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The Raman enhancement factors (EFs) are calculated by the following equationS!:
EFs=(Isgrs/Nsers)/ (Ipui/Nouik)

where Iy, and Isgrs are Raman intensities of bulk dye and in the SERS experiments,
Nsers and Ny are the amounts of dyes in the SERS experiments and bulk
measurements, respectively. Nggrs and Ny can be estimated according to the
equations:

Nsers=CVNAARaman/Asub

Noutc=phAramanNa/M
where C is the concentration of Raman dye (10 pM), Ny is the Avogadro constant, V is
the volume of the droplet, Ar.man 18 the laser spot area, Ay, is the effective area of the
substrate, p and M are density and molecular weight of Raman dye (1.15 g cm™ and

479.02 g mol'), h is the confocal depth of the laser beam into bulk crystal (h=21 pm).



Fig. S1. TEM image of MoO; nanosheets.
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Fig. S2. FTIR spectrum of PDA that is prepared by auto-oxidation of dopamine at pH
8.5.
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Fig. S3. FTIR spectrum of dopamine.
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Fig. S4. FTIR spectrum of MoO3 nanosheets.
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Fig. S5. TGA curves of MoOs; and MoO;, nanosheets measured in nitrogen

atmosphere.
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Fig. S6. High-resolution XPS spectra of Mo3d of MoO3 nanosheets.
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Fig. S7. UV-Vis-NIR spectra of MoOj; nanosheets dispersed in different solvents.
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Fig. S8. pH-dependent oxidation potential of dopamine.

Electrochemical measurements were carried out through cyclic voltammetry (CV) in
the mixture solution of 0.1 M KCl and 1 mM dopamine under different pH values, and
the oxidation potential peaks of dopamine at different pH values are collected. The
relationship between oxidation potential and pH value is plotted in Fig. S8. The scan

rate in CV is 0.1 V s°1, and the potential range is between -1.0 V and +1.0 V.
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Fig. S9. High-resolution XPS of Mo 3d of PDA-coated MoO; nanosheets with

different LSPR peaks.

Intensity (a.u.)

Mot 43.83 %
A Lgp=768 Nm

25 228 231 234 237
Binding energy (eV)
i Mo™ 46.23 %

o % =613 N
:'g Mo™'3d
g a
> ™3y,
‘B Mo™3d,,,
c
Q
E o

225 228 231 234 237
Binding energy(eV)
Mo™ 50.25 %

] Mo™3d %, o =485 M

:. LSPR

E/ E Mo™3d,,

=

w .

C

Qo

£

225 228 231 234 237
Binding energy(eV)

o ‘. Mo™ 59.94%
>
S |
2
D
[ am
5
£

225

228 231 234
Binding energy(eV)



Fig. S10. TEM images of MoOj; nanosheets with different LSPR peaks (scale bar, 20
nm): a) 809 nm, b) 768 nm, c¢) 674 nm, d) 613 nm, e) 534 nm, f) 485 nm, g) 432 nm,
and h) 361 nm.
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Fig. S11. EPR spectra of MoOj3; nanosheets with different LSPR peaks.
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Fig. S12. XRD patterns of MoOj3 nanosheets with different LSPR peaks.
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Fig. S13. Mott-Schottky plots of MoO; nanosheets and MoO; nanosheets with

different colors.

The charge carrier densities (N) of MoO3; and MoO; can be calculated by the
following equationS?:
N= (2/eg € &) [d(1/C?)/dV]!
where ¢ is the electron charge, € is the dielectric constant of MoQs, g is the permittivity

of vacuum, C is the differential capacitance, and V is the applied bias at the electrode.
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Fig. S14. Photographs of MoO;_, nanosheet dispersion using different types of reducing
agents in the absence and presence of H,O, with different concentrations (1-100 uM),

including Na,S, NaBHy,, ascorbic acid (AA), and glutathione (GSH).
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Fig. S15. Photographs of MoO;_, nanosheet dispersion using different types of reducing
agents in the absence and presence of NaClO with different concentrations (1-100 nM),

including Na,S, NaBH,, ascorbic acid (AA), and glutathione (GSH).
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Fig. S16. Time-dependent SERS spectra of R6G adsorbed on the surface of blue

MoQs;.,. The concentration of R6G is maintained at 1 M.
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Fig. S17. Cyclic voltammogram of ferrocene in acetonitrile solution.
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Fig. S18. Cyclic voltammogram of blue MoO;, nanosheet dispersion with

ferrocene/ferrocenium (Fc/Fc™) as the internal standard in acetonitrile solution.

The VB and CB of PDA-coated MoOs_, nanosheets are calculated according to the
following equations using the ferrocine as the internal standard®3:
Evg=[ -4.8 + Epgre+'? - Eox] €V
Ecg=[ -4.8 + Epype+"? — Ered] €V
where VB and CB are valence band and conduction band, E, and E,.4 are oxidation
and reduction potentials of PDA-coated MoOs., nanosheets, Erre+'/? is the average of

oxidation and reduction potential of ferrocene.
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