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S1 Methods

S1.1 Neural networks (NNs)

Multi-layer feed forward neural networks (NNs) have been implemented in python using the

numpy1 and theano2 packages.

To find (hyper)parameters of the optimal-network-architecture NNs to best fit the relation be-

tween a molecular geometry and its corresponding excited-state properties, we have automated

a random grid search3 and adapted the learning rate, one of the most critical parameters during

training.4 The optimization of several parameters of NNs was done for the initial training set con-

sisting of 100 data points for the analytical model and 992 data points for CH2NH+
2 . After the

adaptive sampling, the training set increased to twice its initial size. Each nuclear configuration

was given to the NNs as the matrix of inverted distances. For optimal performance, we tested sev-

eral aspects of the NN architecture, like the type of non-linear basis function (hyperbolic tangent

and shifted softplus function, ln(0.5ex +0.5)) used, the number of neurons, the number of hidden

layers, as well as other parameters, such as the learning rate, lr in the following equations, the L2

regularization rate, the number of epochs, the batch size, and a constant factor, η in equation 2,

that regulates the influence of forces in the update step. Emphasis was put on optimization of the

L2 regularization rate with respect to a given batch size and the learning rate.

For each quantity that has to be predicted, a separate NN was used, except for the gradients.

The latter enter directly into the NNs dedicated to the potential energy prediction. The NNs for the

analytical model consisted of one or two hidden layers, whereas deep NNs with 6 hidden layers

were applied for training and predictions of properties of CH2NH+
2 . We chose the NNs with respect

to their error on the validation set as well as the form of their loss function. For the initial training

set, we always sampled two different variables of the NN architectures. The learning rate was first

scanned during a couple of iterations from values of 10−7 to 100 along with the L2 regularization

rate (values between 10−4 and 10−14) using a fixed number of neurons (50) and hidden layers (4).

After getting an idea about the magnitude of the L2 regularization rate, the decay factor as well

as the step number for annealing the learning rate were evaluated. The decay factor was sampled

from 0 to 1, whereas values between 0.9 and 1.0 seemed to give best NN training. The number of

epochs, after which the learning rate should be annealed, was sampled from 1 to 1000 with values
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between 1 and 100 leading to best results. After this, the type of basis function was analyzed. The

hyperbolic tangent turned out to give fair results for nonadiabatic couplings (NACs) and dipole

moments, whereas the shifted softplus function was slightly better for energies and gradients. We

further tried batch sizes of 1, 2, 5, 10, 32, 64, 100, 128, 256, 500, and 992 for the initial training

set (batch sizes of 2000 and 4000 were also tested for the larger and final training sets) along

with the learning rate. A batch size of 500 turned out to lead to good training performance. The

number of hidden layers was evaluated from 1 hidden layer up to 8 hidden layers along with the

number of neurons from 10 to 100. For energies, gradients and dipole moments the number of

neurons was set to 50 and for networks trained on NACs a slightly larger number of neurons was

chosen. After assessing those parameters, the learning rate as well as the L2 regularization rate

were sampled again. Now, a narrower space of those parameters was sampled relying upon the

previously defined values. The influence of the decay factor and update step for annealing the

learning rate was further reassessed. 4 Hidden layers were used for training set sizes up to around

2000 data points, afterwards 6 hidden layers slightly improved the NN accuracy.

Each time new parameters were sampled, we trained around 20-100 networks depending on

the space to cover for a given parameter. The large initially sampled space of (hyper)parameters

was narrowed after the initial training set was expanded and assumed to be a good starting point

for random grid search. There were several sets of parameters that led to very similar performance

and the two with the lowest error on a validation and training set were chosen for carrying out

dynamics simulations.

S1.2 NN training

In general, training aims at fitting the weight parameters of a NN in order to minimize a cost

function, which usually represents the mean-squared error (MSE) between predictions by NNs and

reference data. For this task, we used Adam (adaptive moment estimation),5 a stochastic gradient

descent optimization algorithm. In combination with Adam, an exponential learning rate decay

was applied.3 Therefore, a decay-factor, flr, with values between 0 and 1, as well as a step size

were defined. The step size gives the number of epochs that have to be passed after lr is adjusted

according to the following equation:

lr = lr · flr (1)

Quantities, which can be related to a nuclear configuration and predicted by implemented NNs

are energies as well as corresponding gradients, spin-orbit couplings, NACs, and dipole moments.

For predictions of energies, it is favorable to include gradients in the minimization process.6 The

cost function,

CE,F =
1
M

M
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thus depends on two terms, with m running over all molecules (total number M), and α running

over all Cartesian coordinates of atoms (total number 3N). The first part of Equation 2 is the

MSE between energies predicted by the NN, ENN
m , and reference-data energies, EQC

m , obtained from

quantum chemical calculations. The second part of this equation represents the MSE of molecular
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forces, once derived from NNs, FNN
mα

, and once calculated with quantum chemistry, FQC
mα

. The

constant η regulates the influence of forces on the overall cost function and is set to 1 here. All

different electronic states were treated within one NN, thus the errors entering the cost function

are for all electronic states.

The reference data set was always split into a training and a validation set in a random fashion

using a ratio of 9:1. For training and prediction, inputs and outputs, X , were scaled with respect

to the mean, µ, and standard deviation, σ , of the training set according to equation 3.

s =
X−µ

σ
(3)

An early stopping mechanism was used to control overfitting. Additionally, the convergence of

the loss functions of the training and validation set were checked manually, ensuring, e.g., that

their order of magnitude is similar. The training set of the analytical model consisted of 100

equidistant data points containing values of x between 0.4 and 1.8 (with x being the one degree

of freedom of the harmonic oscillators, see Table S7). Two initial training sets were generated for

CH2NH+
2 : one via sampling along each degree of freedom as well as a torsional mode and another

one by executing dynamics simulations with SHARC but starting each trajectory from the same

geometry, i.e., the equilibrium geometry, with sampled velocities according to a Wigner distribu-

tion.7 The excitation window for these simulations was set to 7-11 eV. The training set sampled

along normal modes and the torsional mode yielded a better initial fit of the different computed

properties, thus the focus was set only on this set for CH2NH+
2 . The initial data set was insufficient

for excited-state dynamics simulations and was expanded via an adaptive selection scheme as de-

scribed in reference.6 For this reason, two slightly different sets of NNs (NN1 and NN2, see Table

S1 for the differing parameters and Table S2 for the mean absolute error (MAE) obtained with

those NNs) were chosen to start dynamics simulations by replacing quantum chemical calculations

with predictions made by NNs. The mean, M , of fitted properties, M̃J, of each NN, J,

M =
1
J

J

∑
j=1

M̃J (4)

is given to SHARC to propagate the nuclei. Further, the root mean-squared error (RMSE) between

those predictions, Mσ , was calculated on-the-fly:

Mσ =

√√√√ 1
J−1

J

∑
j
(M̃J−M)2. (5)

Inputs according to a region of the PES that has not been visited yet could be detected on-the-

fly by setting a threshold for the RMSE of each quantity predicted by NNs. The threshold is set

to 18.8 kcal/mol (0.03 H) for the energies in the beginning and adapted to smaller values during

sampling similar to reference6 by multiplication with a factor of 0.95 up to 10 times. Whenever this

threshold is exceeded, predictions by NNs are deemed untrustworthy and need to be recomputed

1–25 | 3



Fig. S1 Predictions of dynamics with deep NNs during the last iterations of adaptive sampling. (A)
Dynamics simulations with deep NNs trained on 3600 data points. The grey area indicates the time span,
where trajectories were stopped by the adaptive sampling algorithm due to running into regions with
insufficient training data. (B-D) Convergence towards the correct dynamics with NNs trained on
approximately 3700, 3800, and 3900 data points. See Fig. S5 for the reference dynamics. Stopping of
trajectories by the sampling algorithm is shifted to later times with increasing training set size, as
indicated by the grey areas.

with quantum chemistry as well as added to the training set. This is done for each property

independently and as soon as one property is predicted unreliably, a new QC reference calculation

is carried out. The NNs are retrained and previous weights are not used as a guess for training

NNs. For the dipole moments, the threshold was set to 0.5 a.u. (atomic units). The latter was kept

constant, since dipole moments do not directly enter into the dynamics in our current approach

but are implemented for future research purposes.

For the RMSE of the NACs, the threshold is initially set to 0.25 a.u., reduced adaptively, and

raised intermediately to 3.0 a.u. after a training set size of 3600 points is reached. This interme-

diate raise makes it possible to focus only on geometries close to conical intersections, where the

NAC is verly large. These are necessary to describe the dynamics accurately. Consequently, the

population dynamics converges towards the correct behavior, as can be seen in Fig. S1 for the last

iterations of the sampling procedure.

As already mentioned, the predefined threshold is multiplied by a factor of 0.95 after a new

conformation is detected, recalculated with QC and the NNs are retrained. The initial value was

adapted by this factor after each training cycle for adaptive sampling, when the training set is

still built. For the long dynamics simulations (after 10 ps), two NNs are still used for detecting

undersampled regions of conformational space but threshold for the RMSE between the NNs is

now kept constant (at a value of 0.05 a.u. for energies). The training set size increases only slightly

(by 58 samples) during this time and are not considered to lie within the previously visited regions
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Table S1 Selected parameters to construct NNs trained on data of CH2NH+
2 and carry out computations

given in Figs. 3-6 of the main text and Figs. S4-6 of the ESI. NN1 describes the first NN that was defined,
whereas NN2 describes the second one. The influence of the forces for training of energies was set to 1.

Property Energy (NN1) Dipole moments (NN1) NACs (NN1)

Number of hidden layers 6 6 6

Number of neurons per hidden layer 50 50 74

Batch size 500 500 500

Learning rate, lr 5.33 ·10−3 6.20 ·10−6 5.54 ·10−5

Decay factor, flr 0.994 0.9999 0.994

Update steps for annealing of lr 3 1 64

L2 regularization rate 3.32 ·10−8 8.63 ·10−7 3.99 ·10−8

Basis function Shifted softplus Hyperbolic tangent Hyperbolic tangent

Property Energy (NN2) Dipole moments (NN2) NACs (NN2)

Number of hidden layers 6 6 6

Number of neurons per hidden layer 50 50 79

Batch size 500 500 500

Learning rate, lr 3.49 ·10−3 2.74 ·10−6 1.22 ·10−5

Decay factor, flr 0.990 0.993 0.984

Update steps for annealing of lr 5 7 79

L2 regularization rate 5.33 ·10−7 2.39 ·10−5 2.62 ·10−8

Basis function Shifted softplus Hyperbolic tangent Hyperbolic tangent

Table S2 Mean absolute error (MAE) and root mean-squared error (RMSE) of predicted properties
averaged over all states for the training set of the methylenimmonium cation containing 4000 data points.

Energy [H] Gradients [H/Bohr] Dipole moments [a.u.] NACs [a.u.]

MAE 0.00117 0.0189 0.0971 0.156

RMSE 0.00225 0.0395 0.208 1.13

of the PES. Those are considered to be sampled as dense as before and new data points are thus

not supposed to change the performance of NNs in already passed regions of the PES. The trained

model parameters used in this work can be obtained from the file NN_model_parameters.txt.
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S1.3 Performance of NNs

In this subsection, we want to assess the performance of the generated NN potentials by comparing

to different ML models and by an in-depth analysis of the predictions specific for each electronic

state. We evaluate the accuracy by using ML models trained on the training set of the methylenim-

monium cation computed with the QC1 method (see section S4 below). We want to point out here,

that the QC reference dynamics simulations are not included in the training set and thus, repro-

ducing the dynamics can be considered as an indirect test. However, we cannot use the points from

the QC reference dynamics for a direct comparison in a straightforward manner, since these points

are not phase corrected. In order to evaluate the accuracy of the NN potentials, we generated an

out-of-sample test set, that contains energies and forces as well as NACs (and dipole moments for

completeness) of 770 data points additionally generated via sampling of linear combinations of

different normal modes of CH2NH+
2 . This test set is phase corrected and is made available with

the training set (see file training+test_set_CH2NH2+.zip, in SHARC format). We compare our

NN model with another NN model using the Coulomb matrix8 (referred to as NN/Coulomb in

the following) with 21 features (inputs) instead of the inverse distance matrix (NN/inv.D. in the

following) with 15 features as a molecular descriptor. We further generate cross-products of all

entries of the inverse distance matrix and use the resulting vector as descriptor (referred to as

NN/poly.D. since polynomials of the inverse distances are contained). The dimension of poly.D.

is thus squared compared to inv.D., hence a more accurate description and higher accuracy could

be expected. To compare between different ML models, we analyze the performance of two addi-

tional regression models: Linear regression (LR) computed as a baseline model and support vector

machine for regression (SVR) is used for additional comparison. In both cases, the same molecular

descriptor (inv.D.) as for the reference NNs is taken.

S1.3.1 Computational details for the ML models

For training NN/Coulomb, LR and SVR models, we use the training set containing 4000 data

points. We proceed in the same way as for the NN/inv.D. model described above and scale in-

puts and outputs for training and prediction according to equation 3. In the same manner as for

the NN/inv.D. model, we sample different hyperparameters of the network architecture for the

NN/Coulomb model and NN/poly.D. model (see discussion in section S1.1), but as a starting point

we take optimal hyperparameters already found for the NN/inv.D. model (see Table S1). Since

no better performance is obtained using different hyperparameters for the NN/Coulomb model,

we keep them unchanged and only change the molecular descriptor from the matrix of inverse

distances to the Coulomb matrix8, C, that additionally includes the atomic charges in the repre-

sentation. The diagonal elements, Cii, which are absent in the inv.D. descriptor, are constant values

defined as

Cii =
1
2

Z2.4
i (6)

and off-diagonal elements, Ci j, are computed as

Ci j =
ZiZ j

| Ri−R j |
. (7)
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Zi in equations 6 and 7 refers to the nuclear charge of atom i and Ri is the position of atom i.

All electronic states are treated within one NN. Again, forces are trained together with potential

energies and predicted as their derivatives. A separate NN is used for training of NACs. In case of

the NN/poly.D. model, a set of slightly different hyperparameters is chosen from hyperparameter

search for energies and gradients and given in Table S3. The hyperparameters for nonadiabatic

couplings are kept unchanged from NN/inv.D. models.

Table S3 Selected parameters to construct NN/poly.D. models trained on 4000 data points of CH2NH+
2 .

The parameter, η in equation 2, to control the influence of the forces for training of energies is set to 1.
The parameters for NNs trained on NACs are depicted in Table S1.

Property Energy

Number of hidden layers 6

Number of neurons per hidden layer 50

Batch size 500

Learning rate, lr 3.57 ·10−3

Decay factor, flr 0.950

Update steps for annealing of lr 62

L2 regularization rate 6.10 ·10−8

Basis function Shifted softplus

To carry out LR and SVR, scikit-learn9 is used. Each electronic state is treated separately and the

forces and NACs are trained independently from the energies. Ordinary least squares LR is used as

implemented in scikit-learn. For SVR, we tested different kernel types, mainly linear kernel, radial

basis function and polynomials. For final training and prediction, radial basis functions are used.

The penalty parameter of the error term is set to a value of 100 and the rest of the parameters are

kept unchanged from default values, because the performance does not change considerably by

setting different parameters.

S1.3.2 Comparison of different ML models

First, we seek to evaluate the performance of our NNs by comparison to other ML models. In our

experiments, we carry out dynamics simulations with 2 NNs. Therefore, we compute the MAE

averaged over all states for energies, forces, and NACs on the test set of 770 data points with two

models. For the NN/inv.D. models, NN1 and NN2 are used, as they are in dynamics simulations.

For the rest of the models, we split the data set of 4000 points in different training and validation

sets using a ratio of 9:1 and use different initial weights. The results are given in Table S4 (for

completeness, the MAE on dipole moments for our model is 0.168 a.u., but will not be discussed

here). As can be seen in the table, the NNs with different descriptors reach similar accuracy.

Especially, the inverse distance matrix and the Coulomb matrix perform very similarly, as would

be expected from such closely related descriptors. Due to the similarity, we keep the simplest of

these descriptors (inv.D.) for further analysis. SVR is worse than the NN approaches with an error
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for energies and gradients approximately twice as large as for NNs. The SVR also delivers worse

predictions of NACs compared to the NNs. LR, as a baseline model, has a MAE that is about a

factor of 10 larger than the one of SVR for energies and gradients and about 1.5 times larger for

NACs, demonstrating the utility of our NN approach described above.

Table S4 The mean absolute error (MAE) averaged over all states for energies, gradients, and NACs on a
test set of 770 data points of the methylenimmonium cation for linear regression models, LR, support
vector machines for regression, SVR, and NNs with the inverse distance (inv.D.), Coulomb matrix
(Coulomb), and inverse distance polynomials (poly.D.) as molecular descriptors.

Model MAE Energy [H] MAE Gradients [H/Bohr] MAE NACs [a.u.]

NN/inv.D. 0.00237 0.00669 0.328

NN/Coulomb 0.00238 0.00690 0.314

NN/poly.D. 0.00197 0.00617 0.335

LR/inv.D. 0.09240 0.13902 0.471

SVR/inv.D. 0.00618 0.01169 0.382

S1.3.3 State-specific analysis of the NNs

In order to clarify whether there is a bias of our ML model toward a specific state, we evaluate the

errors of our reference NN/inv.D. model on energies and gradients on the same test set of 770 data

points for each electronic state separately. As can be seen in Table S5, the MAE of the S2-state

energies and gradients is approximately twice as large as the one of the two lower states. Analysis

of different reaction coordinates of the PES reveal problems within QC calculations that become

pronounced especially in critical regions of the PES and lead to erratic potential energy curves.

To show this problem, a scan along a reaction coordinate that includes two avoided potential

energy curve crossings of the molecule is exemplified in Fig. S2. As can be seen, a jump in the S2

potential energy curve is obtained with the QC1 reference method. The source of this behaviour

might be due to higher electronic states that enter along the reaction coordinate ("intruder states")

or new electronic configurations of the molecule that were not included in the active space from

the beginning. However, the NNs used in this work (panel A in Fig. S2) do not reproduce this

discontinuity and predict smooth potential energy curves, certainly due to the use of gradients in

the loss function for the training. As a consequence, the MAE obtained for the S2 state must be

artificially higher than for the rest of the states.

Table S5 The MAE on energies and gradients of each electronic state on the test set of 770 data points
obtained with the NNs used in this work to carry out dynamics simulations.

State MAE Energy [H] MAE Gradients [H/Bohr]

S0 0.00176 0.00444

S1 0.00200 0.00670

S2 0.00335 0.00893

For completeness, we carry out the same scan with the other ML models and as expected, the

potential energy curves obtained with NN/Coulomb (panel B in Fig. S2) are very similar to the
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ones obtained with NN/inv.D. (panel A) and NN/poly.D. (panel C). The same trend as in Table S4

is also obtained for the other models. The SVR model (panel E) gets the potential energy curves

slightly worse than the NNs and LR is far off from the reference potential energy curves (panel D).

Fig. S2 Scan along a reaction coordinate of CH2NH+
2 showing two avoided crossings, one between the S2

and S1 state and one between the S1 and S0 state computed with QC1 (continuous line) and different ML
models (dashed and dotted lines). (A) NN1 and NN2 are the reference NNs used in this work (NN/inv.D.),
( B) NN3 to NN6 are again multi-layer feed-forward NNs, but with the Coulomb matrix8 (NN3 and NN4:
NN/Coulomb), (C) and polynomials of the inverse distances (NN5 and NN6: NN/poly.D.) as molecular
descriptors. (D) LR1 and LR2 indicate linear regression models, (E) and SVR1 and SVR2 are support
vector machines for regression. In case of the QC1 calculation, erratic behaviour of the S2 potential
energy curve can be seen.

An important feature of the ML models used here is their tendency towards a smooth inter-

polation of the potential energy surfaces (see Fig. S2). As a consequence, high artificial errors

and discontinuities introduced by the reference method can be compensated to a certain extent.

Moreover, since all ensemble models predict the same trend in such situations (see e.g. NN1 and

NN2 Fig. S2A), a low uncertainty is reported for the afflicted regions and no potentially detri-

mental data is added to the data set during the adaptive sampling. This feature is desired and

advantageous since the ML models correct for the erratic behavior of QC1.

Nevertheless, such regions often coincide with critical regions of the PES and should be con-

sidered with care. To highlight such regions in conformational space that should be sampled more

comprehensively in the training set, some other metrics could be considered. For example, very

small energy gaps between different states or large coupling values are an indicator for a crossing

point of two potentials. Additionally, the root-mean squared displacement (RMSD) from a new

configuration to all other configurations contained in the training set could be calculated and a

threshold could be set, which tells us when a new geometry is dissimilar to the current training

set and should be computed with QC and added to the training set. Another possibility would be

to add more data points from trajectories where the gradient is large, which is done in Ref.10 for
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example for the generation of a database. This is important, because during dynamics simulations

the molecule will remain longer in regions where the forces are small, hence enlarging the training

set mainly by data points with small gradients.10 Another procedure is used for Shepard interpo-

lation.11 There, a statistical approach with no significant additional costs is used to determine the

uncertainty of the potential energy by measuring its variance.
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S2 Phase correction

We carried out a phase correction procedure to obtain a training set suitable for our ML algorithm.

To this aim, a phase vector, p, had to be derived for each molecular geometry containing values of

+1 and -1 for each state. This vector was obtained by the computation of wave function overlaps

between two different geometries. The overlap matrix, S, between wave functions of following

nuclear configurations, Ψk and Ψl, was computed using the WFoverlap code:12

S = 〈Ψk |Ψl〉. (8)

The overlap matrix has the dimension of Nstates×Nstates, with Nstates being the number of electronic

states included in a calculation. When the molecular geometries are similar enough to each other,

overlaps are sufficiently large to gain information whether a phase switch has occurred or not.

Wave function overlaps for an electronic state that are close to +1 indicate that no phase change

has taken place, whereas overlaps close to -1 point out a change in the phase of a wave function.

Far from conical intersections, p usually corresponds to the diagonal matrix elements of S and also

has the dimension of Nstates. Whenever two PESs are in close proximity, off-diagonal elements of

S can be larger than diagonal elements. In such cases, values of p depend on absolute values of

row elements of S. A threshold of ±0.5 was set between overlaps of two following wave functions

to ensure that the correct value of +1 or -1 was taken into account. Each entry, pi, of p was then

calculated according to Equation 9 with i and j running over all Nstates.

pi = sgn(max(| Si j |)sgn(Si j))∀ | Si j |≥ 0.5; i, j = 1,2, ...,Nstates (9)

However, many situations arise, in which computed overlaps between two geometries yield

values close to 0. With these, it is not possible to decide reliably whether a phase change is present

or not. Therefore, an interpolation of n steps between those two molecular geometries needed to

be carried out, with n usually being in the range of 5 to 10. Interpolation was performed with

respect to a molecule’s Z matrix. Transformation from xyz format to a Z matrix format and vice

versa was executed with OpenBabel.13 The size of interpolation steps was sufficient when each

computation yielded overlaps close to +1 or -1. The phase vector, pn, applicable to the last point,

n, of the required interpolation was found by multiplication of all previous phase vectors, p0 to

pn−1:

pn =
n−1

∏
β=0

pβ . (10)

p0 always corresponds to the phase vector between the reference geometry, upon which the com-

plete training set is phase corrected, and the first interpolation step. The reference geometry for

global phase correction was chosen to be the equilibrium geometry.

If no row element of S had an absolute value above or equal to ±0.5, the interpolation was

stopped and more interpolated nuclear configurations between the equilibrium geometry and the

one that needs to be included in the training set were generated. If there were still not enough
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interpolated configurations to account for sufficiently large overlaps between two subsequent wave

functions, the simulations were stopped. One reason for too small overlaps are "intruder states",

which are excluded at the reference geometry, but are included at another geometry due to an en-

ergy drop. Thus, a previously included state is excluded such that the overall molecular electronic

wave function changes considerably.

The phase correction of each matrix M – in our case, the Hamiltonian matrix, which contains

energies and couplings, and the dipole matrices for each direction of the coordinate system –

was carried out according to Equation 11. Matrices containing all relevant nonadiabatic coupling

vectors to form the nonadiabatic coupling tensor with the dimension NstatesxNstatesxNatomsx3 (with

Natoms being the number of atoms) were corrected according to Equation 12. Each two dimensional

nonadiabatic coupling vector, NACi j, accounts for NACs between two states i and j. It was corrected

by multiplication of every element with the entry of p for each state i, pi, and j, p j.

M = Mi j · pi · p j; i, j = 1,2, ...,Nstates (11)

NACi j = NACi j · pi · p j (12)
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S3 Analytical Model

In order to check the performance of our deep learning molecular dynamics approach we con-

structed an one-dimensional, diabatic analytical model consisting of five harmonic oscillators, with

the analytical interface of SHARC.14,15 The potential energy curves are defined in Table S6. Nona-

diabatic potential couplings (in contrast to nonadiabatic derivative couplings) are responsible for

transitions between the 1X and 1A state while spin-orbit couplings coupled states of different spin

multiplicity, i.e. 1X and 3B as well as 1A and 3B. These couplings as well as dipole moments be-

tween different states are described by constant values given in Table S7 and S8, respectively. A

total number of 2000 initial starting points were sampled according to a Wigner distribution,14

from which 100 were selected, excited in a range of 0-2 eV and propagated for 100 fs with a

time step of 0.05 fs for the nuclear motion and 0.001 fs for the analytical solution of electronic

amplitudes.

The five harmonic oscillators of the analytical model are given in Fig. S3 and represent the

ground state 1X (dark blue line in Fig. S3A), one excited singlet state 1A (light blue line in Fig.

S3A), and three degenerate excited states to mimic a triplet state, 3B (red line in Fig. S3A). The

states are coupled by both nonadiabatic potential couplings and spin-orbit couplings. Sampling

of configurations along the degree of freedom leads to a training set of 100 data points and the

potential energy curves can be fitted nearly exactly by NNs (solid lines in Fig. S3A). Excited-state

dynamics are started from 100 different initial conditions generated in the 1X state, each excited to

the 1A state. The time evolution of the different states using the original analytical potentials and

the trained NNs (Fig. S3B) show that the predictions are comparable and each state is populated

similarly after 100 fs. The MAE in the predictions of the energies is 0.00031 eV (0.01 kcal/mol)

and of the gradients is 0.0024 eV/Å (0.057 kcal/mol/Å). Hyper parameters chosen for the NNs can

be obtained from Table S9. This first proof-of-concept thus shows the ability of our ML method to

describe excited-state dynamics including nonadiabatic potential and spin-orbit couplings.

Fig. S3 Analytical model. (A) Analytical (dashed lines) and neural network (NN, solid lines) potential
energy curves along an one-dimensional model. (B) Time evolution of the different electronic state
population after excitation from the 1X state to the 1A state using the exact analytical setup and NNs.
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Table S6 Parameters of harmonic potentials according to the equation V (x) = 0.5k(x− x0)
2 +E0.

Energetic state k[a.u.] x0 [a.u.] E0 [a.u.]

1X 0.01 0.756 0.0
1A 0.04 1.115 0.004
3B 0.1 1.50 0.003

Table S7 Couplings between different electronic states of the analytical model.

Couplings between states 1X [a.u.] 1A [a.u.] 3B(+) [a.u.] 3B(0) [a.u.] 3B(−) [a.u.]

1X 0.00025 0.005-0.0001i -0.0025i 0.005+0.0001i
1A 0.00025 0.001+0.0025i +0.0025i 0.001-0.0025i
3B(+) 0.005+0.0001i 0.001-0.0025i
3B(0) 0.0025i -0.0025 i
3B(−) 0.005-0.0001i 0.001+0.0025i

Table S8 Dipole moments between different electronic states of the analytical model.

Dipole moment between states 1X [a.u.] 1A [a.u.] 3B(+) [a.u.] 3B(0) [a.u.] 3B(−) [a.u.]

1X -1.90 -0.3
1A -0.3 -1.2
3B(+) -0.3
3B(0) -0.3
3B(−) -0.3
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Table S9 Selected parameters to construct NNs trained on data of the analytical model to carry out
dynamics simulations given in Fig. S3. NN1 describes the first NN that was defined, whereas NN2
describes the second one. The influence of the forces for training of energies was set to 1.

Property Energy (NN1) Couplings (NN1) Dipole moments (NN1)

Number of hidden layers 1 2 2

Number of neurons per hidden layer 13 32 36

Batch size 50 50 50

Learning rate, lr 4.83 ·10−3 9.37 ·10−4 9.41 ·10−4

Decay factor, flr - - -

Update steps for annealing of lr - - -

L2 regularization rate 6.07 ·10−10 2.35 ·10−12 6.23 ·10−10

Basis function Shifted softplus function Hyperbolic tangent Hyperbolic tangent

Property Energy (NN2) Couplings (NN2) Dipole moments (NN2)

Number of hidden layers 1 2 2

Number of neurons per hidden layer 39 32 24

Batch size 50 50 50

Learning rate, lr 7.89 ·10−3 9.31 ·10−4 9.48 ·10−4

Decay factor, flr - - -

Update steps for annealing of lr - - -

L2 regularization rate 6.23 ·10−10 1.94 ·10−12 1.50 ·10−14

Basis function Shifted softplus function Hyperbolic tangent Hyperbolic tangent t
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S4 Methylenimmonium cation

S4.1 Computational details for QC

The quantum chemical reference calculations of the methylenimmonium cation, CH2NH+
2 , were

done with the program COLUMBUS16 which uses the implementation of nonadiabatic coupling

vectors via Dalton17 integrals. CH2NH+
2 possesses 16 electrons. Molecular orbitals were optimized

with the state-averaged complete active space self-consistent field (SA-CASSCF) method, averaged

over 3 states. The CAS was set to 6 active electrons in 4 active orbitals. The two lowest molecular

orbitals representing the 1s orbitals of the C and N atom (Fig. S4A) were frozen at the MRCI

level of theory. The next three lowest energetic orbitals were set to be inactive (Fig. S4B) and 4

orbitals were assigned to the reference space with 6 active electrons (Fig. S4C). Single and double

excitations from the (6,4) reference space to 73 virtual orbitals yield a total of about 660000

configuration state functions. Determinants from inactive orbitals to virtual orbitals for single and

double excitation are included within MRCI-SD. The frequency calculation was carried out with

COLUMBUS. We performed scans with 100 points along each normal mode (Table S10) as well as

with 72 points along the torsion around the central double bond in order to generate the initial

training set. From these scans, we removed data points from computations that did not show

proper convergence. After adaptive sampling, we ended up with a training set of 4000 data points.

Fig. S4 Isosurface plots of the orbitals of the methylenimmonium cation. (A) Orbitals representing
the frozen core. (B) Orbitals representing inactive doubly occupied space energetically between the
frozen core and the active space. (C) The active space consisting of 6 electrons in 4 orbitals.

S4.2 Surface-hopping molecular dynamics

As a prerequisite for the dynamics, 1000 initial conditions were sampled from the Wigner distri-

bution of the quantum harmonic oscillator defined by the above-mentioned frequency calculation.

From these 1000 possible starting points, 200 were excited – according to the oscillator strengths

in the excitation window of 9.44 ± 0.15 eV – to the brightest state, which is the second excited
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Table S10 Frequencies of each normal mode of CH2NH+
2 computed with MR-CISD/aug-cc-pVDZ.

Degree of freedom (normal mode) Frequency [cm−1]

1 940.09

2 969.35

3 1074.45

4 1174.32

5 1368.83

6 1473.26

7 1612.35

8 1789.73

9 3223.36

10 3357.28

11 3550.29

12 3663.38

singlet state. This excitation shows mostly ππ∗ character. Each trajectory was propagated for 100

fs with a time step of 0.5 fs for nuclear motion and 0.02 fs for integration of the time-dependent

Schrödinger equation. Trajectories showing problems with energy conservation due to improper

convergence of the quantum chemistry were excluded, resulting in 90 trajectories for QC1 and

88 trajectories for QC2. However, the trend of the populations when all trajectories were taken

into account is the same. Therefore, no bias was introduced by sorting out trajectories due to bad

energy convergence within quantum chemical calculations, which appeared mainly around con-

ical intersections due to convergence problems. Such problems do not occur in the NNs, which

demonstrates another advantage of the ML approach. Fig. S5A depicts a direct comparison of

the molecular dynamics computed with QC1 (MR-CISD/aug-cc-pVDZ) and NNs. In both cases,

the populations of 90 trajectories starting from the second excited singlet state are shown. Two

hundred initial conditions were excited with 9.44 ± 0.15 eV and 90 trajectories reached 100 fs

in the case of QC1. Therefore, from NN-simulations only the first 90 trajectories were used for

comparison. As can be seen, the populations of each state are in good agreement when comparing

both methods – as they are in Fig. 3 in the main text. In the case of the populations shown in

Fig. 4 in the main text, we propagated 200 trajectories up to 10 ps. Afterwards, for demonstrating

the possibility of long time scale simulations, we propagated 2 trajectories up to 1 ns. The popula-

tions up to 10 ps are averaged over 200 trajectories, the populations from 10 ps on up to 1 ns are

averaged over 2 trajectories, respectively. In case of the nanosecond time scale simulations, every

100th time step, equivalent to every 50 fs, is written out by the program pySHARC. The kinetic

constants discussed in the main text are obtained using the tools of SHARC.14,18 By solving differ-

ential equations that describe the kinetics of the underlying model, a fit for the population transfer

can be obtained and rate constants can be derived.

In addition to the population dynamics, we also checked whether visited molecular geometries

are comparable along the trajectories. We first calculated the mean of each nuclear configuration
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over time from the NNs leading to populations given in Fig. S5 and computed the RMSD to

the mean molecular geometry at the respective time step of the ensemble predicted with MR-

CISD/aug-cc-pVDZ, i.e. QC1 (Fig. S5B continuous line). An analogous comparison is also carried

out for QC1 and QC2 (MR-CISD/6-31++G**, Fig. S5B, dotted line). For completeness, we also

computed the RMSD between NN and QC2 (Fig. S5B, dashed line). All RMSDs are of comparable

size, further validating our NN approach.

Fig. S5 (A) Comparison of dynamics from QC1 and NN with 90 trajectories, respectively. The continuous
lines show the populations of each excited singlet state calculated with a deep neural network (NN),
whereas the dashed line shows the corresponding population computed with QC1
(MR-CISD/aug-cc-pVDZ). (B) RMSD of the mean of nuclear configurations of each trajectory over time.
NN-QC1 is the RMSD between deep NNs and the reference quantum chemical method QC1
(MR-CISD/aug-cc-pVDZ), NN-QC2 is the RMSD between deep NNs and the QC2 method
(MR-CISD/6-31++G**), whereas QC1-QC2 is the RMSD between QC1 and QC2.

Further, we checked the energy conservation of trajectories with the reference method QC1 and

NNs independently. For both methods, we computed the mean and standard deviation (Std.) of

the total energy along a trajectory, where we once allow hopping and once force the trajectories to

stay in the S2 state after excitation. Results are shown in Table S11. As can be obtained, the mean

total energy as well as the Std. along trajectories propagated for 100 fs are comparable among

the methods. However, the Std. increases slightly when hops are forbidden between different

energetic states. This trend is obtained with both methods. Moreover, when a time step of 0.05 fs

is used instead of 0.5 fs for classical propagation of the nuclei, the energy conservation improves,

which meets expectations. Worth mentioning is that, in the case of QC1, trajectories which show

large steps in total energy or do not reach 100 fs at all are removed prior to analysis. This is not

the case for NNs, as all trajectories were suitable for analysis and no prior selection was carried

out.

S4.3 Conical intersections (CIs)

With each method, QC1, QC2, and NNs, we optimized the geometries of the two S1/S0 and S2/S1

CIs. Optimizations were executed with the SHARC tools that utilize an external optimizer of

ORCA,19 where the computed energies and gradients20,21 from COLUMBUS or NNs are fed in.

Geometries are shown in Fig. S6. They were optimized starting from the different hopping ge-

ometries obtained with the afore-mentioned methods, as indicated in the scatter plot of Fig. 6 in
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Table S11 MAE and standard deviation (Std.) of the total energy obtained with the QC1
(MR-CISD/aug-cc-pVDZ) method and neural networks (NN). In the case of a time step of 0.5 fs for
classical propagation of the nuclei, 90 trajectories were analyzed, whereas 50 trajectories were used for
analysis of trajectories with a time step of 0.05 fs.

Method Time step [fs] MAE [eV] Std. [eV] Hops allowed?

QC1 0.5 10.63 0.047 Yes

QC1 0.5 10.77 0.059 No

QC1 0.05 10.73 0.011 No

NN 0.5 10.72 0.052 Yes

NN 0.5 10.73 0.061 No

NN 0.05 10.80 0.017 No

the main text and the zoom in Fig. S7. The optimized molecular geometries agree well. Cartesian

coordinates are given in Table S12-S15 and are further added as ascii-files to the supplementary

material.

Fig. S6 Conical intersections (CIs). For each method, we could find two different CIs. QC1
(MR-CISD/aug-cc-pVDZ) is used as the reference method to train neural networks (NNs) and compared
to CIs obtained with QC2 (MR-CISD/6-31++G**). For the two CIs, the bond length between the nitrogen
(blue) and the carbon (grey) atom is shown, as well as the bond length between the carbon and one
hydrogen atom. Values are given in angstrom. A dihedral angle between four atoms marked with the
dashed line is given, as well as an angle between the carbon and a hydrogen atom (S1/S0 CI) and
between two hydrogen atoms (S2/S1 CI).

The S1/S0 CI shows a rotation of the molecule around the H3-N-C-H4 dihedral angle (see Fig.

S7 for the definition) of ∼ 90◦. Due to symmetry of the molecule, the CI is obtained at ∼ 90◦ as

well as at ∼ −90◦. The optimized geometries agree well between all methods (QC1, QC2, NN).

All methods yield hopping geometries that are distributed in a rather large region around these

points. The S2/S1 CI, is defined by a slight bi-pyramidalization and a bond elongation between

the carbon and the nitrogen atom of around 1.44 Å (see Fig. S6) compared to a bond length of

around 1.29 Å at the equilibrium geometry (Fig. S7B). Again, molecular geometries obtained with

different methods are very similar. The scatter plot in the right panel of Fig. S7A shows the good

agreement among different methods and also depicts the distribution of data points in the final

training set.
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Fig. S7 Conical intersection analysis in addition to Fig. 5 in the main text. (A) Scatter plots showing
the distribution of hopping geometries of each method as well as optimized nuclear configurations close
to the minimum energy CI present between the S1 state and the ground state, S0, (left) as well as
between the S2 state and the S1 state (right). Geometries from the training set with 4000 data points are
plotted as blue circles.

(B) Shown is the equilibrium geometry of methylenimmonium cation in order to specify the atoms that
describe the used dihedral and pyramidalization angle in Fig. 5 and Fig. 6 in the main text and Fig. S6

here. The pyramidalization angle that is used to describe the S1/S0 CI is defined by the angle between the
bond between the nitrogen (N) and the carbon (C) atom (red line) and the plane that is spanned by the C
atom and the two hydrogen atoms, H2 and H4 (red triangle). The angle between the planes spanned by

atoms H3-N-C and N-C-H4 is chosen to distinguish geometries describing both CIs is defined by hydrogen
atoms, H3 and H4, as well as by the C and N atom (dashed black line).

S4.4 Movie S1

A trajectory molecular dynamics simulation of the methylenimmonium cation, CH2NH+
2 , during

100 fs after its excitation to the second excited singlet state predicted with deep NNs in combina-

tion with SHARC can be found in the supplementary material along with the potentials, on which

the molecule moves at each time step.

S4.5 Movie S2

A trajectory molecular dynamics simulation of the methylenimmonium cation, CH2NH+
2 , during 10

ps after its excitation to the second excited singlet state predicted with deep NNs in combination

with SHARC can be found in the supplementary material.
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Table S12 Cartesian coordinates of the S1/S0 CI obtained from deep NNs. Also available from the file
CI_opt_geoms.xyz of the supplementary material.

Atom x-coordinate [Å] y-coordinate [Å] z-coordinate [Å]

C -0.09510 0.0547 -0.1529

N 0.0928 0.0520 1.2196

H 0.6760 0.7307 -0.6251

H 0.7899 -0.6147 1.8341

H -0.5741 0.8014 1.7538

H -0.7677 -0.5838 -0.7111

Table S13 Cartesian coordinates of the S1/S0 CI obtained from MR-CISD/aug-cc-pVDZ. Also available
from the file CI_opt_geoms.xyz of the supplementary material.

Atom x-coordinate [Å] y-coordinate [Å] z-coordinate [Å]

C -0.067495 -0.271367 -0.083550

N 0.002414 -0.191463 1.316026

H -0.264937 -1.250001 -0.530777

H 0.882335 -0.347469 1.825166

H -0.826010 0.016867 1.888644

H 0.133036 0.637597 -0.658113

Table S14 Cartesian coordinates of the S2/S1 CI obtained from deep NNs. Also available from the file
CI_opt_geoms.xyz of the supplementary material.

Atom x-coordinate [Å] y-coordinate [Å] z-coordinate [Å]

C 0.092590 0.05507 -0.03636

N -0.02183 0.01101 1.3961

H 0.9094 -0.2682 -0.6655

H 0.6959 -0.4079 1.9997

H -0.7125 -0.46625 1.9366

H -0.8898 -0.3630 -0.4760

Table S15 Cartesian coordinates of the S2/S1 CI obtained from MR-CISD/aug-cc-pVDZ. Also available
from the file CI_opt_geoms.xyz of the supplementary material.

Atom x-coordinate [Å] y-coordinate [Å] z-coordinate [Å]

C 0.049953 -0.345208 -0.016365

N 0.033847 -0.254299 1.417459

H 0.910037 0.088100 -0.642754

H 0.869788 0.200682 1.810525

H -0.809643 0.202872 1.791428

H -0.793958 0.090807 -0.662521
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S5 Future perspectives

As an outlook we expect our approach to offer new possibilities to study also excited-state dynamics

of larger molecules on longer timescales. By using the adaptive sampling procedure in combination

with NN dynamics simulations, an initial training set can be automatically expanded until the

conformational space of a molecule important for dynamics is sampled comprehensively. In the

following, a short discussion on expected scaling of the methods and possibilities to treat larger

molecules is given.

As a good starting point for the initial training set we suggest sampling of normal modes and

linear combinations of different normal modes. Alternatively, the points obtained from a geometry

optimization of critical points like CIs might deliver an even better initial set. As a guideline, we

suggest from our limited experience that approximately 1000 data points should be considered for

the initial training set. With this procedure, some critical regions of the potential energy surface

close to the equilibrium geometry can already be covered in the training set. Further sampling of

reaction coordinates that are considered to be important during excited-state molecular dynamics

simulations seems to be a good guess. As an example, a reaction coordinate that involves the

dissociation of an atom, can be included. Dependent on the size and complexity of the molecule

as well as on the degree of initial sampling, the trajectories will be interrupted more frequently

in the initial stages of an adaptive sampling run. In terms of training set sizes in general, we

do not expect a linear scaling along with the number of atoms. The number of necessary data

points does not only depend on the number of atoms of a molecule, but also on its excited state

dynamics dictated for example by its flexibility or the excitation energy. The more processes that

can take place after excitation of a molecule, the larger the space is that needs to be covered.

Further, the number of states included in dynamics simulations as well as the quantum chemical

reference method play a role and should be considered. In general, no rule can be given in terms

of optimal training set size, but the convergence behavior of the adaptive sampling runs can serve

as an indicator on whether additional reference data is required. Finally, we want to point out

that using the adaptive sampling scheme – as soon as enough data points for a machine learning

model can be obtained within a reasonable time frame – seems to be most efficient for sampling

the relevant space visited during a dynamics simulation. We further recommend to take special

care when selecting the number of electronic states. As already discussed in the main text within

the section on the phase correction algorithm, it is important to compute more electronic states

for molecules that have a lot of electronic states lying close in energy. However, those additional

states should only be used for phase correction and computation of wavefunction overlaps and do

not need to be considered for couplings or computation of forces. With this approach, problems

arising due to "intruder states" during the phase correction procedure can be avoided. Regarding

the network architecture, we recommend to adapt it to the complexity of the molecule and expect

approximately linear scaling of both, the size of the network and its computational performance,

with the number of atoms of a molecule.

Last but not least, we want to comment on non-molecule specific excited-state potentials, sim-

ilar to the idea of universal force fields that are in part already available for the ground state.
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We expect this to be a very complex task that has to be considered with a lot of care. If molecules

show similar excited state dynamics – for example the methylenimmonium cation and the ethylene

molecule22 are isoelectronic and show a rotation along the dihedral angle for the S1/S0 transition

– a non-molecule specific method can be thought of to describe this transition. However, the order

of higher-lying states is different in these two isoelectronic species and higher excitation energies

will induce completely different dynamics in the respective systems. Therefore and also due to the

problematic generalization and molecule-specific couplings and excited-state potentials, we do not

expect a non-molecule specific model to be available in the near future.
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