-0.7\% Zr-0.6\% Mn/SiO_2,\\ 4.3\% Na1.1\% S-0.1\% W-0.3\% P-0.7\% Zr-0.6\% Mn/SiO_2,\\ 5.6\% Na-1.9\% S-0.3\% W-0.5\% P-1.6\% Zr-0.3\% Mn/SiO_2,\\ 3.2\% Na-0.4\% S-0.3\% W-0.8\% Zr-0.6\% Mn/SiO_2,\\ 2.7\% Na-1.0\% S-0.2\% W-0.1\% P-1.1\% Zr-0.42\% Mn/SiO_2,\\ 4.0\% Na-0.9\% S-0.2\% W-0.1\% P-1.0\% Zr-0.4\% Mn/SiO_2,\\ 3.5\% Na-1.8\% S-0.7\% Zr-0.5\% Mn/SiO_2,\\ 3.8\% Na-1.4\% S-0.3\% W-0.1\% P-2.0\% Zr-0.6\% Mn/SiO_2,\\ 4.9\% Na-1.3\% S-0.2\% W-0.9\% P-0.7\% Zr-0.4\% Mn/SiO_2,\\ 4.3\% Na-0.7\% S-0.3\% W-0.4\% P-0.8\% Zr-0.5\% Mn/SiO_2,\\ 3.3\% Na-0.1\% S-0.3\% W-0.5\% P-1.1\% Zr-0.6\% Mn/SiO_2,\\ 5.7\% Na-0.3\% S-0.1\% W-0.5\% P-0.8\% Zr-0.6\% Mn/SiO_2,\\ 4.1\% Na-1.0\% S-0.3\% W-0.6\% P-1.7\% Zr-0.6\% Mn/SiO_2,\\ 1.9\% Na-0.7\% S-0.1\% W-0.1\% P-0.6\% Mn/SiO_2,\\ 1.9\% Na-0.7\% S-0.1\% W-0.1\% P-0.6\% Mn/SiO_2,\\ 3.9\% Na-0.1\% Na-0.1\% P-0.5\% Na-0.5\% Na-0.5\% Na-0.5\% P-0.5\% Na-0.5\% Na-0.5\% Na-0.$
6	Shahri et al. ¹³	$\frac{5\% Na_2 WO_4 - 2\% Mn/SiO_2}{0.5\% Ce - 5\% Na_2 WO_4 - 2\% Mn/SiO_2},\\ 1.0\% Ce - 5\% Na_2 WO_4 - 2\% Mn/SiO_2,\\ 2.5\% Ce - 5\% Na_2 WO_4 - 2\% Mn/SiO_2,\\ 5.0\% Ce - 5\% Na_2 WO_4 - 2\% Mn/SiO_2,\\ 8.0\% Ce - 5\%, Na_2 WO_4 - 2\% Mn/SiO_2,\\ 1.0\% Ce - 5\% Na_2 WO_4 - 2\% Mn/SiO_2$

The results of a methodology previously proposed by our research group² to reproduce experimental performances via microkinetic simulations are shown in Figure S2.1 for the literature datasets herein considered. In this figure, the empty circles represent the *virtual* catalysts (i.e. combination of catalyst descriptors) which were identified as *realistic*, i.e. able to reproduce performances of real catalysts (full triangles) at a given set of operating conditions.

The catalysts descriptors that were found to be discriminating between the several catalyst groups² are reported in Figure S2.2, together with their value ranges indicated via bar charts. The full scale corresponds to the descriptor ranges as originally identified from literature². The coloured bars indicate the ranges for realistic descriptors after the applying the methodology to each dataset. It can be observed that the value ranges could be narrowed as to exclude nonrealistic, often too optimistic performances¹⁴.

Figure S2.1. Output of the methodology described in our previous work², applied to the six datasets of interest in
 the present work to identify realistic catalyst descriptor combinations. The operating conditions for the simulations

80 are the same as the ones reported in literature for the experimental datasets¹⁰⁻¹³.

Figure S2.2. Most significant catalyst descriptors for the identification of the realistic OCM catalysts used in the present work. The color scheme refers to the different datasets from literature and it is the same as in Figure S2.1.

98 S3. Additional results about catalyst ranking in isothermal operation

99 Table S3.1. Correlation matrix for all the pairwise comparisons performed for isothermal scenarios in an 100 operating range considered to be typical for isothermal OCM: T = 1023 - 1073 K, $CH_4/O_2 = 2-5$.

			dataset isoth2									
	T(K)	\rightarrow		1023				1073				
	↓ ↓	CH ₄ /O ₂	2	3	4	5	2	3	4	5		
	1023	2	1	0.99	0.97	0.95	0.98	0.97	0.94	0.92		
		3		1	0.99	0.98	0.98	0.98	0.97	0.96*		
thI		4			1	1	0.96	0.98	0.98	0.97		
iso		5				1	0.95	0.98**	0.99	0.98		
aset	1072	2					1	0.99	0.97	0.95		
dati		3						1	0.99	0.98		
	10/3	4							1	0.99		
		5								1		

101 *case graphically reported in Figure 3/A
102 **case graphically reported in Figure S3.1/A

Figure S3.1. Pairwise comparisons of the performance ranking of the 220 realistic OCM catalysts, for four
 isothermal cases, with operating conditions as indicated in the top legends.

- 114 Table S3.2. Correlation matrixes for all the pairwise comparisons performed for isothermal scenarios by keeping
- CH_4/O_2 constant and varying the operating T.

			dataset isoth2					
	CH ₄ /O ₂	\rightarrow						
	\downarrow	T(K)	1023	1073	1123	1173		
		1023	1	0.98	0.94	0.88		
aset th1	2	1073		1	0.98	0.94		
dat: isoi	Z	1123			1	0.97		
•		1173				1		
				datase	et <i>isoth2</i>			
	CH ₄ /O ₂	\rightarrow						
	↓	T(K)	1023	1073	1123	1173		
lataset <i>isoth1</i>		1023	1	0.98	0.94	0.87**		
	6	1073		1	0.97	0.94*		
		1123			1	0.97		
•		1173				1		
				datase	et <i>isoth2</i>			
	CH ₄ /O ₂	\rightarrow		-	10			
	\downarrow	T(K)	1023	1073	1123	1173		
		1023	1	0.97	0.92	0.86		
aset th1	10	1073		1	0.98	0.87		
dat: isoi	10	1123			1	0.93		
-		1173				1		

116 *case graphically reported in Figure 3/C

117 **case graphically reported in Figure S3.1/C

			dataset isoth2								
	T(K)	\rightarrow					1023	;			
	Ļ	CH ₄ /O ₂	2	3	4	5	6	7	8	9	10
		2	1	0.99	0.97	0.95	0.92	0.90	0.87	0.85	0.82
		3		1	0.99	0.98	0.97	0.95	0.93	0.91	0.89
Įų]		4			1	1	0.99	0.98	0.96	0.95	0.93
isot		5				1	1	0.99	0.98	0.97	0.95
dataset i	1023	6					1	1	0.99	0.98	0.97
		7						1	1	0.99	0.98
		8							1	1	0.99
		9								1	1
		10					10-70				1
	T(K)	\rightarrow				-	1073	3	0	2	10
	↓ I	CH_4/O_2	2	3	4	5	6	7	8	9	10
		2	1	0.99	0.97	0.95	0.93	0.87	0.85	0.82	0.79**
1		3		I	0.99	0.98	0.97	0.91	0.90	0.87	0.85
th		4			1	0.99	0.98	0.94	0.93	0.91	0.89
isc	1072	5				I		0.97	0.95	0.94	0.92
set	1073	0					1	0.98	0.97	0.90	0.95
ats		8						1	1	0.99	0.98
р		0							1	1	0.99
		10								1	1
		10								-	
	T(K)	\rightarrow					1123	3			
	T(K) ↓	\rightarrow CH ₄ /O ₂	2	3	4	5	1123 6	7	8	9	10
	T(K) ↓	$ \xrightarrow{\rightarrow} CH_4/O_2 $	2 1	3	4	5	1123 6 0.91	7 0.84	8 0.81	9 0.78	10 0.76*
	T(K) ↓		2 1	3 0.99 1	4 0.95 0.99	5 0.94 0.98	1123 6 0.91 0.96	7 0.84 0.88	8 0.81 0.86	9 0.78 0.83	10 0.76* 0.80
l I I	<u>T(K)</u> ↓		2	3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99	1123 6 0.91 0.96 0.98	7 0.84 0.88 0.91	8 0.81 0.86 0.89	9 0.78 0.83 0.87	10 0.76* 0.80 0.85
isoth1	T(K) ↓		2	3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99	7 0.84 0.88 0.91 0.94	8 0.81 0.86 0.89 0.92	9 0.78 0.83 0.87 0.90	10 0.76* 0.80 0.85 0.89
et isoth1	T(K) ↓ 1123		2	3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99 1	7 0.84 0.88 0.91 0.94 0.95	8 0.81 0.86 0.89 0.92 0.94	9 0.78 0.83 0.87 0.90 0.93	10 0.76* 0.80 0.85 0.89 0.92
taset isoth I	T(K) ↓ 1123		2	3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99 1	7 0.84 0.88 0.91 0.94 0.95 1	8 0.81 0.86 0.89 0.92 0.94 1	9 0.78 0.83 0.87 0.90 0.93 0.99	10 0.76* 0.80 0.85 0.89 0.92 0.98
dataset isoth1	T(K) ↓ 1123		2	3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99 1	7 0.84 0.88 0.91 0.94 0.95 1	8 0.81 0.86 0.89 0.92 0.94 1 1	9 0.78 0.83 0.87 0.90 0.93 0.99 1	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99
dataset isothI	T(K) ↓ 1123	$ \rightarrow \frac{\mathbf{CH}_4 / \mathbf{O}_2}{2} \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 16 \\ \mathbf{O}_2 \\$	2 1	3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99 1	7 0.84 0.88 0.91 0.94 0.95 1	8 0.81 0.86 0.89 0.92 0.94 1 1	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99 1
dataset <i>isoth1</i>	T(K) ↓ 1123		2 1	3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99 1	7 0.84 0.88 0.91 0.94 0.95 1	8 0.81 0.86 0.89 0.92 0.94 1 1	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99 1
dataset <i>isoth1</i>	T(K) ↓ 1123 T(K)	$\rightarrow CH_4/O_2$ 2 3 4 5 6 7 8 9 10 $\rightarrow CH_4/O_2$	2 1	3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99 1 1 1173	7 0.84 0.88 0.91 0.94 0.95 1	8 0.81 0.86 0.89 0.92 0.94 1 1	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99 1 1
dataset isoth1	T(K) ↓ 1123 T(K) ↓	$\rightarrow CH_4/O_2$ 2 3 4 5 6 7 8 9 10 $\rightarrow CH_4/O_2$		3 0.99 1	4 0.95 0.99 1	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99 1 1 1173 6	7 0.84 0.88 0.91 0.94 0.95 1 1	8 0.81 0.86 0.89 0.92 0.94 1 1 1 8	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99 1 1 1
dataset isoth I	T(K) ↓ 1123 T(K) ↓	$ \rightarrow \frac{CH_4/O_2}{2} \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \rightarrow \frac{CH_4/O_2}{2} $	2 1 	3 0.99 1 	4 0.95 0.99 1 	5 0.94 0.98 0.99 1	1123 6 0.91 0.96 0.98 0.99 1 1 1173 6 0.90	7 0.84 0.88 0.91 0.94 0.95 1 1 	8 0.81 0.86 0.89 0.92 0.94 1 1 1 8 0.85	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1 9 0.81	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99 1 1 1 1 0 0.76
I dataset isoth I	T(K) ↓ 1123 T(K) ↓	$ \rightarrow \frac{\mathbf{CH_4/O_2}}{2} \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \rightarrow \frac{\mathbf{CH_4/O_2}}{2} \\ 2 \\ 3 \\ 4 \\ \mathbf{CH_4/O_2} \\ 2 \\ 3 \\ 4 \\ \mathbf{CH_4/O_2} \\ CH_4$	2 1 	3 0.99 1 	4 0.95 0.99 1 	5 0.94 0.98 0.99 1 	1123 6 0.91 0.96 0.98 0.99 1 1 1173 6 0.90 0.95 0.92	7 0.84 0.88 0.91 0.94 0.95 1	8 0.81 0.86 0.92 0.94 1 1 1 8 0.85 0.91 0.95	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1 9 0.81 0.88	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99 1 1 1 1 0 0.76 0.84
oth I dataset isoth I	T(K) ↓ 1123 T(K) ↓	$\rightarrow CH_4/O_2$ 2 3 4 5 6 7 8 9 10 $\rightarrow CH_4/O_2$ 2 3 4 5	2 1	3 0.99 1 	4 0.95 0.99 1 	5 0.94 0.98 0.99 1 	1123 6 0.91 0.96 0.98 0.99 1 1 1173 6 0.90 0.95 0.98	7 0.84 0.88 0.91 0.94 0.95 1 -	8 0.81 0.86 0.92 0.94 1 1 1 8 0.85 0.91 0.95 0.97	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1 1 9 0.81 0.88 0.92 0.95	10 0.76* 0.80 0.85 0.92 0.98 0.99 1 1 1 10 0.76 0.84 0.90 0.92
t isoth1 dataset isoth1	T(K) ↓ 1123 T(K) ↓	$\rightarrow CH_4/O_2$ 2 3 4 5 6 7 8 9 10 $\rightarrow CH_4/O_2$ 2 3 4 5 6	2 1 2 1	3 0.99 1 3 0.99 1	4 0.95 0.99 1 	5 0.94 0.98 0.99 1 	1123 6 0.91 0.96 0.98 0.99 1 1 1173 6 0.90 0.95 0.98 1 1	7 0.84 0.88 0.91 0.94 0.95 1 7 0.87 0.93 0.96 0.98	8 0.81 0.86 0.89 0.92 0.94 1 1 1 1 8 0.85 0.91 0.95 0.97 0.99	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1 1 9 0.81 0.88 0.92 0.95 0.97	$ \begin{array}{c} 10\\ 0.76^{*}\\ 0.80\\ 0.85\\ 0.89\\ 0.92\\ 0.98\\ 0.99\\ 1\\ 1\\ 1\\ 1\\ 0.76\\ 0.84\\ 0.90\\ 0.93\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.84\\ 0.90\\ 0.93\\ 0.95\\ 0.$
set isoth I dataset isoth I	T(K) ↓ 1123 T(K) ↓ 1173	→ CH4/O2 2 3 4 5 6 7 8 9 10 → CH4/O2 2 3 4 5 6 7		3 0.99 1 3 0.99 1	4 0.95 0.99 1 	5 0.94 0.98 0.99 1 	1123 6 0.91 0.96 0.98 0.99 1 1 1 1 1 6 0.90 0.95 0.98 1 1 1	7 0.84 0.88 0.91 0.94 0.95 1 7 0.87 0.93 0.96 0.98 1	8 0.81 0.86 0.89 0.92 0.94 1 1 1 1 8 0.85 0.91 0.95 0.97 0.99 0.99	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1 1 9 0.81 0.88 0.92 0.95 0.97	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99 1 1 1 1 1 0.76 0.84 0.90 0.93 0.95 0.96
lataset isoth1 dataset isoth1	T(K) ↓ 1123 T(K) ↓ 1173	→ CH4/O2 2 3 4 5 6 7 8 9 10 → CH4/O2 2 3 4 5 6 7 8		3 0.99 1 3 0.99 1	4 0.95 0.99 1 	5 0.94 0.98 0.99 1 	1123 6 0.91 0.96 0.98 0.99 1 1 1173 6 0.90 0.95 0.98 1 1 1	7 0.84 0.88 0.91 0.94 0.95 1 -	8 0.81 0.86 0.89 0.92 0.94 1 1 1 1 8 0.95 0.91 0.95 0.97 0.99 0.99 1	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1 9 0.81 0.88 0.92 0.95 0.97 0.97 0.99	10 0.76* 0.80 0.85 0.89 0.92 0.98 0.99 1 1 1 1 0 0.76 0.84 0.90 0.93 0.95 0.96 0.99
dataset <i>isothI</i> dataset <i>isothI</i>	T(K) ↓ 1123 T(K) ↓ 1173	→ CH4/O2 2 3 4 5 6 7 8 9 10 → CH4/O2 2 3 4 5 6 7 8 9 10 7 8 9 10 7 8 9 10 7 8 9 10 7 8 9 10 7 8 9 10 7 8 9 10 7 8 9 9 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 0.99 1 3 0.99 1	4 0.95 0.99 1 	5 0.94 0.98 0.99 1 	1123 6 0.91 0.96 0.98 0.99 1 1 1173 6 0.90 0.95 0.98 1 1 1	7 0.84 0.88 0.91 0.94 0.95 1 - - 0.95 1 - 0.95 1 - 0.95 1 0.95 1 0.93 0.96 0.98 1 1	8 0.81 0.86 0.89 0.92 0.94 1 1 8 0.85 0.91 0.95 0.97 0.99 1	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1 1 1 9 0.81 0.88 0.92 0.95 0.97 0.97 0.99 1	10 0.76* 0.80 0.85 0.92 0.98 0.99 1 10 0.76 0.84 0.90 0.93 0.95 0.96 0.99
dataset <i>isoth I</i> dataset <i>isoth I</i>	T(K) ↓ 1123 T(K) ↓ 1173	$ \rightarrow \ CH_4/O_2 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ \rightarrow \ CH_4/O_2 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 6 \ 7 \ 8 \ 9 \ 10 \ \rightarrow \ CH_4/O_2 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 $		3 0.99 1 3 0.99 1	4 0.95 0.99 1 	5 0.94 0.98 0.99 1 	1123 6 0.91 0.96 0.98 0.99 1 1 1173 6 0.90 0.95 0.98 1 1 1	7 0.84 0.88 0.91 0.94 0.95 1 0 7 0.87 0.93 0.96 0.98 1	8 0.81 0.86 0.89 0.92 0.94 1 1 8 0.85 0.91 0.95 0.97 0.99 1	9 0.78 0.83 0.87 0.90 0.93 0.99 1 1 1 1 1 9 0.81 0.88 0.92 0.95 0.97 0.97 0.97 0.99 1	10 0.76* 0.80 0.85 0.92 0.98 0.99 1 1 1 1 0.76 0.84 0.90 0.93 0.95 0.96 0.99 1 1

130Table S3.3. Correlation matrixes for all the pairwise comparisons performed for isothermal scenarios by keeping131the operating T constant and varying the inlet CH_4/O_2 .

132 *case graphically reported in Figure 3/D

133 **case graphically reported in Figure S3.1/D

135 S4. Additional results about the feed composition effect in isothermal operation

Figure 3/D in the manuscript reports the comparison of the following isothermal scenarios: p) 136 $T|_{isoth1} = 1123 \text{ K}, CH_4/O_2|_{isoth1} = 2 \text{ and } q$) $T|_{isoth2} = 1123 \text{ K}, CH_4/O_2|_{isoth2} = 10$, in order to assess the 137 effect of feed composition on the catalyst ranking. The descriptors which were found to be 138 significantly different between the top 10% performing catalysts in these two scenarios are: the 139 chemisorption enthalpy of oxygen, the density of active sites on the catalyst surface and the 140 specific surface area. As shown in Figure S4.1, these three properties take on significantly lower 141 values for the top-performing catalysts in scenario q, corresponding to oxygen-lean conditions. 142 A p value < 0.01 in the Kruskal-Wallis test was considered as threshold for significance: the 143 null hypothesis of equal mean ranks among the distributions of the descriptors in the two 144 quadrants can be rejected. 145

For a given set of operating conditions, these three descriptors influence the concentration of oxygen species under the form of O* on the catalyst surface. As shown in Figure S4.2, a lower concentration of O* (mmolO*/kg_{CAT}) is obtained in case of lower density of active sites (mmol*/m², where * represents a surface vacancy), lower specific surface area (m²/kg_{CAT}) and weaker oxygen chemisorption (lower enthalpy of reaction: $O_{2(g)} + 2* \rightarrow 2O*$). These properties correspond to catalyst cat 2 in the figure.

For a given catalyst, the actual concentration of O* depends not only on the intrinsic catalyst properties, i.e. the descriptors, but also on the operating conditions. For instance, for each catalyst, the surface O* concentration is higher in case of an oxygen-rich gas feed, because the chemisorption on the surface is favoured at higher partial pressure of oxygen in the gas.

158 Figure S4.1. Output of the statistical tests, referring to the top 10% catalysts in Figure 3/D: p) $T|_{isoth1} = 1123 \text{ K}$, 159 $CH_4/O_2|_{isoth1} = 2$, q) $T|_{isoth2} = 1123 \text{ K}$, $CH_4/O_2|_{isoth2} = 10$.

160

161 Figure S4.2. Concentration of O^* on the surface of two catalysts corresponding to the simulations reported in 162 Table S4.1. The two catalysts differ in terms of oxygen chemisorption enthalpy (cat 1 = 100 kJ/mol, cat 2 = 60163 kJ/mol), active site density (cat $1 = 9.3 \cdot 10^{-6} \text{ mol/m}^2$, cat $2 = 1.3 \cdot 10^{-6} \text{ mol/m}^2$) and specific surface area (cat 1 = 5600164 m^2/kg_{cab} cat $2 = 2800 m^2/kg_{cat}$). These two catalysts are representative of the groups top 10% isoth1 and top 10% 165 isoth2 from Figure S4.1.

In Table S4.1 the performances of the two catalysts in Figure S4.2 are reported in the two scenarios from Figure 3/D. As described above, the average concentration of surface oxygen is higher in case of an oxygen-rich feed ($CH_4/O_2=2$) for both catalysts. The increase in surface oxygen at low CH_4/O_2 is more pronounced for the cat 2, which is characterized by lower concentration of free sites * and weaker chemisorption (+32% surface O* for cat 1 vs 45% cat 2). However, the most important observation is that cat 1, characterized by a more than 20times higher concentration of surface oxygen at both methane-to-oxygen ratios, performs 173 significantly better than cat 2 in case of an oxygen-rich feed ($CH_4/O_2=2$). However, when the

174 gas phase is oxygen-starved ($CH_4/O_2=10$), a lower concentration of surface oxygen (cat 2) is

175 more beneficial in terms of C_{2+} yield, thus resulting in reserved ranking of the two catalysts.

Table S4.1. Performances of the two catalysts reported in Figure S.4.2 for isothermal operation at two extreme
methane-to-oxygen ratios. In bold the confirmation that a higher concentration of surface oxygen vacancies is
beneficial in the oxygen-rich scenario, while being detrimental in the oxygen-lean case.

T = 1122 V	A. CI	$H_4/O_2 = 2$	B. $CH_4/O_2 = 10$			
1–1125K	cat 1	cat 2	cat 1	cat 2		
Average O* (mmol/kg _{cat})	7.30	0.32	5.49	0.22		
GHSV (h ⁻¹)	126371	29764	299606	66529		
X _{O2}	100%	100%	100%	100%		
X _{CH4}	39.2%	38.5%	14.2%	14.5%		
S _{C2+}	46.5%	44.0%	78.5%	78.8%		
Y _{C2+}	18.2%	16.9%	11.1%	11.4%		

179

180

181

182 Figure S4.3. Comparison of selective vs non-selective conversion rates of methyl radicals at two methane

183 conversion levels for cat 1 in Figure S4.2. R_{selective} is calculated via the rates of reactions G9, G10 and G11 reported

185 *S1.2*.

186

¹⁸⁴ in Table S1.1; R_{unselective} is calculated via the rates of reactions G6, G7, G8 and C10 reported in Tables S1.1 and

188 S5. Results about catalyst ranking in adiabatic operation

The pairwise comparisons of three adiabatic scenarios is shown in Figure S5.1. For some 189 190 catalysts, indicated by empty circles in the figure, complete oxygen conversion could not be 191 achieved even at the minimum GHSV constraint in the lower inlet temperature scenario considered in each comparison. This results in a low C₂₊ yield and, consequently, a low ranking 192 for this scenario. Most of these catalysts achieve high/complete oxygen conversion in the higher 193 inlet temperature scenario, hence, their ranking results significantly higher. The number of 194 195 catalysts for which complete oxygen conversion cannot be achieved is obviously more pronounced for the lowest inlet temperature (i.e. 800 K), thus explaining the higher amount of 196 197 empty circles in Figure S5.1/B compared to Figure S5.1/C. This implies that for these catalysts, 198 the light-off temperature⁶ is in between the inlet temperature of both scenarios considered (i.e. between 800 K and 853 K in Figure S5.1/A and between 853 K and 900 K in Figure S5.1/C). 199 These catalysts were excluded from the analysis of the correlation coefficient because the 200 pairwise ranking comparisons should be performed at comparable oxygen conversion level. 201

Figure S5.1. Pairwise comparisons of the performance ranking of the 220 realistic OCM catalysts, for three 204 adiabatic scenarios, with operating conditions as indicated in the top legends. Empty circles correspond to 205 catalysts for which light-off ($X_{02} \ge 50\%$) was achieved only in scenario q) and not in scenario p), and for this

206 reason are excluded from the analysis of the correlation coefficient.

207 S6. Additional results about catalyst ranking in isothermal vs adiabatic operation

208 Table S6.1. Correlation matrixes for all the pairwise comparisons performed for isothermal vs adiabatic 209 operation.

			dataset isoth										
	T, T ₀ (K)	\rightarrow		1023									
	Ļ	CH ₄ /O ₂	2	3	4	5	6	7	8	9	10		
	800	9.0	0.47	0.51	0.55	0.57	0.59	0.61	0.62	0.63	0.64***		
	853	9.8	0.48	0.52	0.56	0.60	0.61	0.62	0.63	0.64	0.65		
	900	11.0	0.51**	0.57	0.61	0.63	0.64	0.66	0.68	0.69	0.71		
	T, T ₀ (K)	\rightarrow					1073						
	Ļ	CH ₄ /O ₂	2	3	4	5	6	7	8	9	10		
	800	9.0	0.52	0.58	0.59	0.61	0.62	0.63	0.65	0.66	0.68		
lial	853	9.8	0.52	0.58	0.59	0.62	0.63	0.64	0.65	0.67	0.68		
t ac	900	11.0	0.57	0.64	0.65	0.67	0.70	0.72	0.74	0.76	0.77		
atase	T, T ₀ (K)	\rightarrow		1123									
q	Ļ	CH ₄ /O ₂	2	3	4	5	6	7	8	9	10		
	800	9.0	0.56	0.64	0.67	0.68	0.71	0.72	0.74	0.74	0.76		
	853	9.8	0.56	0.64	0.67	0.68	0.71	0.72	0.74	0.75	0.76		
	900	11.0	0.59	0.70	0.72	0.75	0.76	0.78	0.80	0.83	0.85		
	T, T ₀ (K)	\rightarrow	1173										
	Ļ	CH ₄ /O ₂	2	3	4	5	6	7	8	9	10		
	800	9.0	0.57	0.65	0.68	0.70	0.73	0.77	0.79	0.82	0.83		
	853	9.8	0.57	0.65	0.68	0.70	0.74	0.77	0.80	0.82	0.83		
	900	11.0	0.57****	0.70	0.73	0.77	0.79	0.83	0.84	0.86	0.86^{*}		

*case graphically reported in Figure 4/A

**case graphically reported in Figure 4/B

***case graphically reported in Figure 4/C

211 212 213 **** case graphically reported in Figure 4/D

222 S7. Additional results about the comparison of 1st quadrant and 2nd quadrant catalysts

The most significant difference between the catalysts in the two quadrants is related to the sticking probability of ethylene on surface oxygen, which is the most influential descriptor for C_2H_4 oxidation on the catalyst surface, i.e. reaction [4] in Table 2. A p value < 0.01 in the Kruskal-Wallis test was considered as threshold for significance: the null hypothesis of equal mean ranks among the distributions of the descriptors in the two quadrants can be rejected.

In terms of catalytic properties, this descriptor is representative of the nature of the oxygen species on the catalyst surface² and can be related to the catalyst basicity¹⁵ and electronic properties¹⁶. This observation points again to the role of surface oxygen as key discriminating factor in the ranking of catalysts as a function of the operating conditions and operating mode.

boxplot of C_2H_4 sticking coefficient on O*

232

233 Figure S7.1. Referring to Figure 5/A: isoth) T = 1023K, $CH_4/O_2 = 2$, adiab) $T_0 = 900K$, $CH_4/O_2 = 11$.

236 Figure S7.2. Referring to Figure 5/B: isoth) T = 1173 K, $CH_4/O_2 = 2$, adiab) $T_0 = 900$ K, $CH_4/O_2 = 11$.

235

238 The predominance of ethylene consecutive oxidation for the 1st quadrant catalysts, identified and described via Delplots in section 4.2 of the manuscript, is visualized in a simplified reaction 239 pathway analysis in Figure S7.3. 240

241 242

Figure S7.3. Qualitative reaction path for the oxidation routes associated with Delplots of the two catalysts in 243 Figure 8 and S7.4, with thicker arrows referring to faster reactions.

Figure S7.4. First-rank Delplots, i.e. selectivity vs conversion plots, for two catalysts belonging to the 1^{st} (pink) and 2^{nd} (light-blue) quadrants of Figure 5, for four isothermal (A, B, C, D), with operating conditions as indicated in the top legends. Figures S7.4/A and S7.4/B correspond to Figure 8/A and 8/B and are herein reported again for the sake of completeness.

The effect of operating temperature on the oxidation routes can be analysed by comparing the Delplots in Figure S7.4/A (1023 K) and Figure S7.4/D (1173 K). The reduction in primary and consecutive oxidation¹⁷ can be observed, respectively, by the higher selectivity at differential conversion for both catalysts in Figure S7.4/D compared to Figure S7.4/A, and the less steep selectivity vs conversion evolution. However, despite the relevance of operating temperature for OCM kinetics, the relative isothermal performances of the two catalysts at higher temperature (1173 K - Figure/D) are very similar to the ones at 1023 K (Figure/A), with the catalyst from the 2nd quadrant clearly outperforming the one from the 1st quadrant, especially at
high conversion. This confirms that temperature alone does not significantly impact the catalyst
ranking.

The effect of CH_4/O_2 can be observed by comparing Figure S7.4/C with Figure S7.4/A, and, in particular in combination with higher temperature, with Figure S7.4/B. The reduced slope of the selectivity evolution with conversion observed for both catalysts in Figure S7.4/C and Figure S7.4/B points to the limitation of the consecutive oxidation of the products in an oxygenlean environment (high CH_4/O_2) thanks to the reduced availability of the oxidant.

Figure S7.5. Comparison of the performance ranking of the 220 realistic OCM catalysts, for one isothermal scenario with two adiabatic scenarios, with operating conditions as indicated in the top legend. The dashed lines

indicate the median rankings for both scenarios.

Figure S7.6. Referring to Figure S7.5/A: isoth) T = 1023 K, $CH_4/O_2 = 3$, adiab) $T_0 = 800$ K, $CH_4/O_2 = 9.8$.

boxplot of C_2H_4 sticking coefficient on O*

278 References

- P. N. Kechagiopoulos, J. W. Thybaut and G. B. Marin, *Ind. Eng. Chem. Res.*, 2014, 53,
 1825-1840.
- L. Pirro, P. S. F. Mendes, S. Paret, B. D. Vandegehuchte, G. B. Marin and J. W.
 Thybaut, *Catal. Sci. Technol.*, 2019, 9, 3109-3125.
- 283 3. V. I. Alexiadis, J. W. Thybaut, P. N. Kechagiopoulos, M. Chaar, A. C. van Veen, M.
 284 Muhler and G. B. Marin, *Appl. Catal. B-Environ.*, 2014, **150**, 496-505.
- V. I. Alexiadis, M. Chaar, A. C. van Veen, M. Muhler, J. W. Thybaut and G. B. Marin,
 Appl. Catal. B-Environ., 2016, **199**, 252-259.
- 287 5. C. Karakaya, H. Zhu, C. Loebick, J. G. Weissman and R. J. Kee, *Catal. Today*, 2018,
 312, 10-22.
- L. Pirro, A. Obradović, B. D. Vandegehuchte, G. B. Marin and J. W. Thybaut, *Ind. Eng. Chem. Res.*, 2018, 57, 16295-16307.
- 291 7. J. J. Carberry and M. M. Wendel, *AIChE J.*, 1963, **9**, 129-133.
- 292 8. P. M. Couwenberg, Q. Chen and G. B. Marin, Ind. Eng. Chem. Res., 1996, 35, 415-421.
- 293 9. Q. Chen, P. M. Couwenberg and G. B. Marin, *Catal. Today*, 1994, **21**, 309-319.
- 294 10. E. V. Kondratenko, M. Schluter, M. Baerns, D. Linke and M. Holena, *Catal. Sci.* 295 *Technol.*, 2015, 5, 1668-1677.
- L. Olivier, S. Haag, H. Pennemann, C. Hofmann, C. Mirodatos and A. C. van Veen, *Catal. Today*, 2008, **137**, 80-89.
- 298 12. K. Huang, X. L. Zhan, F. Q. Chen and D. W. Lu, Chem. Eng. Sci., 2003, 58, 81-87.
- 299 13. S. M. K. Shahri and A. N. Pour, J. Nat. Gas Chem., 2010, 19, 47-53.
- 300 14. A. Zunger, *Nature*, 2019, **566**, 447-449.
- 301 15. H. Borchert and M. Baerns, J. Catal., 1997, 168, 315-320.
- 302 16. Z. Zhang, X. E. Verykios and M. Baerns, *Catal. Rev.*, 1994, **36**, 507-556.

303 17. M. Y. Sinev, Z. T. Fattakhova, V. I. Lomonosov and Y. A. Gordienko, *J. Nat. Gas*304 *Chem.*, 2009, 18, 273-287.