Supporting Information

Cu–Pd Single-Atom Alloy Catalyst for Efficient NO reduction

Feilong Xing,[†] Jaewan Jeon,[†] Takashi Toyao,^{†,‡}

Ken-ichi Shimizu,^{†,‡} Shinya Furukawa,*,^{†,‡}

[†]Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan [‡]Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan

> *E-mail: furukawa@cat.hokudai.ac.jp, Tel: +81-11-706-9162, Fax: +81-11-706-9163*

sample	shell	N	R(Å)	$\Delta E (eV)$	$\sigma^2(\text{\AA}^2)$	R-factor
Pd black	Pd–Pd	12 (fix)	2.74 ± 0.00	6.1 ± 0.3	0.006	0.002
Pd/Al ₂ O ₃	Pd–Pd	8.1 ± 0.7	2.73 ± 0.00	4.7 ± 0.6	0.009	0.010
CuPd/Al ₂ O ₃	Pd–Cu	4.6 ± 0.6	2.60 ± 0.02	4.7 ± 2.5	0.004	0.004
	Pd–Pd	6.0 ± 0.5	2.65 ± 0.01	3.9 ± 0.8	0.009	
Cu ₅ Pd/Al ₂ O ₃	Pd–Cu	8.4 ± 0.9	2.57 ± 0.01	2.1 ± 1.3	0.007	0.010

Table S1. Summary of EXAFS curve fitting for Pd-based catalysts.

Figure S1. XRD patterns of Cu/Al₂O₃, Pd/Al₂O₃, and Cu–Pd/Al₂O₃. The Cu–Pd solid-solution alloy phases with bimetallic composition close to that of the fed ratio were formed: Cu/Pd = 1, Cu_{0.5}Pd_{0.5}; Cu/Pd = 3, Cu_{0.75}Pd_{0.25}; Cu/Pd = 5, Cu_{0.83}Pd_{0.17}. The diffraction peak intensity changes depending on the metal loadings as summarized Table 1.

Figure S2. HAADF-STEM images of (a) Cu₅Pd/Al₂O₃ and (b) Cu/Al₂O₃.

Figure S3. Pd K-edge XANES spectra of Pd-based catalysts.

Figure S4. Pd K-edge k^3 -weighted EXAFS oscillations of Pd-based catalysts.

Figure S5. Fourier-filtered EXAFS oscilations (solid curve) and the curve fit (dashed line) for (a) Pd/Al_2O_3 , (b) $CuPd/Al_2O_3E$, and (c) Cu_5Pd/Al_2O_3 .

Figure S6. (a) NO conversion and (b) N_2 selectivity in NO+CO reaction over Pd/Al₂O₃, Cu/Al₂O₃, and Cu_xPd/Al₂O₃ catalysts.

Figure S7. C_{N_2} and C_{N_2O} in NO+CO+O₂ and NO+CO+O₂+C₃H₆ reactions over Cu₅Pd/Al₂O₃, Cu/Al₂O₃, and Pd/Al₂O₃ catalysts.

Figure S8 Dependence of reaction rate on NO and CO partial pressures (P_{NO} and P_{CO} , respectively) in NO reduction by CO over Cu/Al₂O₃ and Cu₅Pd/Al₂O₃.

Figure S9. Optimized structures of adsorbates and the corresponding transition states during $(NO)_2$ dimer formation and its subsequent decomposition to N₂O and O over (a) Cu(211) and (b) Pd - substituted Cu(211). For clarity, metal atoms in the sub-surface region are shown as small dots.

Figure S10. Energy diagrams of CO oxidation over Cu(111) and Pd-substituted Cu(111) surfaces. Total energy of the slab plus free CO₂ was set zero. TS search was performed with the intermediate structure (CO· O) as a tentative final state.

Figure S11. Energy diagrams of N₂O bending (IS \rightarrow MS) and its subsequent decomposition to N₂ and O (MS \rightarrow FS) over (a) Cu(111) and (b) Cu(211) surfaces. For Cu(211), conversion from IS to MS was barieer-less. Total energy of slab and free N₂O was set to zero.

Figure S12. Optimized structures of adsorbates (IS, MS, and FS) and the corresponding transition states (TS1 and TS2) during N_2O bending and its subsequent decomposition to N_2 and O over (a) Cu(111) and (b) Cu(211) surfaces. For clarity, metal atoms in the sub-surface region are shown as small dots.

Kinetic Analysis

A Langmuir-Hinshelwood type mechanism

with an $(NO)_2$ dimer formation and decomposition was considered for NO–CO reaction over Cubased catalysts as follows:

$NO + \sigma \rightleftharpoons NO \cdot \sigma$	(1): NO adsorption
$CO + \sigma \rightleftharpoons CO \cdot \sigma$	(2): CO adsorption
$2N0 \cdot \sigma \rightleftharpoons (N0 \cdot \sigma)_2$	(3): NO dimerization
$(N0\cdot\sigma)_2\rightleftarrows N_20\cdot\sigma+0\cdot\sigma$	(4): N–O scission
$N_2 0 \cdot \sigma \rightleftharpoons N_2 + 0 \cdot \sigma$	(5): N ₂ O decomposition
$C0 \cdot \sigma + 0 \cdot \sigma \rightleftharpoons C0_2 + 2\sigma$	(6): CO oxidation
$N_2 0 \cdot \sigma \rightleftharpoons N_2 0 + \sigma$	(7): N ₂ O desorption

where, σ indicates an adsorption site. Each step can be regarded to be in equilibrium except when it is the rate-determining step. Therefore, the equilibrium constants are generally defined as follows:

$$K_{1} = \theta_{NO}/P_{NO}(1-\theta)$$

$$K_{2} = \theta_{CO}/P_{CO}(1-\theta)$$

$$K_{3} = \theta_{(NO)_{2}}/\theta_{NO}^{2}$$

$$K_{4} = \theta_{N_{2}0}\theta_{0}/\theta_{(NO)_{2}}$$

$$K_{5} = P_{N_{2}}\theta_{0}/\theta_{N_{2}0}$$

$$K_{6} = P_{CO_{2}}(1-\theta)^{2}/\theta_{CO}\theta_{0}$$

$$K_{7} = P_{N_{2}0}(1-\theta)/\theta_{N_{2}0}$$

where, P_X , θ_X , and $1 - \theta$ are the partial pressure of *X*, coverage of *X*, and percentage of vacant site: $1 - (\theta_{N0} + \theta_{C0} + \theta_{(N0)_2} + \theta_{N_20} + \theta_0)$, respectively. Assuming that NO adsorption (1) is the rate determining step, the overall reaction rate can be expressed using a rate constant k as follows:

$$r = k P_{NO}(1 - \theta)$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$1-\theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a, b, and c are expressed as follows: $a = K_3^{-0.5}K_4^{-1.5}K_5^{-1.5}K_7^{-2}P_{N_2}^{-1.5}P_{N_20}^{-2}$, c = -1

$$b = K_7^{-1} P_{N_2 0} \left(K_3^{-0.5} K_4^{-0.5} K_5^{0.5} P_{N_2}^{-0.5} + K_5^{-1} K_6^{-1} K_7^{2} P_{C 0_2} P_{N_2} P_{N_2 0}^{-2} + K_3 P_{N_2}^{-1} + 1 \right) + 1$$

Based on these, the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be described as follows: x = 1, y = 0.

This indicates the first- and zero-order dependences of r on P_{NO} and P_{CO} , respectively. This does not agree with the experimental results.

Assuming that CO adsorption (2) is the rate determining step, the overall reaction rate can be expressed using a rate constant k as follows:

$$r = k P_{CO}(1 - \theta)$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$1-\theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a, b, and c are expressed those shown in the solution for (1).

Based on these, the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be described as follows: x = 0, y = 1.

This indicates the zero- and first-order dependences of r on P_{NO} and P_{CO} , respectively, which is inconsistent with the experimental results.

Next, we assume that NO dimerization (3) is the rate determining step: the overall reaction rate can be expressed using a rate constant k as follows:

$$r = kK_1 P_{NO}^2 (1-\theta)^2$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a, b, and c are expressed as follows: $a = K_4^{-1} K_5 K_7^{-2} P_{N_2}^{-1} P_{N_2 0}^{-2}$

$$b = K_1 P_{N0} + K_2 P_{C0} + K_7^{-1} P_{N_2 0} \left(K_5 P_{N_2}^{-1} + 1 \right) + 1 \qquad c = -1$$

Based on these, the ranges of the reaction orders for $P_{N0}(x)$ and $P_{C0}(y)$ on the overall reaction rate should be as follows: 2 < x < 4, 0 < y < 2. This does not agree with the experimental results with negative *x*.

Assuming that N–O bond scission of $(NO)_2$ dimer (4) is the rate determining step, the overall reaction rate can be expressed using a rate constant *k* as follows:

$$r = kK_1^2 K_3 P_{N0}^2 (1 - \theta)^2$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$1-\theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a, b, and c are expressed as follows: $a = K_1^2 K_3 P_{NO}^2$

$$b = K_1 P_{N0} + K_2 P_{C0} + K_7^{-1} P_{N_2 0} \left(K_5 P_{N_2}^{-1} + 1 \right) + 1 \qquad c = -1$$

Based on these, the ranges of the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be as follows: -2 < x < 0, 0 < y < 2, which is well consistent with the experimental orders for both Cu/Al₂O₃ and Cu₅Pd/Al₂O₃.

Then, we assume that N_2O decomposition (5) is the rate determining step, affording the overall reaction rate expressed as follows:

$$r = kK_7^{-1}P_{N_2^0}(1-\theta)$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a, b, and c are expressed as follows: $a = K_2^{-1}K_4^{-1}K_6^{-1}K_7^{-1}P_{N_20}P_{C0_2}P_{C0_2}^{-1}$

$$b = K_1 P_{N0} + K_2 P_{C0} + K_7^{-1} P_{N_2 0} \left(K_5 P_{N_2}^{-1} + 1 \right) + 1 \qquad c = -1$$

Based on these, the ranges of the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be as follows: 0 < x < 1, 0 < y < 2, which is inconsistent with the experimental results with negative *x*.

When CO oxidation (6) is assumed as the rate determining step, the overall reaction rate is expressed as follows:

$$r = kK_2K_5K_7^{-1}P_{N_2}^{-1}P_{N_20}P_{C0}(1-\theta)^2$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a, b, and c are expressed those shown in the solution for (3).

Based on these, the ranges of the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be as follows: 0 < x < 2, 1 < y < 3. This does not agree with the experimental results.

When N_2O desorption (7) is assumed as the rate determining step, the overall reaction rate is expressed as follows:

$$r = kK_2^{-1}K_5^{-1}K_6^{-1}P_{N_2}P_{CO_2}P_{CO_2}^{-1}(1-\theta)$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a, b, and c are expressed as follows: $a = K_2^{-1}K_4^{-1}K_5^{-1}K_6^{-1}P_{N_2}P_{CO_2}^{-2}P_{CO_2}^{-2}$

$$b = K_1 P_{NO} + K_2 P_{CO} + K_2^{-1} K_6^{-1} P_{CO_2} (K_5^{-1} P_{N_2} + 1) P_{CO}^{-1} + 1 \qquad c = -1$$

Based on these, the ranges of the reaction orders for $P_{N0}(x)$ and $P_{C0}(y)$ on the overall reaction rate should be as follows: 0 < x < 1, 1 < y < 3. This does not agree with the experimental results.

Thus, assuming N–O bond scission of $(NO)_2$ dimer (4) as the rate-determining step exclusively gave the reaction order ranges consistent with the experiment. On the basis of these results, we concluded that the rate-determining step of NO–CO reaction over Cu-based catalysts is N–O bond scission of $(NO)_2$ dimer.

Appendix Table 1. Summary of reaction orders				
$r = k P_{\rm NO}^{x} P_{\rm CO}^{y}$				
x = 1	y = 0			
x = 0	<i>y</i> = 1			
2 < x < 4	0 < y < -2			
-2 < x < 0	0 < y < 2			
	$r = kP_{N}$ $x = 1$ $x = 0$ $2 < x < 4$			

Appendix Table 1. Summary of reaction orders

(5)	0 < x < 1	0 < y < 2
(6)	0 < x < 2	1 < y < 3
(7)	0 < x < 1	1 < y < 3