Supplementary Information for

Visible-Light-Mediated Deuteration of Silanes with Deuterium Oxide

Rong Zhou,‡,a,b,c Jiesheng Li,‡,a Han Wen Cheo, a Rachel Chua, a Gu Zhan, d Zhaomin Hou, d
and Jie Wu a

a Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore, 117543. E-mail: chmjie@nus.edu.sg

b College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, China, 030024.

c Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, China, 030024.

d Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan, 351-0198.

‡ These authors contributed equally to this work.

Table of Contents

I. General Information ...S2

II. Typical Procedure for Silane Deuteration in BatchS3

III. Large Scale Continuous Flow Synthesis of Et₃Si–DS3

IV. Mechanistic Investigations ..S7

V. Synthesis of Chiral Deuterated Silanes ...S8

VI. Estimated Cost of Our Protocol for Preparation of 1.0 Gram of Et₃Si–D S11

VII. Analytical Data of the Products ... S11

VIII. ¹H NMR Spectra of Deuterated Silanes S16

S1
I. General Information

General Experiment Procedure
All reactions were carried out in oven dried (104 °C) glassware unless otherwise indicated. Air or moisture sensitive materials were purchased and stored in a nitrogen filled glove box. Flash column chromatography were performed on Merck 60 (0.040-0.063 mm) mesh silica gel, mixed as a slurry in eluent, packed and run under positive air pressure. Analytical thin layer chromatography (TLC) was performed with Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Visualization was by short wave (254 nm) ultraviolet light or by staining with potassium permanganate (KMnO₄) or Phosphomolybdic Acid (PMA), followed by heating.

Materials and Instruments
Chemicals and anhydrous solvents were purchased from commercial suppliers and used as received. Solvents used for column chromatography were of reagent grade and used as received. ¹H NMR and ¹³C NMR spectrum were recorded on Bruker AV-III400 (400 MHZ) or AMX500 (500 MHz) spectrometer. Spectra were referenced using CDCl₃ with the residual solvent peak as internal standard (¹H NMR: δ 7.26 ppm). Chemical shifts were reported in parts per million (ppm) and multiplicities were indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet) and brs (broad singlet). Coupling constants (J) were reported in Hertz and integration was provided, along with assignments, as indicated. Gas Chromatography-Mass Spectrometry (GC-MS) was performed Agilent 7820A & 5977E GC-MS. GC-MS data are reported in the form of m/z. Blue LED strips (2 meter, 18 W, maximum Emission at around 470 nm) were purchased from Inwares Pte Ltd (Singapore). Logato™ 200 series Syringe pumps were purchased from KD Scientific Inc. (Holliston, MA). The flow components: Tefzel shut-off valves, needle gas valve, tee-joints, back pressure regulator (BPR), PFA and HPFA micro tubings were purchased from IDEX Health&Science (Oak Harbor, WA).

Fig. S1 Emission spectra of 18 W blue LED strips (maximum Emission at around 470 nm)
II. Typical Procedure for Silane Deuteration in Batch

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added photocatalyst 4CzIPN (7.89 mg, 0.01 mmol, 2 mol %). The Schlenk tube was sealed and degassed via vacuum evacuation and subsequent backfill with argon for three times. After which, anhydrous and degassed ethyl acetate (2.0 mL), silane (0.5 mmol, 1 equiv., for solid silane, added together with the photocatalyst), base (0.05 mmol, 10 mol %), and D2O (0.45 mL, 25 mmol, 50 equiv.) were added sequentially using syringes. The resulting mixture was sealed and irradiated with blue LED (2 meter strip, 18 W), and aliquot of the crude reaction mixture was subjected to GC-MS analysis to determine for reaction completeness. Reaction mixture deemed with acceptable deuteration ratio was added MgSO4, filtered, and washed with minimum amount of diethyl ether. The combined organic mixture was concentrated and subjected to flash column chromatography (hexane or hexane/ethyl acetate) to yield product as a mixture of Si–D and Si–H (which could not be separated by column chromatography). The ratio of deuteration was determined by 1H NMR.

III. Large Scale Continuous Flow Synthesis of Et3Si–D

4CzIPN (2.01 g, 2.54 mmol, 0.2 mol %) was added to a 2.5 L flask equipped with a rubber septum containing 1692 mL EtOAc and sparged with argon for 15 minutes. Then triethylsilane (202.8 mL, 1.27 mol, 1 equiv.), DIPEA (21.0 mL, 0.127 mol, 10 mol %) and triisopropylsilanethiol (5.4 mL, 25.4 mmol, 2 mol %) was added to the flask. D2O was added to a separate 1.0 L flask and protected under argon atmosphere. A Syrris Asia pump was filled with the combined organic reaction mixture and D2O and connected to the flow reactor with a 75 psi back-pressure regulator. Flow rate of the combined organic mixture and D2O were set at 243 µL/min and 87 µL/min, respectively. The reaction mixture would then flow into the micro-tubing reactor (PFA, O.D. = 1/8”, I.D. = 0.062”, 30.5 m, volume = 59.4 mL) and was irradiated with 207 W blue LED. The temperature of the setup is maintained at room temperature with the usage of a fan for ventilation. The residence time in the reactor was controlled to 3 h, after which the reaction mixture would flow into a flask equipped with an argon balloon. After equilibration for 9 h, the reaction mixture was collected for 100 h (Fig. S2 and S3). The crude organic layer was carefully distilled three times to isolate the pure triethylsilane-D. The first distillation was to remove the bulk of ethyl acetate.
using two fractional columns (Fig. S4). The second distillation was performed to collect ethyl acetate and triethylsilane-D from the remaining organic mixture (Fig. S5). The last distillation was performed to isolate triethylsilane-D from the organic mixture (Fig. S6).

Fig. S2 Continuous flow setup (note: fan omitted for clarity)
Fig. S3 Components of continuous flow setup
Fig. S4 First distillation setup

Fig. S5 Second distillation setup
IV. Mechanistic Investigations

Control experiments:

H/D exchange of thiol HAT catalyst with D$_2$O

\[
\begin{align*}
\text{Si-SH} & \quad + \quad \text{D}_2\text{O} \\
& \quad \xrightarrow{\text{RT}, 2\ h} \\
\text{Si-SD} & \quad \text{full conv.}
\end{align*}
\]

![Image of final distillation setup](image)

Fig. S7 1H NMR spectrum of 3Pr$_3$SiSH in D$_2$O
The S–H peak from thiol disappeared in D$_2$O, which indicated the hydrogen deuterium exchange of the thiol catalyst with D$_2$O.

Reaction with TEMPO

![Diagram showing reaction with TEMPO](image)

Light on/off experiments:

![Graph showing deuteration ratio vs. time](image)

Fig. S8 Light on-off experiments for deuteration of methyldiphenylsilane

V. Synthesis of Chiral Deuterated Silanes

![Diagram showing synthesis of chiral deuterated silanes](image)

63% yield, 93%-D racemic
To a 25 mL Schlenk tube equipped with a magnetic stir bar was added photocatalyst 1 4CzIPN (7.89 mg, 0.01 mmol, 2 mol %). The Schlenk tube was sealed and degassed via vacuum evacuation and subsequent backfill with argon for three times. After which, anhydrous and degassed ethyl acetate (2.0 mL), chiral silane (0.5 mmol, 1 equiv.), DIPEA (8.2 μL, 0.05 mmol, 10 mol %), and D₂O (0.45 mL, 25 mmol, 50 equiv.) were added sequentially by means of syringe. This resulting mixture was sealed and irradiated with blue LED (2 meter strip, 18 W), and aliquot of the crude reaction mixture was subjected to GC-MS analysis to determine for reaction completeness. After that MgSO₄ was added, filtered, and washed with minimum amount of diethyl ether. The combined organic mixture was carefully concentrated and subjected to chromatography to yield product as a mixture of Si–D and Si–H (which could not be separated by column chromatography).

HPLC result for enantiomeric ratio

1. Pure chiral silane 19

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52.211</td>
<td>73465.56</td>
<td>3.382</td>
</tr>
<tr>
<td>2</td>
<td>67.318</td>
<td>2099016</td>
<td>96.618</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2099016</td>
<td>100.000</td>
</tr>
</tbody>
</table>

76% yield, 82%-D
e.r. = 80:20
2. Pure racemic counterpart of silane 19

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50.150</td>
<td>902738</td>
<td>49.227</td>
</tr>
<tr>
<td>2</td>
<td>66.746</td>
<td>931103</td>
<td>50.773</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1833841</td>
<td>100.000</td>
</tr>
</tbody>
</table>

3. Deuterated chiral silane 20

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.951</td>
<td>435940</td>
<td>20.486</td>
</tr>
<tr>
<td>2</td>
<td>68.189</td>
<td>1692081</td>
<td>79.514</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2128021</td>
<td>100.000</td>
</tr>
</tbody>
</table>

4. Deuteration from racemic counterpart of silane 19

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.232</td>
<td>4480957</td>
<td>50.011</td>
</tr>
<tr>
<td>2</td>
<td>64.653</td>
<td>4478936</td>
<td>49.989</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8959894</td>
<td>100.000</td>
</tr>
</tbody>
</table>
VI. Estimated Cost of Our Protocol for Preparation of 1.0 Gram of Et$_3$Si–D

Note: the prices of commercially available chemicals are based on MOLBASE reference prices.

<table>
<thead>
<tr>
<th>Commercial source</th>
<th>Our deuteration protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>$156 / 500 mg</td>
<td>ca. $10.5 / 1 g</td>
</tr>
</tbody>
</table>

Note: the prices of commercially available chemicals are based on MOLBASE reference prices.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reaction</th>
<th>Yield</th>
<th>D ratio</th>
<th>NMR</th>
<th>GC-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triphenylsilane-d (2)</td>
<td>NaH (60% in mineral oil)</td>
<td>78%</td>
<td>95%</td>
<td>δ 7.70–7.61 (m, 6H), 7.54–7.37 (m, 9H), 5.56 (s, 0.05H); GC-MS (EI) [M]$^{+}$ Calcd for C${18}$H${15}$DSi 261.1, found 261.1.</td>
<td></td>
</tr>
<tr>
<td>Methyldiphenylsilane-d (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VII. Analytical Data of the Products

Ph
Ph–Si–Ph

D

Ph
Ph–Si–Ph

D

Methyldiphenylsilane-d (3)
The above compound was synthesized according to general procedure from methyl diphenylsilane (99 mg, 0.5 mmol) to give product 3 in 82% yield and 95%-D ratio. \(^1 \)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.63 (dd, \(J = 7.7, 1.7 \) Hz, 4H), 7.48 – 7.39 (m, 6H), 5.02 (q, \(J = 3.8 \) Hz, 0.05H), 0.69 (s, 3H); GC-MS (EI) [M]+ Calcd for C\(_{13}\)H\(_{13}\)DSi 199.1, found 199.1.

\[
\text{Ph-Si-Ph} \quad \text{D}
\]

tert-Butyldiphenylsilane-d (4)

The above compound was synthesized according to general procedure from tert-butyldiphenylsilane (120 mg, 0.5 mmol) to give product 4 in 72% yield and 94%-D ratio. \(^1 \)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.69 – 7.72 (m, 4H), 7.39 – 7.42 (m, 6H), 4.68 (m, 0.06H), 1.11 (s, 9H); GC-MS (EI) [M]+ Calcd for C\(_{16}\)H\(_{19}\)DSi 241.1, found 241.1.

\[
\text{Ph-Si-Ph} \quad \text{D}
\]

Phenethyldiphenylsilane-d (5)

The above compound was synthesized according to general procedure from phenethyldiphenylsilane (144 mg, 0.5 mmol) to give product 5 in 78% yield and 93%-D ratio. \(^1 \)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.52 – 7.40 (m, 6H), 7.16 (s, 4H), 5.00 (t, \(J = 3.7 \) Hz, 0.1H), 2.87 – 2.78 (m, 2H), 2.39 (s, 3H), 1.63 – 1.54 (m, 2H); GC-MS (EI) [M]+ Calcd for C\(_{20}\)H\(_{19}\)DSi 289.1, found 289.1.

\[
\text{Ph-Si-Ph} \quad \text{D}
\]

(4-Methylphenethyl)diphenylsilane-d (6)

The above compound was synthesized according to general procedure from (4-methylphenethyl)diphenylsilane (151 mg, 0.5 mmol) to give product 6 in 80% yield and 90%-D ratio. \(^1 \)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.71 – 7.62 (m, 4H), 7.52 – 7.40 (m, 6H), 7.16 (s, 4H), 5.00 (t, \(J = 3.7 \) Hz, 0.1H), 2.87 – 2.78 (m, 2H), 2.39 (s, 3H), 1.63 – 1.54 (m, 2H); GC-MS (EI) [M]+ Calcd for C\(_{21}\)H\(_{21}\)DSi 303.2, found 303.1.
(4-Methoxyphenethyl)diphenylsilane-\(d\) (7)
The above compound was synthesized according to general procedure from (4-methylethylphenethyl)diphenylsilane (159 mg, 0.5 mmol) to give product 7 in 70% yield and 84%-\(D\) ratio. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 7.77 - 7.64\) (m, 4H), \(7.55 - 7.39\) (m, 6H), \(7.27 - 7.14\) (m, 2H), \(7.01 - 6.84\) (m, 2H), 5.02 (q, \(J = 3.8\) Hz, 0.16H), 3.86 (d, \(J = 2.2\) Hz, 3H), 2.83 (td, \(J = 8.7, 3.9\) Hz, 2H), 1.70 – 1.56 (m, 2H); GC-MS (El) \([M]^{+}\) Calcd for C\(_{21}\)H\(_{21}\)DSi 319.1, found 319.2.

(4-(tert-Butyl)phenethyl)diphenylsilane-\(d\) (8)
The above compound was synthesized according to general procedure from (4-(tert-butyl)phenethyl)diphenylsilane (173 mg, 0.5 mmol) to give product 8 in 80% yield and 92%-\(D\) ratio. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.68 - 7.60\) (m, 4H), \(7.49 - 7.38\) (m, 6H), \(7.38 - 7.32\) (m, 2H), \(7.22 - 7.15\) (m, 2H), 4.98 (t, \(J = 3.7\) Hz, 0.08H), 2.86 – 2.77 (m, 2H), 1.62 – 1.54 (m, 2H), 1.37 (s, 9H); GC-MS (El) \([M]^{+}\) Calcd for C\(_{24}\)H\(_{27}\)DSi 345.2, found 345.3.

Dimethyl(phenyl)silane-\(d\) (9)
The above compound was synthesized according to general procedure from dimethyl(phenyl)silane (68 mg, 0.5 mmol) to give product 9 in 76% yield and 94%-\(D\) ratio. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.61 - 7.50\) (m, 2H), \(7.43 - 7.31\) (m, 3H), \(4.48 - 4.40\) (m, 0.06H), 0.35 (s, 6H); GC-MS (El) \([M]^{+}\) Calcd for C\(_8\)H\(_{11}\)DSi 137.1, found 137.1.

1,4-Bis(dimethylsilyl)benzene-\(d_2\) (10)
The above compound was synthesized according to general procedure from 1,4-bis(dimethylsilyl)benzene (97 mg, 0.5 mmol) to give product 10 in 72% yield and 88%-D ratio. \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.59 (s, 4H), 4.48 (hept, \(J = 3.7\) Hz, 0.25H), 0.39 (s, 12H); GC-MS (EI) [M]+ Calcd for C\(_{10}\)H\(_{16}\)D\(_2\)Si\(_2\) 196.1, found 196.2.

\[
\text{Me} - \text{Bn} - \text{Me} \\
\text{D} \\
\text{Si} - \text{Me}
\]

Benzyltrimethylsilyl-d (11)

The above compound was synthesized according to general procedure from benzyltrimethylsilane (75 mg, 0.5 mmol) to give product 11 in 70% yield and 94%-D ratio. \(^1^H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.22 (t, \(J = 7.6\) Hz, 2H), 7.08 (t, \(J = 7.4\) Hz, 1H), 7.04 (d, \(J = 7.2\) Hz, 2H), 3.95 (dt, \(J = 7.0, 3.5\) Hz, 0.06H), 2.15 (s, 2H), 0.06 (s, 6H); GC-MS (EI) [M]+ Calcd for C\(_9\)H\(_{13}\)D\(_2\)Si\(_2\) 151.1, found 151.1.

\[
\text{Si} \\
\text{D} \\
\text{Si} \\
\text{D}
\]

Trihexylsilane-d (12)

The above compound was synthesized according to general procedure from trihexylsilane (142.5 mg, 0.5 mmol) to give product 12 in 95% yield and 95%-D ratio. \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.72 – 3.66 (m, 0.05H), 1.43 – 1.19 (m, 24H), 0.98 – 0.82 (m, 9H), 0.66 – 0.50 (m, 6H); GC-MS (EI) [M]+ Calcd for C\(_{18}\)H\(_{39}\)DSi\(_2\) 285.3, found 285.3.

\[
\text{Si} \\
\text{D} \\
\text{Si} \\
\text{D}
\]

Tributylsilane-d (13)

The above compound was synthesized according to general procedure from tributylsilane (100 mg, 0.5 mmol) to give product 13 in 99% yield and 92%-D ratio. \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.71 – 3.65 (m, 0.08H), 1.43 – 1.22 (m, 12H), 0.97 – 0.81 (m, 9H), 0.66 – 0.52 (m, 6H); GC-MS (EI) [M]+ Calcd for C\(_{12}\)H\(_{27}\)DSi\(_2\) 201.2, found 201.2.

\[
\text{Si} \\
\text{D} \\
\text{Si} \\
\text{D}
\]

Tripropylsilane-d (14)

The above compound was synthesized according to general procedure from tripropylsilane (79 mg, 0.5 mmol) to give product 14 in 85% yield and 97%-D ratio. \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.69 – 3.72 (m, 0.05H), 1.43 – 1.21 (m, 18H), 0.97 – 0.82 (m, 9H), 0.66 – 0.52 (m, 6H); GC-MS (EI) [M]+ Calcd for C\(_{18}\)H\(_{39}\)DSi\(_2\) 285.3, found 285.3.
0.03H), 1.36 - 1.42 (m, 6H), 0.97 (t, J = 7.6 Hz, 9H), 0.57 - 0.62 (m, 6H); GC-MS (EI) [M]$^+$ Calcd for C$_9$H$_{21}$DSi 159.2, found 159.2.

Triisopropylsilane-d (15)
The above compound was synthesized according to general procedure from triisopropylsilane (79 mg, 0.5 mmol) to give product 15 in 85% yield and 95%-D ratio. 1H NMR (400 MHz, CDCl$_3$) δ 3.31 (s, 0.05H), 1.06 (m, 6H), 0.97 (s, 21H); GC-MS (EI) [M]$^+$ Calcd for C$_9$H$_{21}$DSi 159.2, found 159.2.

Triethylsilane-d (16)
The above compound was synthesized according to general procedure from triethylsilane (58 mg, 0.5 mmol) to give product 16 in 86% yield and 98%-D ratio. 1H NMR (400 MHz, CDCl$_3$) δ 3.57 - 3.60 (m, 0.02H), 0.95 (t, J = 8.0 Hz, 9H), 0.56 (q, J = 8.0 Hz, 6H); GC-MS (EI) [M]$^+$ Calcd for C$_6$H$_{15}$DSi 117.1, found 117.2.

(R)-hexyl(methyl)(phenyl)silane-d (18)
The above compound was synthesized according to general procedure from (R)-hexyl(methyl)(phenyl)silane (104 mg, 0.5 mmol) to give product 17 in 63% yield and 93%-D ratio. 1H NMR (400 MHz, CDCl$_3$) δ 7.54 - 7.57 (m, 2H), 7.36 - 7.38 (m, 3H), 4.35 - 4.38 (m, 0.07H), 1.30 - 1.39 (m, 8H), 0.89 (m, 5H), 0.34 (s, 3H). The enantiomeric ratio was determined to be racemic by HPLC analysis on Chiralpak OJ-H (n-hexane, 0.25 mL/min), λ = UV 220 nm. GC-MS (EI) [M]$^+$ Calcd for C$_{13}$H$_{21}$DSi 207.2, found 207.2.

(S)-1-(3-phenylpropyl)-2,3-dihydro-1H-benzo[b]silole-d (20)
The above compound was synthesized according to general procedure from (S)-1-(3-phenylpropyl)-2,3-dihydro-1H-benzo[b]silole (127 mg, 0.5 mmol) to give product 18 in 76% yield and 82%-D ratio. 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (m, 1H), 7.23 - 7.31 (m, 4H), 7.13 - 7.20 (m, 4H), 4.64 (m, 0.18H), 3.11 - 3.12 (m, 2H), 2.63 - 2.67 (m, 2H), 1.78 (m, 2H), 1.19 - 1.23 (m, 1H), 0.92 - 1.09 (m, 3H). The enantiomeric ratio was determined to be racemic by HPLC analysis on Chiralpak OJ-H (n-hexane, 0.5 mL/min), λ = UV 254 nm, t$_{\text{minor}}$ = 49.95 min, t$_{\text{major}}$ = 68.19 min; GC-MS (EI) [M]$^+$ Calcd for C$_{17}$H$_{19}$DSi 253.1, found 253.1.
VIII. 1H NMR Spectra of Deuterated Silanes

![NMR Spectra Image]