Electronic Supplementary Information

Single-Molecule Dynamic DNA Junctions for Engineering Robust Molecular Switches

Shuang Cai,¹,# Yingnan Deng,¹,# Shengnan Fu,¹ Junjie Li,¹ Changyuan Yu,¹ and Xin Su¹,*

¹ College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

* Corresponding author

These authors contributed equally.

Email: xinsu@mail.buct.edu.cn

Tel: +86-10-64421335
Fax: +86-10-64416248

Tables of content

Experimental Section.
Sequence of the oligonucleotides used in this work in Table S1.
Supplementary Figures.
Experimental Section

Oligonucleotides and other chemicals. All of the oligonucleotides used in this work were synthesized by Sangon Co. (Shanghai, China), modified oligonucleotides were purified by HPLC, while unmodified oligonucleotides were purified by PAGE. The sequences are listed ESI. Thrombin and ATP were also from Sangon Co. (Shanghai, China). (3-Aminopropyl) triethoxysilane (APTES), 3,4-dihydroxybenzoate (PCA), protocatechuate dioxygenase (PCD), and Trolox were obtained from Sigma-Aldrich (St. Louis, MO). mPEG-succinimidyl valerate (mPEG-SVA, MW, 5000), biotin-PEG-succinimidyl valerate (biotin-PEG-SVA, MW, 5000), and sulfo-disuccinimidyl tartrate (Sulfo-DST) were obtained from SeeBio Co. (Shanghai, China). All chemicals were used as received without additional purification. DNase/RNase-free deionized water from Tiangen Biotech Co. (Beijing, China) was used in all experiments.

TIRFM setup and single-molecule detection. An inverted microscope (Nikon, ECLIPSE, Ti–U) equipped with a TIRF objective (Nikon, 100× magnification, 1.49 NA) was used for single-molecule assays. The fluorophore was excited by a 520 nm laser, and the fluorescence emission was detected with a filter of 593 nm (Semrock, NY) by an EMCCD camera (Andor, iXon 897). The pixel size of this camera matches very well with the magnification offered by the 100× TIRF objective, giving a final resolution of 0.15 μm per pixel. To immobilize the oligonucleotides and passivate the surface, glass slides were coated with a mixture of PEG and biotinylated PEG with a ratio of 10:1 according to the previously reported method. Sample cells on the slide are constructed by fixing a cut 1-cm length of a pipet tip (Eppendorf) to a coverslip using epoxy adhesive. The slide surface was briefly incubated with TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) followed by 1 mg ml⁻¹ streptavidin for 15 min. Then, excess streptavidin was flushed with TE buffer. Next, 50 pM of the biotinylated capture probe was added to the sample cell for 15 min, and the excess probe was flushed out by 1× PBS for three times. The dynamic TWJs and dynamic molecular switches were prepared by annealing the component strands from 90 °C to 25 °C for 10 min in 1× PBS, and then added into the sample cell with a final concentration of 100 pM. The formation of the DNA structures was confirmed by native PAGE gel (15%). Next, 20 nM of the Cy3 labeled fluorescent probes in 1× PBS containing an oxygen scavenger system (OSS, 2.5 mM PCA, 25 nM PCD, 1 mM Trolox) were added to the sample cell. The transient binding of
the individual fluorescent probes was monitored the EMCCD camera (500 ms, gain 30). For the single-molecule assays, the room temperature was controlled at 25±1 °C.

Extraction and analysis of single-molecule fluorescence kinetics data. The fluorescence intensity-versus-time trace for each candidate region of interest (ROI) identified from the fluctuation map is generated by custom MATLAB code. The single-particle finding threshold is 3. The traces were idealized by a two-state Hidden Markov model (HMM) to generate the intensity and the dwell times of ON- and OFF- states. Kinetics filters were applied as follow for a candidate to be counted as the TWJ with a long domain I or the DNA molecule switch with target binding:

1) Minimum size of intensity jump (OFF- to ON- state) that counts as a binding/unbinding event is 3-fold of standard deviation.

2) Minimum number of intensity transitions is 10.

3) Minimum median of the dwell times for each state is 3 s.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Name</th>
<th>Color</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FP1</td>
<td>Yellow</td>
<td>Cy3-AAACACGGATCCCAATA</td>
</tr>
<tr>
<td>1</td>
<td>B1</td>
<td>Blue</td>
<td>TGGGATCTTCTTTGCCATGCGGTGATCGCCGTACTCTATGAGCCTCTG</td>
</tr>
<tr>
<td>1</td>
<td>CP1</td>
<td>Gray</td>
<td>biotin-TTTTCAGAGGCTCATAGAGTACG</td>
</tr>
<tr>
<td>1</td>
<td>G1 (domain I 0-bp)</td>
<td>Green</td>
<td>CCGTGT</td>
</tr>
<tr>
<td>1</td>
<td>G2 (domain I 2-bp)</td>
<td>Green</td>
<td>AGCCGTGT</td>
</tr>
<tr>
<td>1</td>
<td>G3 (domain I 3-bp)</td>
<td>Green</td>
<td>GAGCCGTGT</td>
</tr>
<tr>
<td>1</td>
<td>G4 (domain I 5-bp)</td>
<td>Green</td>
<td>AAGAGCCGTGT</td>
</tr>
<tr>
<td>1</td>
<td>G5 (domain I 15-bp)</td>
<td>Green</td>
<td>ACCGCATGGCAAGAGCCGTGT</td>
</tr>
<tr>
<td>1</td>
<td>G6 (domain I 18-bp)</td>
<td>Green</td>
<td>ATCACCGCATGGCAAGAGCCGTGT</td>
</tr>
<tr>
<td>1</td>
<td>G7 (domain I 20-bp)</td>
<td>Green</td>
<td>CGATCACCGCATGGCAAGAGCCGTGT</td>
</tr>
<tr>
<td>2</td>
<td>FP1</td>
<td>Yellow</td>
<td>Cy3-AAACACGGATCCCAATA</td>
</tr>
<tr>
<td>2</td>
<td>CP1</td>
<td>Gray</td>
<td>biotin-TTTTCAGAGGCTCATAGAGTACG</td>
</tr>
<tr>
<td>2</td>
<td>I1</td>
<td>Purple</td>
<td>GCGGTGTGATGGAAGTGGTGTAGGTGAGATGATCG</td>
</tr>
<tr>
<td>2</td>
<td>B2</td>
<td>Blue</td>
<td>TGGGATGCACCTTTTTTTTTTTTTTTTTAAAACTTTCTACCATCA</td>
</tr>
<tr>
<td>2</td>
<td>G8 (domain I 0-bp)</td>
<td>Green</td>
<td>CGATCCATCTACCTACCTACACCTTTTTTTTTTTTTTTTTTTTTT</td>
</tr>
<tr>
<td>2</td>
<td>G9 (domain I 2-bp)</td>
<td>Green</td>
<td>CGATCCATCTACCTACCTACACCTTTTTTTTTTTTTTTTTTTTGA</td>
</tr>
<tr>
<td>2</td>
<td>G10 (domain I 3-bp)</td>
<td>Green</td>
<td>CGATCCCATCTACCTACCTACACCTTTTTTTTTTTTTTTTTTTTTTCCCGTGT</td>
</tr>
<tr>
<td>2</td>
<td>G11 (domain I 5-bp)</td>
<td>Green</td>
<td>CGATCCCATCTACCTACCTACCTTTTTTTTTTTTTTTTTTTTTTTTTAG</td>
</tr>
<tr>
<td>3</td>
<td>FP1</td>
<td>Yellow</td>
<td>Cy3-AAACACGGATCCCAATA</td>
</tr>
<tr>
<td>3</td>
<td>CP1</td>
<td>Gray</td>
<td>biotin-TTTTCAGAGGCTCATAGAGTACG</td>
</tr>
<tr>
<td>3</td>
<td>B3 (for ATP)</td>
<td>Blue</td>
<td>TGGGATGGAAGGGAGGCGTCCGTACTCTATGAGCCACCTCTCG</td>
</tr>
<tr>
<td>3</td>
<td>B4 (for Thrombin)</td>
<td>Blue</td>
<td>TGGGATGGAAGGGAGGCGTCCGTACTCTATGAGCCACCTCTCG</td>
</tr>
<tr>
<td></td>
<td>Sequence Name</td>
<td>Color</td>
<td>Sequence</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>G12 (for ATP)</td>
<td>Green</td>
<td>TATGAGGGGGGTCCACCGTGT</td>
</tr>
<tr>
<td>3</td>
<td>G13 (for Thrombin)</td>
<td>Green</td>
<td>TCAGTGGGGTTGACCGGATGTCCTGACCGTGT</td>
</tr>
<tr>
<td>4</td>
<td>I1</td>
<td>Purple</td>
<td>GCGGTGTGATGGAAGTGGGTGGTAGGGTGAATG</td>
</tr>
<tr>
<td>4</td>
<td>I2</td>
<td>Purple</td>
<td>AAGTGGGTGGTACG</td>
</tr>
<tr>
<td>4</td>
<td>I3</td>
<td>Purple</td>
<td>GTGGGTGGAATG</td>
</tr>
<tr>
<td>4</td>
<td>B5 (for 17β-estradiol)</td>
<td>Blue</td>
<td>TAGGGTGCCGCTCTGTCGCATTCAATTGCTGC</td>
</tr>
<tr>
<td>4</td>
<td>G14 (for 17β-estradiol)</td>
<td>Green</td>
<td>GCTTCCAGTTATGGAATTACACCGAGAGGGGTACC</td>
</tr>
<tr>
<td>S1</td>
<td>FP2</td>
<td>Yellow</td>
<td>AAACACGGATCCCAT</td>
</tr>
<tr>
<td>S1</td>
<td>CP2</td>
<td>Gray</td>
<td>TTTTCAGAGGCTCATAGACTACGG</td>
</tr>
<tr>
<td>S1</td>
<td>B1</td>
<td>Blue</td>
<td>TGGGATCTCTTGCCATGCGGTGATCGCCCTCTCT</td>
</tr>
<tr>
<td>S1</td>
<td>G1 (domain I 2-bp)</td>
<td>Green</td>
<td>AGCCGTGT</td>
</tr>
<tr>
<td>S1</td>
<td>G2 (domain I 20-bp)</td>
<td>Green</td>
<td>CGATCACCAGCATGGCAAGAGCCGTGT</td>
</tr>
<tr>
<td>S2</td>
<td>FP1</td>
<td>Yellow</td>
<td>Cy3- AAACACGGATCCCAT</td>
</tr>
<tr>
<td>S2</td>
<td>B1</td>
<td>Blue</td>
<td>TGGGATCTCTTGCCATGCGGTGATCGCCCTCTCT</td>
</tr>
<tr>
<td>S2</td>
<td>B6</td>
<td>Blue</td>
<td>ATGGGATCTCTTGCCATGCGGTGATCGCCCTCTCT</td>
</tr>
<tr>
<td>S2</td>
<td>B7</td>
<td>Blue</td>
<td>GGGATCTCTTGCCATGCGGTGATCGCCCTCTCTCTA</td>
</tr>
<tr>
<td>S2</td>
<td>G1</td>
<td>Green</td>
<td>CGATCACCAGCATGGCAAGAGCCGTGT</td>
</tr>
<tr>
<td>S2</td>
<td>G15</td>
<td>Green</td>
<td>CGATCACCAGCATGGCAAGAGCCGTGT</td>
</tr>
<tr>
<td>S2</td>
<td>G16</td>
<td>Green</td>
<td>CGATCACCAGCATGGCAAGAGCCGTGT</td>
</tr>
<tr>
<td>S4</td>
<td>FP2</td>
<td>Yellow</td>
<td>AAACACGGATCCCAT</td>
</tr>
<tr>
<td>S4</td>
<td>CP2</td>
<td>Gray</td>
<td>TTTTCAGAGGCTCATAGACTACGG</td>
</tr>
<tr>
<td>S4</td>
<td>I1</td>
<td>Purple</td>
<td>GCGGTGTGATGGAAGTGGGTGGTAGGGTGAATG</td>
</tr>
<tr>
<td>S4</td>
<td>B2</td>
<td>Blue</td>
<td>TGGGATGCACTCTTGCCATGCGGTGATCGCCCTCTCTA</td>
</tr>
<tr>
<td>S4</td>
<td>G9</td>
<td>Green</td>
<td>CGATCACCAGCATGGCAAGAGCCGTGT</td>
</tr>
</tbody>
</table>

The sequence color is shown in the corresponding figures. Individual strand is identified by its unique name and may be used in different figures. Note that for Figure S2 the sequences compose the TWJs with different domain II, in which the association region of domain I is 20-bp.
Supplementary Figures

Figure S1 Native PAGE gel characterization of the dynamic TWJs, lane 1: 25-bp marker, lane 2: 2-bp in domain I, lane 3: 20-bp in domain I. The base pair numbers in domain II is 12.

Figure S2 Single-molecule counts of the TWJs after kinetics filtering (to remove the nonspecific signals) as a function of the length of the associate region (base pair numbers) in domain I. The columns represent different structures of domain II.
Figure S3 Single-molecule counts of the TWJs after kinetics filtering as a function of the length of the associate region (base pair numbers) in domain I. The base pair numbers in domain II is 12. The columns represent different salinity.

Figure S4 Native PAGE gel characterization of the DNA molecular switch (2-bp in domain I and 12-bp in domain II) for nucleic acid input. lane 1: 50-bp marker, lane 2: in the absence of the input, lane 3: in the presence of the input.
Figure S5 Dwell time distribution of the fluorescence-ON (τ_{on}) and -OFF (τ_{off}) states of the fluorescent probes in the molecular switches for different inputs. The sequences of DNA inputs (I1-I3) and the split aptamers of 17β-estradiol are shown in Table S1. The fluorescent probe, the capture probe, and the hybridization probe for DNA inputs are the same as those in Figure 2. The fluorescent probe and the capture probe for 17β-estradiol are the same as those in Figure 3. TWJ structures: 12-bp in domain II and 0-bp in domain I for 17β-estradiol, 12-bp in domain II and 2-bp in domain I for DNA inputs.

Reference