Ligand-controlled diastereodivergent, enantio- and

regioselective copper-catalyzed hydroxyalkylboration of

1,3-dienes with ketones

Jian-Jun Feng, Yan Xu and Martin Oestreich*

Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany martin.oestreich@tu-berlin.de

Electronic Supplementary Information

Table of Contents

1	General Information
2	Optimization Study
3	Experimental Details for the Asymmetric Difunctionalization of Isoprene and Its
	Derivatives
3.1	General Procedure for the Asymmetric Anti-Selective Borylative Coupling of
	1,3-Dienes and Ketones (Condition A)
3.2	General Procedure for the Asymmetric Syn-Selective Borylative Coupling of
	1,3-Dienes and Ketones (Condition B)
3.3	Characterization Data of the Chiral Tertiary Homoallylic Alcohols (anti-4) S12
3.4	Characterization Data of the Chiral Tertiary Homoallylic Alcohols (syn-4) S24
4	Scale-up Experiment
5	Determination of the Absolute Configurations of the Products
6	Transformations of the Products
7	Proposed Catalytic Cycle and Model for the Stereochemical Outcome S50
8	HPLC Traces
9	NMR Spectra S96
10	References

1 General Information

All reactions were performed in flame-dried glassware using conventional Schlenk techniques under a static pressure of nitrogen unless otherwise stated. Liquids and solutions were transferred with syringes. All metal salts were purchased from commercial suppliers and used as received. All solvents were dried and purified following standard procedures. Technical grade solvents for extraction or chromatography (tert-butyl methyl ether, cyclohexane, CH₂Cl₂, ethyl acetate, and npentane) were distilled prior to use. Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 glass plates by *Merck*. Flash column chromatography was performed on silica gel 60 (40-63 µm, 230-400 mesh, ASTM) by Grace using the indicated solvents. ¹H, ¹¹B, ¹³C, and ¹⁹F NMR spectra were recorded in CDCl₃ or CD₂Cl₂ on Bruker AV 400, Bruker AV 500 and Bruker AV 700 instruments. Chemical shifts are reported in parts per million (ppm) downfield from tetra-methylsilane and are referenced to the residual solvent resonance as the internal standard (CHCl₃: δ = 7.26 ppm for ¹H NMR and CDCl₃: δ = 77.0 ppm for ¹³C NMR, CHDCl₂: δ = 5.32 ppm for ¹H NMR and CD₂Cl₂: δ = 53.84 ppm for ¹³C NMR). ¹¹B, and ¹⁹F NMR spectra were calibrated according to the IUPAC recommendation using a unified chemical shift scale based on the proton resonance of tetramethylsilane as primary reference.^[1] Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, m_c = centrosymmetric multiplet), coupling constants (Hz), and integration. Optical rotations were measured on a Schmidt & Haensch Polatronic H532 polarimeter with $[\alpha]_{\lambda}$ values reported in 10⁻¹ (° cm² g⁻¹); concentration c is in g/100 mL and λ as indicated. Enantiomeric excesses were determined by analytical high performance liquid chromatography (HPLC) analysis on an Agilent Technologies 1290 Infinity instrument with a chiral stationary phase using Daicel Chiralcel columns. Mass spectra (MS) were obtained from the Analytical Facility at the Institut für Chemie, Technische Universität Berlin.

Ligands: L18,^[2] L19,^[3] and phosphoramidite ligands^[4] L1 and L21–26 were prepared according to literature procedures. Other ligands were directly purchased from Alfa Aesar, Sigma Aldrich, Solvias, TCI, and Strem. Solvias AG is acknowledged for a generous gift of Josiphos ligands used in this work.

Dienes: 2a and **2c** were purchased from Acros; **2b** was purchased from TCI and used as a toluene solution (15 %); **2d**^[5a] and **2f**^[5b] were prepared according to the literature; **2f** was purchased from AlfaAesar.

Ketones: Commercially available ketones were purchased from Alfa Aesar, Sigma Aldrich, ABCR, TCI and were used as received.

Racemic products: *rac*-L1 was employed to prepare corresponding racemates of 4ad,
4ae, 4af, and 4nc; *rac*-BINAP or Ph₃P were employed to prepare other racemates.

2 Optimization Study

General procedure for the optimization reactions:

In a nitrogen-filled glovebox, to a flame-dried Schlenk tube was added the copper salt (20 µmol, 10 mol%), the ligand (24 µmol, 12 mol%), and the base (80 µmol, 40 mol%). The tube was taken out of the glovebox, evacuated, and backfilled with N_2 (3 times) followed by the addition of the solvent (1.0 mL). After stirring for 30 min at room temperature, B₂(pin)₂ (78 mg, 0.30 mmol, 1.5 equiv.) in THF (1.0 mL) was added. After stirring at room temperature for about 1 min, it was cooled to indicated reaction temperature, isoprene 2a (100 µL, 1.0 mmol, 5.0 equiv.) was added via syringe, followed by acetophenone (1a, 24 mg, 0.20 mmol, 1.0 equiv.). After the indicated reaction time, the reaction was quenched by 0.3 mL saturated ammonium chloride water solution. To the mixture was then added 1.0 mL THF, 3 M NaOH (0.6 mL), and 30% H₂O₂ (0.6 mL) at 0 °C. After stirring at 0 °C for 30 min, brine (10 mL) was added. The mixture was extracted with EtOAc (3×10 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo*. It was then analyzed by ¹H NMR spectroscopy to obtain the NMR yield and diastereoselectivity with CH₂Br₂ as an internal standard. The residue was purified by column chromatography on silica gel (5:1 to 3:1 *n*-pentane/EtOAc) to afford the target compound. The enantiomeric exess was determined by HPLC analysis on a chiral stationary phase.

Table S1. Screening of chiral ligands for enantioselective copper-catalyzed borylative

 coupling of 1,3-diene and ketone ^[a]

	Me +	CuC <i>Ligan</i> NaOt B2(pin Me Th	Cl (10 mol %) nd (12 mol %) Bu (40 mol %) n) ₂ (1.5 equiv) HF, rt, 16 h H=O-2/NaOH	Me OH Me OH	+	OH Me
	1a	2a		anti- 4aa	syn	4aa
F istari	Linond	Conversion	Yield	d.r.	ee [%] ^[d]
Entry	Ligand	[%] ^[b]	[%] ^[b]	(anti:syn) ^[c]	anti- 4aa	syn- 4aa
1	L1	100	53	71 :29	60	21
2	L2	100	75	42:58	43	32 ^[e]
3	L3	100	92	35:65	6	35
4	L4	100	93	28:72	35 ^[e]	32 ^[e]
5	L5	100	84	44:56	13	22
6	L6	89	45	23: 77	22 ^[e]	61
7	L7	100	98	23: 77	13 ^[e]	80
8	L8	91	80	22: 78	72 ^[e]	88
9	L9	100	98	23: 77	74 ^[e]	88
10	L10	100	65	28:72	71 ^[e]	87
11 ^[f]	L11	80	37	47:53	0	37
12	L12	60	29	49:51	_	_
13	L13	100	98	25:75	32 ^[e]	64
14	L14	100	98	29:71	0	44
15	L15	100	83	60:40	38	12 ^[e]
16	L16	100	81	58:42	44 ^[e]	26 ^[e]
17	L17	100	36	50:50	0	0
18 ^[g]	L18	100	98	40:60	8 ^[e]	4
19	L19	100	41	61:39	0	0
20	L20	67	39	33:67	0	0

[a] All reactions were performed on a 0.20 mmol scale. [b] Determined by ¹H NMR

spectrocopy with CH_2Br_2 as an internal standard. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis on a chiral stationary phase. [e] The other enantiomer was obtained. [f] RT, 49 h. [g] 10 mol% **L18**·CuCl was used.

 Table S2. Examining the effect of temperature on the borylative coupling of 1,3-diene

 and ketone ^[a]

$\begin{array}{c} CuCl (10 \text{ mol } \%) \\ L1, L7, \text{ or } L9 (12 \text{ mol } \%) \\ NaO f Bu (40 \text{ mol } \%) \\ B_2(pin)_2 (1.5 \text{ equiv}) \\ THF, \textbf{T} (^{o} C), \text{ time} \\ \texttt{then } H_2O_2/NaOH \end{array} \xrightarrow{Me} \begin{array}{c} OH \\ Me \\ OH \\ OH \end{array} \xrightarrow{Me} \begin{array}{c} OH \\ OH \\ OH \\ oH \end{array} \xrightarrow{OH} \\ OH \\ oH \end{array}$								
Ligand	Temperature	Time	Yield	dr	ee ['	%] ^[d]		
Liganu	[°C]	[h]	[%] ^[b]	(anti:syn) ^[c]	anti- 4aa	syn- 4aa		
L1	25	16	53	71:29	60	21		
L1	-15	64	85	71:29	77	41		
L1	-30	71	98	76:24	86	52		
L7	25	16	98	23:77	13 ^[e]	80		
L7	-15	17	98	11:89	22 ^[e]	86		
L7	-30	71	84	21:79	23 ^[e]	84		
L9	25	16	98	23:77	74 ^[e]	88		
L9	0	15	97	18:82	79 ^[e]	92		

L9	-10	18	91	16:84	79 ^[e]	93
L9	-20	23	61	15:85	79 ^[e]	94
L9	-30	34	99	15:85	79 ^[e]	94
L9 ^[f]	-20	37	85	20:80	75 ^[e]	93
L9 ^[a]	-20	45	98	13:87	71 ^[e]	93

[a] All reactions were performed on a 0.20 mmol scale. [b] Determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis on a chiral stationary phase. [e] The other enantiomer was obtained. [f] 0.4 mmol scale, CuCl (5 mol%) and L9 (6 mol%) were used. [g] 0.4 mmol scale, CuOAc (5 mol%), L9 (6 mol%) and toluene/THF (8:2) were used.

Table S3. Screening of copper catalysts and solvents in the borylative coupling of 1,3diene and ketone^[a]

$ \begin{array}{c} 0 \\ Me + Me \\ 1a 2a \end{array} $		[Cu] (10 mol %) L1 or L8 (12 mol %) NaOtBu (40 mol %) B ₂ (pin) ₂ (1.5 equiv) solvent rt, 16 h		Me OH Me OH anti- 4aa	+ Me OH OH syn-4aa	
Ligand	Copper	solvents	Yield	dr	ee [%] ^[d]	
Liganu	catalyst	[%]		(anti:anti) ^[c]	anti- 4aa	syn- 4aa
L1	CuCl	THF	53	71:29	60	21
L1	CuOAc	THF	88	66:34	64	10
L1	(CuOTf) ₂ ·C ₆ H ₆ ^[e]	THF	92	66:34	61	23
L1	L1 Cu(CH ₃ CN) ₄ PF ₆		93	66:34	59	21
L1	CuCl	<i>t</i> BuOMe	83	70:30	67	24
L1	L1 CuCl		98	71:29	67	24
L1	CuOAc	Toluene	96	68:32	68	30
L8	CuCl	THF	80	22:78	72 ^[f]	88
L8	CuCl	<i>t</i> BuOMe	97	30:70	63 ^[f]	85
L8	CuCl	Toluene	80	29:71	69 ^[f]	88

[a] All reactions were performed on a 0.2 mmol scale. [b] Determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis on a chiral stationary phase. [e] 5 mol% $(CuOTf)_2 C_6H_6$ was used. [f] The other enantiomer was obtained.

li a	D Me + Me 2a	CuOAc (10 r 1, L8 , or L9 (1 <i>base</i> (40 m B ₂ (pin) ₂ (1.5 toluena -30 °C, ti	mol %) 2 mol %) ol %) equiv) e ime	Me OH Me OH anti- 4aa	+ He C syn-4	Me Me OH Jaa
Linend	Base	time	Yield	dr	ee [%] ^[d]
Ligand		[h]	[%] ^[b]	(anti:syn) ^[c]	anti- 4aa	syn- 4aa
L1	<i>t</i> BuOK	64	82	77:23	89	63
L1	<i>t</i> BuOK ^[e]	64	84	82:18	89	63
L1	<i>t</i> BuONa	64	94	80:20	90	64
L1	MeOK	64	89	78:22	90	65
L8 ^[f]	<i>t</i> BuOK	57	54	32:68	6 ^[g]	64
L8 ^[f]	<i>t</i> BuONa	57	65	25:75	36 ^[g]	82
L8 ^[f]	MeOK	57	28	19:81	64 ^[g]	90
L8 ^[f]	MeONa	57	44	34:66	8 ^[g]	65
L8 ^[f]	MeOLi	57	10	—		
L9 ^[h]	<i>t</i> BuOK	14	66	19:81	76	88
L9 ^[h]	<i>t</i> BuONa	16	98	23:77	74	88
L9 ^[h]	MeOK	14	68	19:81	75	89

Table S4. Screening of bases in the borylative coupling of 1,3-diene and ketone [a]

[a] All reactions were performed on a 0.1 mmol scale. [b] Determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis on a chiral stationary phase. [e] 12 mol% NaBAr^F₄ was used. [f] Run at –15 °C and THF was used instead of toluene. [g] The other enantiomer was obtained. [h] Run at rt and THF was used instead of toluene.

	Me +	CuC <i>Liga</i> NaC <u>B</u> 2(p Me	DAc (10 mol %) and (12 mol %) t/Bu (40 mol %) bin) ₂ (1.5 equiv) toluene -30 °C, time	Me OH Me OH anti- 4aa	+ Me syn	OH Me OH 4aa
- <i>i</i>		Conversion	Yield	dr	ee [%] ^[d]
Entry	Ligand	[%] ^[b]	[%] ^[b]	(anti:syn) ^[c]	anti-3aa	syn -3aa
1	L1	100	94	80:20	90	64
2	L21	100	94	79:21	87	64
3	L22	78	70	67:33	47	5
4	L23	100	97	71:29	55 ^[e]	44 ^[e]
5	L24	85	81	78:22	61	37
6	L25	89	73	71:29	26 ^[e]	37 ^[e]
7	L26	100	98	67:33	80	58

Table S5. Further examining phosphoramidite ligands for borylative coupling of 1,3diene and ketone under optimized reaction conditions^[a]

[a] All reactions were performed on a 0.15 mmol scale. [b] Determined by ¹H NMR spectroscopy with CH₂Br₂ as an internal standard. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis on a chiral stationary phase. [e] The other enantiomer was obtained.

3.1 General Procedure for Asymmetric *Anti*-Selective Borylative Coupling of 1,3-Dienes and Ketones (Condition A)

In a nitrogen-filled glovebox, to a flame-dried Schlenk tube was added CuOAc (2.5 mg, 20 μmol, 10 mol%), ligand **L1** (13 mg, 24 μmol, 12 mol%), NaO*t*Bu (8.0 mg, 80 μmol, 40 mol%). The tube was taken out of the glovebox, evacuated, and backfilled with N_2 (3 times) followed by the addition of toluene (1.0 mL). After stirring for 30 min at room temperature, B₂(pin)₂ (78 mg, 0.30 mmol, 1.5 equiv.) in toluene (0.5 mL) was added. After stirring at room temperature for about 1 min, it was cooled to -30 °C. 1,3-diene 2 (1.0 mmol, 5.0 equiv.) was added via syringe, followed by ketone 1 (0.20 mmol, 1.0 equiv.) in toluene (0.5 mL). After the indicated reaction time, the reaction was quenched by 0.3 mL saturated ammonium chloride water solution. The mixture was concentrated in vacuo. To the residue was then added 2.0 mL THF, 3 M NaOH (0.6 mL) ,and 30% H₂O₂ (0.6 mL) at 0 °C. After stirring at 0 °C for 30 min, brine (10 mL) was added. The mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo*. It was then analyzed by ¹H NMR spectroscopy to obtain the NMR yield and diastereoselectivity with CH_2Br_2 as an internal standard. The crude product was purified by column chromatography on silica gel (5:1 to 3:1 cyclohexane/EtOAc) to afford target compound.

3.2 General Procedure for Asymmetric *Syn*-Selective Borylative Coupling of 1,3-Dienes and Ketones (Condition B)

In a nitrogen-filled glovebox, to a flame-dried Schlenk tube was added CuOAc (2.5 mg, 20 μ mol, 5 mol%), ligand **L9** (20 mg, 24 μ mol, 6 mol%), NaO*t*Bu (16.0 mg, 160 μ mol, 40 mol%). The tube was taken out of the glovebox, evacuated, and backfilled with N₂ (3 times) followed by the addition of toluene/THF (2.0 mL, 8/2, v/v). After stirring for 30 min at room temperature, B₂(pin)₂ (152 mg, 0.60 mmol, 1.5 equiv.) in toluene/THF (1.0 mL, 8/2, v/v) was added. After stirring at room temperature for about 1 min, it was cooled to -20 °C. 1,3-diene **2** (2.0 mmol, 5.0 equiv.) was added via syringe, followed by ketone **1** (0.40 mmol, 1.0 equiv.) in toluene/THF (0.5 mL, 8/2, v/v). After the

indicated reaction time, the reaction was quenched by 0.3 mL saturated ammonium chloride water solution. The mixture was concentrated *in vacuo*. To the residue was then added 5.0 mL THF, 3 M NaOH (1.2 mL) ,and 30% H_2O_2 (1.2 mL) at 0 °C. After stirring at 0 °C for 30 min, brine (10 mL) was added. The mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo*. It was then analyzed by ¹H NMR spectroscopy to obtain the NMR yield and diastereoselectivity with CH_2Br_2 as an internal standard. The crude product was purified by column chromatography on silica gel (5:1 to 3:1 *n*-pentane/EtOAc) to afford target compound.

Note: The diastereomers have different \mathbf{R}_{f} value except for **4oa**. The major diasteromer can be partially separated by flash chromatography on silica gel. Yields are combined isolated material.

3.3 Characterization Data of the Chiral Tertiary Homoallylic Alcohols (anti-4)

(2*R*,3*S*)-3-Phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4aa): Prepared from acetophenone (1a, 24.0 mg, 0.20 mmol) according to Condition A with isoprene (2a) and $B_2(Pin)_2$ at -30 °C for 64 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4aa as a colorless oil (37.2 mg, 90% yield, *anti:syn* = 80:20, *anti*-4aa: 90% *ee*).

R_f = 0.35 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (500 MHz, CDCl₃): δ 1.66 (s, 3H), 1.82 (s, 3H), 2.46 (broad s, 1H), 2.87 (t, J = 6.40 Hz, 1H), 3.12 (broad s, 1H), 4.03 (d, J = 6.40 Hz, 1H), 4.88 (s, 1H), 5.11–5.12 (m, 1H), 7.40–7.44 (m, 1H), 7.48–7.52 (m, 2H), 7.56–7.59 (m, 2H) ppm. ¹³**C NMR** (125 MHz, CDCl₃): δ 24.2, 28.8, 58.1, 62.4, 76.2, 115.1, 125.4, 126.7, 127.8, 143.9, 146.4 ppm. **HRMS** (APCI) for C₁₃H₁₇O [M-OH]⁺: calculated 189.1274, found 189.1273.

Optical rotation: $[\alpha]_D^{20}$ = -67.4 (*c* 1.0, CHCl₃, 90% *ee*). The enantiomeric excess of *anti*-**4aa** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 34.4 min (minor), t_R = 37.1 min (major).

(2*R*,3*S*)-2-(Prop-1-en-2-yl)-3-(*p*-tolyl)butane-1,3-diol (*anti*-4ba): Prepared from 1-(*p*-tolyl)ethan-1-one (1b, 26.8 mg, 0.20 mmol) according to Condition A with isoprene (2a) and $B_2(Pin)_2$ at -30 °C for 62 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ba as a colorless oil (37.6 mg, 85% yield, *anti*:syn = 88:12, *anti*-4ba: 92% *ee*).

R_f = 0.35 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.49 (s, 3H), 1.62 (s, 3H), 2.33 (s, 3H), 2.69 (t, *J* = 6.56 Hz, 1H), 3.83–3.85 (m, 2H), 4.72 (s, 1H), 4.94–4.95 (m, 1H), 7.13 (d, *J* = 7.92 Hz, 2H), 7.28 (d, *J* = 7.92 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 20.9, 24.3, 28.9, 58.2, 62.5, 76.1, 115.0, 125.3, 128.5, 136.3, 143.4, 144.0 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1430. Optical rotation: $[\alpha]_D^{20}$ = -46.0 (*c* 0.75, CHCl₃, 92% *ee*). The enantiomeric excess of *anti-***4ba** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.6 mL/min): *t*_R = 18.7 min (minor), *t*_R = 25.9 min (major).

(2R,3S)-3-(4-Methoxyphenyl)-2-(prop-1-en-2-yl)butane-1,3-diol(anti-4ca):Prepared from 1-(4-methoxyphenyl)ethan-1-one (1c, 30.0 mg, 0.20 mmol) accordingto Condition A with isoprene (2a) and B₂(Pin)₂ at -30 °C for 90 h. Purification by flashcolumn chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ba as

a colorless oil (36.4 mg, 77% yield, anti.syn = 77:23, anti-4ca: 81% ee).

R_f = 0.30 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.50 (s, 3H), 1.61 (s, 3H), 2.67 (t, *J* = 6.60 Hz, 1H), 3.77–3.85 (m, 2H), 3.80 (s, 3H), 4.67 (s, 1H), 4.94–4.95 (m, 1H), 6.85 (d, *J* = 8.88 Hz, 2H), 7.31 (d, *J* = 8.88 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.3, 28.9, 55.2, 58.3, 62.6, 76.0, 113.1, 115.1, 126.7, 138.4, 144.0, 158.3 ppm. **HRMS** (APCI) for C₁₄H₁₉O₂ [M-OH]⁺: calculated 219.1335, found 219.1382. Optical rotation: $[\alpha]_D^{20}$ = -48.6 (*c* 0.7, CHCl₃, 81% *ee*). The enantiomeric excess of *anti*-**4ca** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 93:7, flow rate 0.4 mL/min): *t*_R = 50.8 min (minor), *t*_R = 54.9 min (major).

(2*R*,3*S*)-3-(4-Fluorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4da): Prepared from 1-(4-fluorophenyl)ethan-1-one (1d, 44.1 mg, 0.20 mmol) according to Condition **A** with isoprene (2a) and B₂(Pin)₂ at -30 °C for 67 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4da as a colorless oil (41.7 mg, 94% yield, *anti*:syn = 88:12, *anti*-4da: 91% *ee*).

R_f = 0.32 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (500 MHz, CDCl₃): δ 1.51 (s, 3H), 1.62 (s, 3H), 2.25 (broad s, 1H), 2.64 (t, J = 6.25 Hz, 1H), 3.06 (broad s, 1H), 3.79–3.87 (m, 2H), 4.66 (s, 1H), 4.92 (s, 1H), 6.97–7.01 (m, 2H), 7.34–7.37 (m, 2H) ppm. ¹³**C NMR** (125 MHz, CDCl₃): δ 24.2, 29.1, 58.1, 62.5, 76.1, 114.5 (d, J = 21.22 Hz), 115.4, 127-2 (d, J = 7.93 Hz), 142.2 (d, J = 2.68 Hz), 143.6, 161.7 (d, J = 244.90 Hz) ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.60. **HRMS** (APCI) for C₁₃H₁₆FO [M-OH]⁺: calculated 207.11797, found 207.1179.

Optical rotation: $[\alpha]_D^{20}$ = -77.9 (*c* 1.0, CHCl₃, 91% *ee*). The enantiomeric excess of *anti*-**4da** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 98:2, flow rate 0.3 mL/min): $t_{\rm R}$ = 73.0 min (minor), $t_{\rm R}$ = 77.5 min (major).

(2*R*,3*S*)-3-(4-Chlorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4ea): Prepared from 1-(4-chlorophenyl)ethan-1-one (1e, 31.0 mg, 0.20 mmol) according to Condition **A** with isoprene (2a) and B₂(Pin)₂ at -30 °C for 66 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ea as a colorless oil (41.2 mg, 86% yield, *anti*:syn = 81:19, *anti*-4ea: 93% *ee*).

R_f = 0.32 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.55 (s, 3H), 1.65 (s, 3H), 2.33 (broad s, 1H), 2.67 (t, J = 6.17 Hz, 1H), 3.22 (broad s, 1H), 3.83–3.93 (m, 2H), 4.71 (s, 1H), 4.95–4.96 (m, 1H), 7.31 (d, J = 8.97 Hz, 2H), 7.37 (d, J = 8.97 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.3, 29.1, 57.8, 62.4, 76.1, 115.5, 127.0, 127.8, 132.5, 143.5, 145.0 ppm. **HRMS** (APCI) for C₁₃H₁₆ClO [M-OH]⁺: calculated 223.0890, found 223.0885.

Optical rotation: $[\alpha]_D^{20}$ = -91.5 (*c* 1.0, CHCl₃, 93% *ee*). The enantiomeric excess of *anti*-**4ea** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.6 mL/min): *t*_R = 25.4 min (minor), *t*_R = 33.2 min (major).

(2*R*,3*S*)-3-(4-Bromophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4fa): Prepared from 1-(4-bromophenyl)ethan-1-one (1f, 40.0 mg, 0.20 mmol) according to Condition **A** with isoprene (2a) and $B_2(Pin)_2$ at -30 °C for 86 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4fa as a colorless oil (49.4 mg, 87% yield, anti:syn = 80:20, anti-4fa: 93% ee).

R_f = 0.32 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.52 (s, 3H), 1.61 (s, 3H), 2.12 (broad s, 1H), 2.63 (t, J = 6.18 Hz, 1H), 3.06 (broad s, 1H), 3.81–3.91 (m, 2H), 4.69 (s, 1H), 4.92–4.93 (m, 1H), 7.27 (d, J = 8.56 Hz, 2H), 7.43 (d, J = 8.65 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.3, 29.1, 57.7, 62.4, 76.1, 115.5, 120.7, 127.3, 130.8, 143.5, 145.6 ppm. **HRMS** (APCI) for C₁₃H₁₆BrO [M-OH]⁺: calculated 267.0385, found 267.0386.

Optical rotation: $[\alpha]_D^{20}$ = -91.8 (*c* 0.65, CHCl₃, 93% *ee*). The enantiomeric excess of *anti*-**4fa** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_B = 30.0 min (minor), *t*_B = 36.4 min (major).

4-((2S,3R)-2-Hydroxy-3-(hydroxymethyl)-4-methylpent-4-en-2-yl)benzoate (*anti-***4ga):** Prepared from methyl 4-acetylbenzoate (**1g**, 35.6 mg, 0.20 mmol) according to **Condition A** with isoprene **2a** and $B_2(Pin)_2$ at -30 °C for 86 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 2/1 afforded **4ga** as a white solid (50.2 mg, 95% yield, *anti:syn* = 62:38, *anti-***4ga**: 89% *ee*).

R_f = 0.34 (cyclohexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.48 (s, 3H), 1.65 (s, 3H), 2.10 (broad s, 1H), 2.68 (t, J = 5.75 Hz, 1H), 3.16 (broad s, 1H), 3.84–3.96 (m, 2H), 3.91 (s, 3H), 4.72 (s, 1H), 4.90–4.91 (m, 1H), 7.47 (d, J = 8.44 Hz, 2H), 7.98 (d, J = 8.46 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.2, 29.1, 52.1, 57.6, 62.3, 76.3, 115.6, 125.4, 128.5, 129.1, 143.4, 151.9, 167.0 ppm. **HRMS** (APCI) for C₁₅H₁₉O₃ [M-OH]⁺: calculated 247.1334, found 247.1340.

Optical rotation: $[\alpha]_D^{20}$ = -26.0 (*c* 1.0, CHCl₃, 89% *ee*). The enantiomeric excess of *anti*-**4ga** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.4 mL/min): $t_{\rm R}$ = 82.2 min (minor), $t_{\rm R}$ = 99.0 min (major).

(2*R*,3*S*)-2-(Prop-1-en-2-yl)-3-(*m*-tolyl)butane-1,3-diol (*anti*-4ha): Prepared from 1-(*m*-tolyl)ethan-1-one (1h, 26.8 mg, 0.20 mmol) according to Condition A with isoprene (2a) and $B_2(Pin)_2$ at -30 °C for 67 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ha as a colorless oil (39.7 mg, 90% yield, *anti*:syn = 84:16, *anti*-4ha: 92% *ee*).

R_f = 0.35 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.48 (s, 3H), 1.62 (s, 3H), 2.19 (broad s, 1H), 2.35 (s, 3H), 2.70 (t, J = 6.45 Hz, 1H), 2.81 (broad s, 1H), 3.84 (d, J = 6.41 Hz, 2H), 4.73 (s, 1H), 4.95–4.96 (m, 1H), 7.04–7.06 (m, 1H), 7.16–7.21 (m, 3H), ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 21.6, 24.3, 28.7, 58.2, 62.4, 76.0, 115.1, 122.5, 126.0, 127.4, 127.7, 137.3, 144.0, 146.4 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1432.

Optical rotation: $[\alpha]_D^{20}$ = -61.8 (*c* 1.0, CHCl₃, 92% *ee*). The enantiomeric excess of *anti*-**4ha** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AS-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 33.0 min (major), *t*_R = 36.5 min (minor).

(2*R*,3*S*)-3-(Benzo[d][1,3]dioxol-5-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti-4ia*): Prepared from 1-(benzo[d][1,3]dioxol-5-yl)ethan-1-one (**1i**, 32.8 mg, 0.20 mmol) according to **Condition A** with isoprene (**2a**) and $B_2(Pin)_2$ at -30 °C for 90 h (*Note:* 15 mol% CuOAc and 18 mol% **L1** were used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 2/1 afforded **4ia** as a colorless oil (47.6 mg, 95% yield, *anti:syn* = 71:29, *anti-***4ia**: 85% *ee*).

R_f = 0.30 (cyclohexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.53 (s, 3H), 1.59 (s, 3H), 2.18 (broad s, 1H), 2.64 (t, J = 6.39 Hz, 1H), 2.87 (broad s, 1H), 3.82 (d, J = 6.36 Hz, 2H), 4.72 (s, 1H), 4.956–4.963 (m, 1H), 5.94 (s, 2H), 6.75 (d, J = 8.16 Hz, 1H), 6.84 (dd, J = 8.12, 1.81 Hz, 1H), 6.91 (d, J = 1.84 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.2, 29.0, 58.2, 62.4, 76.1, 100.9, 106.5, 107.5, 115.2, 118.6, 140.7, 143.9, 146.1, 147.3 ppm. **HRMS** (APCI) for C₁₄H₁₇O₃ [M-OH]⁺: calculated 233.1178, found 233.1173.

Optical rotation: $[\alpha]_D^{20}$ = -61.4 (*c* 1.0, CHCl₃, 85% *ee*). The enantiomeric excess of *anti*-**4ia** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 92:8, flow rate 0.4 mL/min): *t*_R = 41.1 min (minor), *t*_R = 43.8 min (major).

(2*R*,3*S*)-2-(Prop-1-en-2-yl)-3-(o-tolyl)butane-1,3-diol (*anti*-4ja): Prepared from 1-(o-tolyl)ethan-1-one (1j, 26.8 mg, 0.20 mmol) according to Condition A with isoprene (2a) and B₂(Pin)₂ at -30 °C for 70 h (*Note:* (*R*,*S*,*S*)-*L1* was used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ja as a colorless oil (37.5 mg, 85% yield, *anti:syn* = 46:54, *anti*-4ja: 29% *ee*; *syn*-4ja: 72% *ee*).

R_f = 0.35 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.55-1.56 (m, 3H), 1.69 (s, 3H), 2.56 (s, 3H), 3.02 (dd, J = 8.46, 4.37 Hz, 1H), 3.78 (dd, J = 11.05, 4.35 Hz, 1H), 3.92 (dd, J = 11.05, 8.46 Hz, 1H), 4.93–4.94 (m, 1H), 5.04–5.05 (m, 1H), 7.12– 7.17 (m, 3H), 7.39–7.43 (m, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 22.7, 23.9, 27.4, 55.9, 61.9, 76.3, 115.1, 125.6, 126.1, 127.0, 132.7, 134.7, 144.6, 144.8 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1430.

Optical rotation: $\left[\alpha\right]_{D}^{20}$ = +14.5 (c 0.6, CH₂Cl₂, 29% ee). The enantiomeric excess of anti-4ja was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:iPrOH = 96:4, flow rate 0.4 mL/min): $t_{\rm R}$ = 36.3 min (minor), $t_{\rm R}$ = 49.0 min (major).

(2R,3S)-3-(Naphthalen-2-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4ka): Prepared from 1-(naphthalen-2-yl)ethan-1-one (1k, 34.1 mg, 0.20 mmol) according to Condition **A** with isoprene (2a) and $B_2(Pin)_2$ at -30 °C for 66 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ka as a colorless oil (48.7 mg, 95% yield, anti-syn = 82:18, anti-4ka: 91% ee).

 $\mathbf{R}_{f} = 0.33$ (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.48 (s, 3H), 1.72 (s, 3H), 2.82 (t, J = 6.17 Hz, 1H), 3.88–3.95 (m, 2H), 4.76 (s, 1H), 4.92–4.93 (m, 1H), 7.45–7.52 (m, 3H), 7.79–7.87 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 24.3, 29.0, 57.9, 62.4, 76.3, 115.3, 123.8, 124.1, 125.8, 126.0, 127.39, 127.41, 128.2, 132.2, 132.9, 143.9, 144.1 ppm. **HRMS** (APCI) for C₁₇H₁₉O [M-OH]⁺: calculated 239.1436, found 239.1431.

Optical rotation: $[\alpha]_{2^0}^{2^0}$ = -85.0 (c 1.0, CHCl₃, 91% ee). The enantiomeric excess of anti-**4ka** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: PrOH = 96:4, flow rate 0.4 mL/min): $t_{\rm R}$ = 43.8 min (minor), $t_{\rm R}$ = 55.6 min (major).

(2R,3S)-3-(6-Methoxypyridin-3-yl)-2-(prop-1-en-2-yl)butane-1,3-diol

(anti-4la):

Prepared from 1-(6-methoxypyridin-3-yl)ethan-1-one (**1I**, 30.2 mg, 0.20 mmol) according to **Condition A** with isoprene (**2a**) and $B_2(Pin)_2$ at -30 °C for 90 h (*Note:* 15 mol% CuOAc and 18 mol% **L1** were used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 2/1 afforded **4Ia** as a colorless oil (33.2 mg, 70% yield, *anti:syn* = 42:58, *anti-***4Ia**: 78% *ee*).

R_f = 0.30 (cyclohexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.59 (s, 3H), 1.62 (s, 3H), 2.61 (t, J = 6.34 Hz, 1H), 3.36 (broad s, 1H), 3.77–3.87 (m, 2H), 3.92 (s, 3H), 4.60 (s, 1H), 4.92–4.93 (m, 1H), 6.69 (d, J = 8.70 Hz, 1H), 7.63 (dd, J = 8.67, 2.60 Hz, 1H), 8.17 (d, J = 2.50 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.3, 29.1, 53.4, 57.8, 62.7, 75.4, 109.6, 115.6, 134.3, 136.7, 143.2, 144.1, 163.0 ppm. **HRMS** (APCI) for C₁₃H₁₈NO₂ [M-OH]⁺: calculated 220.1338, found 220.1334.

Optical rotation: $[\alpha]_D^{20}$ = -62.6 (*c* 0.5, CHCl₃, 78% *ee*). The enantiomeric excess of *anti*-**4Ia** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 92:8, flow rate 0.4 mL/min): *t*_R = 36.9 min (major), *t*_R = 41.1 min (minor).

(2*R*,3*S*)-3-Phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (*anti-*4ma): Prepared from propiophenone (1m, 26.8 mg, 0.20 mmol) according to Condition A with isoprene (2a) and B₂(Pin)₂ at -30 °C for 67 h (*Note:* 15 mol% CuOAc and 18 mol% L1 were used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ma as a colorless oil (41.0 mg, 93% yield, *anti:syn* = 70:30, *anti-*4ma: 87% ee, *syn-*4ma: 78% ee).

R_f = 0.36 (cyclohexane/EtOAc = $5/1^{1}$ **H NMR** (400 MHz, CDCl₃): δ 0.88 (t, *J* = 7.33 Hz, 3H), 1.60 (s, 3H), 2.18 (q, *J* = 7.33 Hz, 2H), 2.42 (broad s, 1H), 2.90 (t, *J* = 6.33 Hz, 1H), 3.02 (broad s, 1H), 4.03–4.12 (m, 2H), 4.89 (s, 1H), 5.08–5.09 (m, 1H), 7.38–7.42 (m, 1H), 7.47–7.52 (m, 4H), ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 7.7, 24.4, 32.9, 57.6,

62.3, 78.9, 115.0, 126.1, 126.5, 127.7, 143.9, 144.1 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1432.

Optical rotation: $[\alpha]_D^{20}$ = -33.7 (*c* 1.0, CHCl₃, 87% *ee*). The enantiomeric excess of *anti*-**4ma** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:iPrOH = 95:5, flow rate 0.6 mL/min): tR = 15.8 min (minor), tR = 22.7 min (major).

(2R,3R)-3-Methyl-5-phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol(anti-4oa):Prepared from 4-phenylbutan-2-one (1o, 29.6 mg, 0.20 mmol) according to ConditionA with isoprene (2a) and $B_2(Pin)_2$ at -30 °C for 66 h (*Note:* 15 mol% CuOAc and 18 mol% L1 were used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4oa as a colorless oil (28.2 mg, 60% yield, anti-syn = 65:35, anti-4oa: 87% ee).

R_f = 0.35 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.31 (s, 3H), 1.87 (s, 3H), 1.76–1.89 (m, 2H), 2.43 (t, J = 6.79 Hz, 1H), 2.64 (broad s, 1H), 2.67–2.81 (m, 2H), 3.95–4.00 (m, 2H), 4.06 (s, 1H), 4.91 (s, 1H), 5.04-5.05 (m, 1H), 7.17-7.21 (m, 3H), 7.27-7.31 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.2, 25.9, 30.1, 41.8, 57.2, 62.4, 74.4, 115.3, 125.8, 128.3, 128.4, 142.5, 144.2 ppm. **HRMS** (APCI) for C₁₅H₂₁O [M-OH]⁺: calculated 217.1588, found 217.1592.

Optical rotation: $[\alpha]_D^{20}$ = -31.9 (*c* 0.75, CHCl₃, 87% *ee*). The enantiomeric excess of *anti-4oa* was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 38.3 min (minor), *t*_R = 89.2 min (major).

(2*R*,3*S*)-3-Phenyl-2-vinylbutane-1,3-diol (*anti*-4ab): Prepared from acetophenone (1a, 24.0 mg, 0.20 mmol) according to Condition A with buta-1,3-diene (2b) and $B_2(Pin)_2$ at -30 °C for 86 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ab as a colorless oil (35.4 mg, 92% yield, *anti*:syn = 57:43, *anti*-4ab: 66% *ee*).

R_f = 0.40 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.62 (s, 3H), 2.63 (dt, J = 9.08, 5.93 Hz, 1H), 3.61–3.69 (m, 2H), 5.11–5.16 (m, 2H), 5.48–5.58 (m, 1H), 7.22–7.27 (m, 1H), 7.31–7.41 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 28.7, 56.2, 63.5, 76.8, 119.1, 125.6, 126.9, 128.0, 135.4, 145.4 ppm. **HRMS** (APCI) for C₁₂H₁₅O [M-OH]⁺: calculated 175.1123, found 175.1118.

Optical rotation: $[\alpha]_D^{20}$ = -20.4 (*c* 0.5, CHCl₃, 66% *ee*). The enantiomeric excess of *anti*-**4ab** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 97:3, flow rate 0.4 mL/min): *t*_R = 46.8 min (major), *t*_R = 52.9 min (minor).

(2*R*,3*S*)-2-(6-Methylhepta-1,5-dien-2-yl)-3-phenylbutane-1,3-diol (*anti*-4ac): Prepared from acetophenone (1a, 24.0 mg, 0.20 mmol) according to Condition A with myrcene (2c) and $B_2(Pin)_2$ at -30 °C for 67 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ac as a colorless oil (46.7 mg, 85% yield, *anti:syn* = 60:40, *anti*-4ac: 93% *ee*).

R_f = 0.40 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.54 (s, 3H), 1.63

(s, 3H), 1.64 (s, 3H), 1.67–1.80 (m, 2H), 1.87–2.04 (m, 2H), 2.23 (broad s, 1H), 2.69 (t, J = 6.46 Hz, 1H), 2.99 (broad s, 1H), 3.79–3.87 (m, 2H), 4.75 (s, 1H), 4.89–4.93 (m, 1H), 4.97 (s, 1H), 7.21–7.25 (m, 1H), 7.29–7.33 (m, 2H), 7.36–7.39 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 17.7, 25.6, 26.1, 28.5, 38.2, 56.7, 62.8, 76.1, 113.3, 123.7, 125.5, 126.7, 127.7, 131.9, 146.3, 147.6 ppm. **HRMS** (APCI) for C₁₈H₂₅O [M-OH]⁺: calculated 257.1905, found 257.1902.

Optical rotation: $[\alpha]_D^{20}$ = -29.7 (*c* 1.0, CHCl₃, 93% *ee*). The enantiomeric excess of *anti*-**4ac** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 22.2 min (minor), *t*_R = 35.2 min (major).

(2*R*,3*S*)-2-(5,5-Dimethoxypent-1-en-2-yl)-3-phenylbutane-1,3-diol (*anti*-4ad): Prepared from acetophenone (1a, 24.0 mg, 0.20 mmol) according to Condition A with 6,6-dimethoxy-3-methylenehex-1-ene (2d) and B₂(Pin)₂ at -30 °C for 86 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 2/1 afforded 4ad as a colorless oil (46.3 mg, 78% yield, *anti:syn* = 68:32, *anti*-4ad: 93% *ee*). **R**_f = 0.30 (cyclohexane/EtOAc = 2/1). ¹H NMR (400 MHz, CD₂Cl₂): δ 1.44–1.59 (m, 2H), 1.61 (s, 3H), 1.64–1.83 (m, 2H), 2.36 (broad s, 1H), 2.63 (t, *J* = 5.65 Hz, 1H), 3.14 (broad s, 1H), 3.20 (s, 3H), 3.21 (s, 3H), 3.79–3.88 (m, 2H), 4.16 (t, *J* = 5.65 Hz, 1H), 4.78 (s, 1H), 4.92–4.93 (m, 1H), 7.20–7.24 (m, 1H), 7.28–7.33 (m, 2H), 7.36–7.39 (m, 2H) ppm. ¹³C NMR (100 MHz, CD₂Cl₂): δ 29.0, 30.9, 33.2, 52.8, 53.0, 57.3, 63.1, 76.5, 104.6, 113.5, 125.9, 126.9, 128.1, 147.3, 147.9 ppm. HRMS (APCI) for C₁₅H₂₀O₂ [M-(OMe)₂]⁺: calculated 232.1463, found 232.1412.

Optical rotation: $[\alpha]_D^{20}$ = -84.0 (*c* 1.0, CH₂Cl₂, 93% *ee*). The enantiomeric excess of *anti*-4ad was determined by HPLC analysis on a chiral stationary phase (Daicel

Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 92:8, flow rate 0.4 mL/min): $t_{\rm R}$ = 27.9 min (major), $t_{\rm R}$ = 30.6 min (minor).

(2*R*,3*R*)-2-Methyl-3-phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4ae): Prepared from acetophenone (1a, 24.0 mg, 0.20 mmol) according to Condition A with 2,3dimethylbuta-1,3-diene (2e) and B₂(Pin)₂ at -30 °C for 66 h (*Note:* 15 mol% CuOAc and 18 mol% L1 were used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ae as a colorless oil (35.3 mg, 80% yield, *anti:syn* = 57:43, *anti*-4ae = 80% *ee*).

R_f = 0.62 (cyclohexane/EtOAc = 5/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.45 (s, 3H), 1.57 (s, 3H), 1.81 (s, 3H), 3.89 (d, *J* = 11.01 Hz, 1H), 3.95 (d, *J* = 11.01 Hz, 1H), 4.97 (s, 1H), 5.28–5.29 (m, 1H), 7.42–7.50 (m, 3H), 7.56–7.58 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 18.5, 23.0, 25.3, 50.8, 67.8, 78.4, 115.6, 126.76, 126.83, 127.2, 145.4, 147.0 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1435. Optical rotation: $[\alpha]_D^{20}$ = +5.2 (*c* 0.75, CHCl₃, 80% *ee*). The enantiomeric excess of *anti*-**4ae** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.3 mL/min): *t*_R = 40.3 min (minor), *t*_R = 43.7 min (major).

3.4 Characterization Data of the Chiral Tertiary Homoallylic Alcohols (syn-4)

(2*R*,3*R*)-3-Phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4aa): Prepared from acetophenone (1a, 48.1 mg, 0.40 mmol) according to Condition B with isoprene (2a)

and $B_2(Pin)_2$ at -20 °C for 45 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded **4aa** as a colorless oil (74.4 mg, 90% yield, *syn:anti* = 87:13, *syn-***4aa**: 93% *ee*).

R_f = 0.39 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (500 MHz, CDCl₃): δ 1.57 (s, 3H), 1.75 (s, 3H), 2.04 (broad s, 1H), 2.58 (t, J = 5.71 Hz, 1H), 2.90 (broad s, 1H), 3.60–3.70 (m, 2H), 4.99 (s, 1H), 5.07–5.08 (m, 1H), 7.23–7.28 (m, 1H), 7.33–7.37 (m, 2H), 7.44–7.47 (m, 2H) ppm. ¹³**C NMR** (125 MHz, CDCl₃): δ 24.4, 28.3, 58.1, 62.8, 76.6, 115.0, 124.9, 126.7, 128.1, 144.4, 147.5 ppm. **HRMS** (APCI) for C₁₃H₁₇O [M-OH]⁺: calculated 189.1274, found 189.1271.

Optical rotation: $[\alpha]_D^{20}$ = -35.8 (*c* 1.0, CHCl₃, 93% *ee*). The enantiomeric excess of *syn*-**4aa** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 38.7 min (major), *t*_R = 42.6 min (minor).

(2*R*,3*R*)-2-(Prop-1-en-2-yl)-3-(*p*-tolyl)butane-1,3-diol (*syn*-4ba): Prepared from 1-(*p*-tolyl)ethan-1-one (1b, 53.7 mg, 0.40 mmol) according to Condition B with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 35 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ba as a colorless oil (71.9 mg, 82% yield, *syn:anti* = 85:15, *syn*-4ba: 95% *ee*).

R_f = 0.39 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.54 (s, 3H), 1.74 (s, 3H), 2.15 (broad s, 1H), 2.34 (s, 3H), 2.55 (t, J = 5.87 Hz, 1H), 2.89 (broad s, 1H), 3.59–3.68 (m, 2H), 4.95 (s, 1H), 5.04–5.05 (m, 1H), 7.15 (d, J = 8.04Hz, 2H), 7.33 (d, J = 8.23 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 20.9, 24.3, 28.2, 58.1, 62.8, 76.5, 114.8, 124.8, 128.8, 136.2, 144.5 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1434.

Optical rotation: $[\alpha]_D^{20}$ = -35.9 (c 1.0, CHCl₃, 95% ee). The enantiomeric excess of syn-

4ba was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.6 mL/min): $t_{\rm R}$ = 21.3 min (major), $t_{\rm R}$ = 25.8 min (minor).

(2*R*,3*R*)-3-(4-Methoxyphenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4ca): Prepared from 1-(4-methoxyphenyl)ethan-1-one (1c, 60.1 mg, 0.40 mmol) according to **Condition B** with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 37 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ca as a colorless oil (84.4 mg, 89% yield, syn:anti = 83:17, syn-4ca: 96% ee).

R_f = 0.33 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.55 (s, 3H), 1.70 (s, 3H), 2.10 (broad s, 1H), 2.54 (t, J = 5.80 Hz, 1H), 2.81 (broad s, 1H), 3.62–3.69 (m, 2H), 3.80 (s, 3H), 4.94 (s, 1H), 5.04 (s, 1H), 6.87 (d, J = 8.86 Hz, 2H), 7.36 (d, J = 8.86 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.5, 28.1, 55.2, 58.3, 62.9, 76.4, 113.4, 114.7, 126.1, 139.6, 144.5, 158.3 ppm. **HRMS** (APCI) for C₁₄H₁₉O₂ [M-OH]⁺: calculated 219.1335, found 219.1379.

Optical rotation: $[\alpha]_D^{20}$ = -40.8 (*c* 1.0, CHCl₃, 96% *ee*). The enantiomeric excess of *syn*-**4ca** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 93:7, flow rate 0.4 mL/min): 57.6 min (major), *t*_R = 62.1 min (minor).

(2R,3R)-3-(4-Fluorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4da): Prepared from 1-(4-fluorophenyl)ethan-1-one (1d, 55.3 mg, 0.40 mmol) according to Condition

B with isoprene (**2a**) and $B_2(Pin)_2$ at -20 °C for 35 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded **4da** as a colorless oil (82.2 mg, 92% yield, *syn:anti* = 86:14, *syn*-**4da**: 95% *ee*).

R_f = 0.36 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.55 (s, 3H), 1.70 (s, 3H), 2.11 (broad s, 1H), 2.52 (t, J = 5.92 Hz, 1H), 3.06 (broad s, 1H), 3.60–3.69 (m, 2H), 4.95 (s, 1H), 5.05–5.06 (m, 1H), 6.98–7.04 (m, 2H), 7.38–7.43 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.5, 28.0, 58.1, 62.8, 76.4, 114.8 (d, J = 21.09 Hz), 114.9, 126.7 (d, J = 7.84 Hz), 143.2 (d, J = 3.08 Hz), 144.2, 161.6 (d, J = 245.35 Hz) ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.65. **HRMS** (APCI) for C₁₃H₁₆FO [M-OH]⁺: calculated 207.11797, found 207.1183.

Optical rotation: $[\alpha]_D^{20}$ = -35.8 (*c* 1.0, CHCl₃, 95% *ee*). The enantiomeric excess of *syn*-**4da** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 98:2, flow rate 0.3 mL/min): *t*_R = 81.8 min (major), *t*_R = 98.3 min (minor).

(2*R*,3*R*)-3-(4-Chlorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4ea): Prepared from 1-(4-chlorophenyl)ethan-1-one (1e, 61.8 mg, 0.40 mmol) according to Condition **B** with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 39 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ea as a colorless oil (78.6 mg, 82% yield, *syn:anti* = 84:16, *syn*-4ea: 92% *ee*).

R_f = 0.35 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.53 (s, 3H), 1.71-1.72 (s, 3H), 2.12 (broad s, 1H), 2.51 (t, J = 5.91 Hz, 1H), 3.17 (broad s, 1H), 3.58– 3.68 (m, 2H), 4.95 (s, 1H), 5.05–5.06 (m, 1H), 7.30 (d, J = 8.63 Hz, 2H), 7.38 (d, J = 8.71 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.5, 28.0, 57.8, 62.8, 76.5, 115.1, 126.5, 128.2, 132.5, 144.1, 146.1 ppm. **HRMS** (APCl) for C₁₃H₁₆ClO [M-OH]⁺: calculated 223.0890, found 223.0888. Optical rotation: $[\alpha]_D^{20}$ = -38.5 (*c* 1.0, CHCl₃, 92% *ee*). The enantiomeric excess of *syn*-**4ea** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.6 mL/min): *t*_R = 27.0 min (minor), *t*_R = 38.6 min (major).

(2*R*,3*R*)-3-(4-Bromophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4fa): Prepared from 1-(4-bromophenyl)ethan-1-one (1f, 79.6 mg, 0.40 mmol) according to Condition **B** with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 35 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4fa as a colorless oil (97.6 mg, 86% yield, *syn:anti* = 83:17, *syn*-4fa: 92% *ee*).

R_f = 0.36 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.52 (s, 3H), 1.73 (s, 3H), 2.08 (broad s, 1H), 2.51 (t, J = 5.84 Hz, 1H), 3.14 (broad s, 1H), 3.57–3.68 (m, 2H), 4.96 (s, 1H), 5.06–5.07 (m, 1H), 7.32 (d, J = 8.59 Hz, 2H), 7.45 (d, J = 8.57 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.5, 28.0, 57.8, 62.8, 76.5, 115.1, 120.6, 126.9, 131.1, 144.0, 146.6 ppm. **HRMS** (APCI) for C₁₃H₁₆BrO [M-OH]⁺: calculated 267.0385, found 267.0377.

Optical rotation: $[\alpha]_D^{20}$ = -32.9 (*c* 1.0, CHCl₃, 92% *ee*). The enantiomeric excess of *syn*-**4fa** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 30.4 min (major), *t*_R = 34.8 min (minor).

4-((2R,3R)-2-Hydroxy-3-(hydroxymethyl)-4-methylpent-4-en-2-yl)benzoate (syn-

4ga): Prepared from methyl 4-acetylbenzoate (**1g**, 35.6 mg, 0.20 mmol) according to **Condition B** with isoprene **2a** and $B_2(Pin)_2$ at -20 °C in THF for 29 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 2/1 afforded **4ga** as a white solid (40.1 mg, 76% yield, *syn:anti* = 82:18, *syn*-**4ga**: 82% *ee*).

R_f = 0.40 (cyclohexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.56 (s, 3H), 1.76 (s, 3H), 1.90 (broad s, 1H), 2.58 (t, J = 5.89 Hz, 1H), 3.11 (s, 1H), 3.56–3.69 (m, 2H), 3.91 (s, 3H), 5.01 (s, 1H), 5.09–5.10 (m, 1H), 7.54 (d, J = 8.53 Hz, 2H), 8.01 (d, J = 8.55 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.5, 28.2, 52.1, 57.7, 62.8, 76.7, 115.3, 125.1, 128.6, 129.5, 144.0, 152.8, 167.0 ppm. **HRMS** (APCI) for C₁₅H₁₉O₃ [M-OH]⁺: calculated 247.1334, found 247.1332.

Optical rotation: $[\alpha]_D^{20}$ = -22.3 (*c* 1.0, CHCl₃, 82% *ee*). The enantiomeric excess of *syn*-**4ga** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.4 mL/min): *t*_R = 93.0 min (minor), *t*_R = 112.9 min (major).

(2*R*,3*R*)-2-(Prop-1-en-2-yl)-3-(*m*-tolyl)butane-1,3-diol (*syn*-4ha): Prepared from 1-(*m*-tolyl)ethan-1-one (1h, 53.7 mg, 0.40 mmol) according to Condition B with isoprene (2a) and B₂(Pin)₂ at -20 °C for 35 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ha as a colorless oil (82.0 mg, 93% yield, *syn:anti* = 87:13, *syn*-4ha: 92% *ee*).

R_f = 0.38 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.54 (s, 3H), 1.77 (s, 3H), 2.00 (broad s, 1H), 2.36 (s, 3H), 2.57 (t, J = 5.40 Hz, 1H), 2.82 (broad s, 1H), 3.57–3.68 (m, 2H), 4.99 (s, 1H), 5.07–5.08 (m, 1H), 7.05–7.07 (m, 1H), 7.20–7.27 (m, 3H), ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 21.6, 24.4, 28.5, 58.1, 62.7, 76.5, 114.9, 121.9, 125.5, 127.4, 128.0, 137.7, 144.5, 147.4 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1432.

Optical rotation: $[\alpha]_D^{20}$ = -29.0 (*c* 1.0, CHCl₃, 92% *ee*). The enantiomeric excess of *syn*-**4ha** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AS-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 30.1 min (major), *t*_R = 67.2 min (minor).

(2*R*,3*R*)-3-(Benzo[d][1,3]dioxol-5-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4ia): Prepared from 1-(benzo[d][1,3]dioxol-5-yl)ethan-1-one (**1i**, 65.7 mg, 0.40 mmol) according to **Condition B** with isoprene (**2a**) and B₂(Pin)₂ at -20 °C for 35 h (*Note:* 10 mol% CuOAc and 12 mol% **L9** were used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 2/1 afforded **4ia** as a colorless oil (90.1 mg, 90% yield, syn:anti = 86:14, syn-**4ia**: 91% ee).

R_f = 0.30 (cyclohexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.51 (s, 3H), 1.72 (s, 3H), 2.16 (broad s, 1H), 2.50 (t, *J* = 5.91 Hz, 1H), 2.97 (broad s, 1H), 3.61–3.70 (m, 2H), 4.94 (s, 1H), 5.03–5.04 (m, 1H), 5.94 (s, 2H), 6.76 (d, *J* = 8.10 Hz, 1H), 6.70 (dd, *J* = 8.10, 1.83 Hz, 1H), 6.95 (d, *J* = 1.83 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.4, 28.2, 58.2, 62.8, 76.6, 100.9, 106.0, 107.7, 114.8, 118.1, 141.8, 144.4, 146.1, 147.5 ppm. **HRMS** (APCI) for C₁₄H₁₇O₃ [M-OH]⁺: calculated 233.1178, found 233.1174. Optical rotation: $[\alpha]_D^{20}$ = -34.7 (*c* 1.0, CHCl₃, 91% ee). The enantiomeric excess of *syn*-**4ia** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 92:8, flow rate 0.4 mL/min): *t*_R = 48.5 min (minor), *t*_R = 51.9 min (major).

(2*R*,3*R*)-2-(Prop-1-en-2-yl)-3-(o-tolyl)butane-1,3-diol (*syn*-4ja): Prepared from 1-(o-tolyl)ethan-1-one (1j, 26.8 mg, 0.20 mmol) according to Condition B with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 70 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ja as a colorless oil (38.8 mg, 88% yield, *syn:anti* = 86:14, *anti*-4ja: 80% *ee*; *syn*-4ja: 98% *ee*).

R_f = 0.38 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.43 (s, 3H), 1.65-1.66 (m, 3H), 2.27 (broad s, 1H), 2.58 (s, 3H), 2.79 (broad s, 1H), 2.94 (t, J = 6.31 Hz, 1H), 3.67–3.76 (m, 2H), 4.89 (s, 1H), 5.02–5.03 (m, 1H), 7.12–7.17 (m, 3H), 7.44–7.47 (m, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 22.7, 24.5, 26.9, 55.0, 63.1, 78.0, 114.7, 125.7, 126.5, 127.1, 132.7, 134.9, 144.47, 144.49 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1428.

Optical rotation: $[\alpha]_D^{20}$ = -41.0 (*c* 1.0, CH₂Cl₂, 98% *ee*). The enantiomeric excess of *syn*-**4ja** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 49.5 min (major), *t*_R = 63.3 min (minor).

(2*R*,3*R*)-3-(Naphthalen-2-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4ka): Prepared from 1-(naphthalen-2-yl)ethan-1-one (1k, 68.1 mg, 0.40 mmol) according to Condition **B** with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 35 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ka as a colorless oil (93.2 mg, 91% yield, *syn:anti* = 86:14, *syn*-4ka: 89% ee).

R_f = 0.36 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.63 (s, 3H), 1.79 (s, 3H), 2.10 (broad s, 1H), 2.70 (dd, J = 6.44, 5.23 Hz, 1H), 3.15 (broad s, 1H), 3.61 (dd, J = 11.05, 5.10 Hz, 1H), 3.69 (dd, J = 6.66, 5.23 Hz, 1H), 5.03 (s, 1H), 5.09–5.10 (m, 1H), 7.45–7.54 (m, 3H), 7.81–7.86 (m, 3H), 7.95–7.96 (m, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.4, 28.4, 57.7, 62.8, 76.8, 115.1, 123.4, 123.5, 125.8, 126.1, 127.4,

127.8, 128.2, 132.2, 133.1, 144.3, 144.9 ppm. **HRMS** (APCI) for C₁₇H₁₉O [M-OH]⁺: calculated 239.1436, found 239.1432.

Optical rotation: $[\alpha]_D^{20}$ = -29.6 (*c* 1.0, CHCl₃, 89% *ee*). The enantiomeric excess of *syn*-**4ka** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 46.5 min (major), *t*_R = 48.9 min (minor).

(2*R*,3*R*)-3-(6-Methoxypyridin-3-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4la): Prepared from 1-(6-methoxypyridin-3-yl)ethan-1-one (1I, 60.5 mg, 0.40 mmol) according to **Condition B** with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 35 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 2/1 afforded 4la as a colorless oil (77.6 mg, 82% yield, *syn:anti* = 90:10, *syn*-4la: 90% *ee*).

R_f = 0.30 (cyclohexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.56 (s, 3H), 1.67 (s, 3H), 2.49 (t, J = 6.09 Hz, 1H), 3.42 (broad s, 1H), 3.71 (d, J = 6.16 Hz, 2H), 3.92 (s, 3H), 4.90 (s, 1H), 5.02–5.03 (m, 1H), 6.70 (d, J = 8.75 Hz, 1H), 7.66 (dd, J = 8.69, 2.57 Hz, 1H), 8.21(d, J = 2.40 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 24.5, 27.4, 53.4, 58.0, 62.9, 75.5, 110.0, 115.1, 135.7, 136.2, 143.7, 143.9, 163.1 ppm. **HRMS** (APCI) for C₁₃H₁₈NO₂ [M-OH]⁺: calculated 220.1338, found 220.1334.

Optical rotation: $[\alpha]_D^{20}$ = -35.0 (*c* 1.0, CHCl₃, 90% *ee*). The enantiomeric excess of *syn*-**4**Ia was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 92:8, flow rate 0.4 mL/min): *t*_R = 47.2 min (major), *t*_R = 51.0 min (minor).

(2*R*,3*R*)-3-Phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (*syn*-4ma): Prepared from propiophenone (1m, 53.7 mg, 0.40 mmol) according to Condition B with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 54 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ma as a colorless oil (84.7 mg, 96% yield, *syn:anti* = 92:8, *syn*-4ma: 64% *ee*).

R_f = 0.40 (cyclohexane/EtOAc = 5/1). ¹**H NMR** (400 MHz, CDCl₃): δ 0.61 (t, J = 7.40 Hz, 3H), 1.88 (s, 3H), 1.89 (q, J = 7.40 Hz, 2H), 2.59 (dd, J = 7.26, 4.37 Hz, 1H), 3.49 (dd, J = 11.04, 4.37 Hz, 1H), 3.64 (dd, J = 10.99, 7.23 Hz, 1H), 5.04 (s, 1H), 5.11–5.12 (m, 1H), 7.21–7.26 (m, 1H), 7.32–7.41 (m, 4H), ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 7.3, 24.5, 33.1, 58.4, 62.6, 79.1, 115.2, 125.5, 126.5, 128.1, 144.68, 144.74 ppm. **HRMS** (APCI) for C₁₄H₁₉O [M-OH]⁺: calculated 203.1436, found 203.1435.

Optical rotation: $[\alpha]_D^{20}$ = -19.8 (*c* 1.0, CHCl₃, 64% *ee*). The enantiomeric excess of *syn*-**4ma** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.6 mL/min): *t*_R = 26.8 min (major), *t*_R = 32.0 min (minor).

(2*R*,3*S*)-3,5-Dimethyl-2-(prop-1-en-2-yl)hex-4-ene-1,3-diol (*syn*-4na): Prepared from 4-methylpent-3-en-2-one (1n, 20.0 mg, 0.20 mmol) according to Condition B with isoprene (2a) and $B_2(Pin)_2$ at -20 °C for 60 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4na as a colorless oil (25.8 mg, 70% yield, *syn:anti* = 95:5, *syn*-4na: 90% *ee*).

R_f = 0.45 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CD₂Cl₂): δ 1.30 (s, 3H), 1.71

(d, J = 1.41 Hz, 3H), 1.82–1.83 (m, 3H), 1.86 (d, J = 1.36 Hz, 3H), 2.21 (broad s, 2H), 2.38–2.42 (m, 1H), 3.75–3.76 (m, 2H), 4.85–4.86 (m, 1H), 4.99–5.00 (m, 1H), 5.21– 5.23 (m, 1H) ppm. ¹³**C NMR** (100 MHz, CD₂Cl₂): δ 18.9, 24.1, 27.7, 27.9, 58.5, 63.0, 75.6, 114.9, 131.4, 134.1, 145.1 ppm. **HRMS** (APCI) for C₁₁H₁₉O [M-OH]⁺: calculated 167.1436, found 167.1428.

Optical rotation: $[\alpha]_D^{20}$ = -8.6 (*c* 0.5, CH₂Cl₂, 90% *ee*). The enantiomeric excess of *syn*-**4na** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.3 mL/min): *t*_R = 39.2 min (minor), *t*_R = 41.1 min (major).

(2*R*,3*S*)-3-Methyl-5-phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (*syn*-4oa): Prepared from 4-phenylbutan-2-one (1o, 59.3 mg, 0.40 mmol) according to **Condition B** with isoprene (2a) and B₂(Pin)₂ at -20 °C for 54 h (*Note:* 10 mol% CuOAc and 12 mol% L9 were used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4oa as a colorless oil (86.2 mg, 92% yield, *syn:anti* = 63:37, *syn*-4oa: 92% ee).

R_f = 0.35 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.32 (s, 3H), 1.83 (s, 3H), 1.76–1.89 (m, 2H), 2.43 (t, J = 6.76 Hz, 1H), 2.64 (broad s, 1H), 2.67–2.81 (m, 2H), 3.80–3.88 (m, 2H), 4.89 (s, 1H), 5.00–5.01 (m, 1H), 7.17-7.21 (m, 3H), 7.27-7.31 (m, 2H) ppm. ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 23.8, 25.9, 29.9, 43.5, 56.4, 62.9, 75.0, 115.1, 125.8, 128.3, 128.4, 142.4, 143.9 ppm. **HRMS** (APCI) for C₁₅H₂₁O [M-OH]⁺: calculated 217.1588, found 217.1590.

Optical rotation: $[\alpha]_D^{20}$ = -32.7 (*c* 1.0, CHCl₃, 92% *ee*). The enantiomeric excess of *syn*-**4oa** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 50.7 min (minor), *t*_R = 64.7 min (major).

(2*R*,3*R*)-3-Phenyl-2-vinylbutane-1,3-diol (*syn*-4ab): Prepared from acetophenone (1a, 48.1 mg, 0.40 mmol) according to Condition B with buta-1,3-diene (2b) and $B_2(Pin)_2$ at -20 °C for 35 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ab as a colorless oil (65.4 mg, 85% yield, *syn:anti* = 80:20, *syn*-4ab: 95% *ee*).

R_f = 0.44 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.42 (s, 3H), 2.34 (broad s, 1H), 2.42 (dt, J = 9.18, 4.51 Hz, 1H), 3.27 (broad s, 1H), 3.45–3.53 (m, 2H), 5.09 (ddd, J = 17.27, 1.88 and 0.72 Hz, 1H), 5.18 (dd, J = 10.37, 1.89 Hz, 1H), 5.97 (ddd, J = 17.26, 10.36 and 9.70 Hz, 1H), 7.14–7.18 (m, 1H), 7.24–7.28 (m, 2H), 7.33–7.36 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 28.5, 55.3, 64.3, 77.0, 118.9, 124.8, 126.7, 128.2, 135.8, 147.4 ppm. **HRMS** (APCI) for C₁₂H₁₅O [M-OH]⁺: calculated 175.1123, found 175.1116.

Optical rotation: $[\alpha]_D^{20}$ = -27.5 (*c* 1.0, CHCl₃, 95% *ee*). The enantiomeric excess of *syn*-**4ab** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 97:3, flow rate 0.4 mL/min): *t*_R = 55.4 min (major), *t*_R = 63.4 min (minor).

(2R,3R)-2-(6-Methylhepta-1,5-dien-2-yl)-3-phenylbutane-1,3-diol(syn-4ac):Prepared from acetophenone (1a, 48.1 mg, 0.40 mmol) according to Condition B withmyrcene (2c) and B₂(Pin)₂ at -20 °C for 39 h. Purification by flash columnchromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ac as a

colorless oil (98.8 mg, 90% yield, *syn:anti* = 88:12, *syn-***4ac**: 90% *ee*).

R_f = 0.44 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.60 (s, 3H), 1.64 (s, 3H), 1.72 (s, 3H), 1.86–1.99 (m, 2H), 2.04–2.22 (m, 2H), 2.25 (broad s, 1H), 2.61 (t, J = 5.98 Hz, 1H), 3.11 (broad s, 1H), 3.66 (d, J = 5.88 Hz, 2H), 5.06–5.10 (m, 1H), 5.13 (s, 1H), 5.17 (s, 1H), 7.26–7.30 (m, 1H), 7.35–7.39 (m, 2H), 7.47–7.50 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 17.7, 25.6, 26.2, 27.7, 38.6, 56.6, 63.2, 76.8, 112.9, 123.7, 125.0, 126.7, 128.1, 132.0, 147.3, 148.1 ppm. **HRMS** (APCI) for C₁₈H₂₅O [M-OH]⁺: calculated 257.1905, found 257.1990.

Optical rotation: $[\alpha]_D^{20}$ = -35.8 (*c* 1.0, CHCl₃, 90% *ee*). The enantiomeric excess of *syn*-**4ac** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 23.7 min (major), *t*_R = 31.4 min (minor).

(2*R*,3*R*)-2-(5,5-Dimethoxypent-1-en-2-yl)-3-phenylbutane-1,3-diol (*syn*-4ad): Prepared from acetophenone (1a, 24.0 mg, 0.20 mmol) according to Condition B with 6,6-dimethoxy-3-methylenehex-1-ene (2d) and $B_2(Pin)_2$ at -20 °C for 56 h (*Note:* 8 mol% CuOAc and 10 mol% L9 were used). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 2/1 afforded 4ad as a colorless oil (42.4 mg, 72% yield, *syn:anti* = 93:7, *syn*-4ad: 91% *ee*).

R_f = 0.34 (cyclohexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CD₂Cl₂): δ 1.52 (s, 3H), 1.58– 1.78 (m, 2H), 1.85–1.99 (m, 2H), 2.30 (broad s, 1H), 2.54 (t, J = 6.05 Hz, 1H), 3.20 (broad s, 1H), 3.25 (s, 3H), 3.26 (s, 3H), 3.54–3.64 (m, 2H), 4.29 (t, J = 5.63 Hz, 1H), 5.07 (s, 1H), 5.11 (s, 1H), 7.22–7.26 (m, 1H), 7.31–7.36 (m, 2H), 7.43–7.46 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CD₂Cl₂): δ 28.1, 31.0, 33.4, 52.9, 53.0, 57.5, 63.5, 77.0, 104.6, 113.1, 125.4, 127.0, 128.4, 148.1, 148.3 ppm. **HRMS** (APCI) for C₁₅H₂₀O₂ [M-
(OMe)₂]⁺: calculated 232.1463, found 232.1412.

Optical rotation: $[\alpha]_D^{20}$ = -52.9 (*c* 1.0, CH₂Cl₂, 91% *ee*). The enantiomeric excess of *syn*-**4ad** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane:*i*PrOH = 92:8, flow rate 0.4 mL/min): *t*_R = 42.2 min (minor), *t*_R = 50.7 min (major).

(2*R*,3*R*)-3-phenyl-2-(1-phenylvinyl)butane-1,3-diol (*syn*-4af): Prepared from acetophenone (1a, 24.0 mg, 0.20 mmol) according to Condition B with buta-1,3-dien-2-ylbenzene (2e) and B₂(Pin)₂ at -5 °C for 60 h (*Note: 10 mol% CuOAc, 12 mol% L9, 50 mol% NaOtBu and 2.0 equiv.* B₂(*pin*)₂ *were used*). Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4ae as a colorless oil (37.6 mg, 70% yield, *syn:anti* > 98:2, *syn*-4ae: 85% ee).

R_f = 0.40 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.46 (s, 3H), 2.03 (broad s, 1H), 2.89 (broad s, 1H), 3.28 (dd, J = 6.66, 5.00 Hz, 1H), 3.67 (dd, J = 11.28, 4.96 Hz, 1H), 3.79 (dd, J = 11.33, 6.76 Hz, 1H), 5.55 (s, 2H), 7.19–7.22 (m, 1H), 7.25–7.37 (m, 7H), 7.43–7.45 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 29.3, 55.6, 63.5, 76.9, 116.3, 124.8, 126.5, 126.7, 127.4, 128.2, 128.4, 144.5, 146.9, 148.1 ppm. **HRMS** (APCI) for C₁₈H₁₉O [M-OH]⁺: calculated 251.1436, found 251.1428.

Optical rotation: $[\alpha]_D^{20}$ = -149.0 (*c* 0.5, CHCl₃, 85% *ee*). The enantiomeric excess of *syn*-**4af** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): *t*_R = 69.9 min (minor), *t*_R = 83.7 min (major).

(2*R*,3*S*)-3,5-Dimethyl-2-vinylhex-4-ene-1,3-diol (*syn*-4nb): Prepared from 4methylpent-3-en-2-one (1n, 20.0 mg, 0.20 mmol) according to **Condition B** with buta-1,3-diene (2b) and $B_2(Pin)_2$ at -20 °C for 80 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 3/1 afforded 4nb as a colorless oil (28.3 mg, 83% yield, *syn:anti* = 96:4, *syn*-4nb: 92% *ee*).

R_f = 0.45 (cyclohexane/EtOAc = 3/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.30 (s, 3H), 1.71 (d, J = 1.36 Hz, 3H), 1.86 (d, J = 1.28 Hz, 3H), 2.40 (dt, J = 9.07, 5.77 Hz, 1H), 3.77 (dd, J = 10.64, 5.62 Hz, 1H), 3.85 (dd, J = 10.79, 5.91 Hz, 1H), 5.13–5.22 (m, 2H), 5.23–5.24 (m, 1H), 5.83 (ddd, J = 17.20, 10.45 and 9.20 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 18.9, 26.8, 27.5, 55.7, 63.7, 75.4, 118.8, 130.3, 134.5, 136.0 ppm. **HRMS** (APCI) for C₁₀H₁₇O [M-OH]⁺: calculated 154.1358, found 154.1306.

Optical rotation: $[\alpha]_D^{20}$ = -4.7 (*c* 1.0, CH₂Cl₂, 92% *ee*). The enantiomeric excess of *syn*-**4nb** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.3 mL/min): *t*_R = 42.6 min (minor), *t*_R = 44.9 min (major).

(2*R*,3*S*)-3,5-Dimethyl-2-(6-methylhepta-1,5-dien-2-yl)hex-4-ene-1,3-diol (*syn*-4nc): Prepared from 4-methylpent-3-en-2-one (1n, 20.0 mg, 0.20 mmol) according to Condition B with myrcene (2c) and $B_2(Pin)_2$ at -20 °C for 56 h. Purification by flash column chromatography on silica gel using cyclohexane/EtOAc = 5/1 afforded 4nc as a colorless oil (37.7 mg, 75% yield, *syn:anti* > 98:2, *syn*-4nc: 92% *ee*).

R_f = 0.40 (cyclohexane/EtOAc = 5/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.32 (s, 3H), 1.61

(s, 3H), 1.68 (s, 3H), 1.70 (d, J = 1.36 Hz, 3H), 1.87 (d, J = 1.32 Hz, 3H), 2.07–2.19 (m, 4H), 2.22 (broad s, 1H), 2.33 (broad s, 1H), 2.45 (t, J = 6.48 Hz, 1H), 3.75–3.81 (m, 1H), 3.85–3.90 (m, 1H), 4.99 (s, 1H), 5.04 (s, 1H), 5.07–5.11 (m, 1H), 5.20–5.21 (m, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 17.7, 18.8, 25.6, 26.4, 27.4, 27.5, 38.6, 56.1, 63.3, 75.6, 112.6, 123.8, 130.6, 132.0, 133.9, 148.3 ppm. **HRMS** (APCI) for C₁₆H₂₇O [M-OH]⁺: calculated 235.2062, found 235.2052.

Optical rotation: $[\alpha]_D^{20}$ = -22.2 (*c* 1.0, CH₂Cl₂, 92% *ee*). The enantiomeric excess of *syn*-**4nc** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane: *i*PrOH = 97:3, flow rate 0.25 mL/min): *t*_R = 62.4 min (major), *t*_R = 65.0 min (minor).

4 Scale-up Experiment (1.0 mmol)

In a nitrogen-filled glovebox, to a flame-dried Schlenk tube was added CuOAc (6.1 mg, 50 µmol, 5 mol%), ligand **L9** (49 mg, 60 µmol, 6 mol%), NaO*t*Bu (40.0 mg, 400 µmol, 40 mol%). The tube was taken out of the glovebox, evacuated, and backfilled with N₂ (3 times) followed by the addition of toluene/THF (3.0 mL, 8/2, v/v). After stirring for 30 min at room temperature, B₂(pin)₂ (381 mg, 1.50 mmol, 1.5 equiv.) in toluene/THF (3.0 mL, 8/2, v/v) was added. After stirring at room temperature for about 1 min, it was cooled to -20 °C. isoprene **2a** (0.5 mL, 5.0 mmol, 5.0 equiv.) was added via syringe, followed by acetophenone **1a** (121 mg, 1.0 mmol, 1.0 equiv.) in toluene/THF (2.0 mL, 8/2, v/v). The resulting solution was stirred at -20 °C for 45 h. The reaction was then

quenched by 0.6 mL saturated ammonium chloride water solution. The mixture was concentrated *in vacuo*. To the residue was then added 15.0 mL THF, 3 M NaOH (3.0 mL) ,and 30% H₂O₂ (3.0 mL) at 0 °C. After stirring at 0 °C for 30 min, brine (20 mL) was added. The mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo*. It was then analyzed by ¹H NMR spectroscopy to obtain the diastereoselectivity. The crude product was purified by column chromatography on silica gel (5:1 to 3:1 *n*-pentane/EtOAc) to afford **4aa** as a a colorless oil (183.5 mg, 89% yield, *syn:anti* = 87:13, *anti*-**4aa** = 71% *ee*, *syn*-**4aa** = 93% *ee*).

5 Determination of the Absolute Configurations of the Products

The absolute configuration of *anti*-**4ab** was confirmed by converting *anti*-**4ab** into compound (2*R*,3*S*)-**5**. Based on comparison of the sign of the optical rotation of **5** [(2*S*,3*R*)-**5** is a known compound,^[6] $[\alpha]_D^{22} = +22.7$ (*c* 1.42, CHCl₃), 60% *ee*], the absolute configuration of *anti*-**4ab** was determined to be *R*,*S*. The absolute configurations of other *anti*-products were deduced by analogy.

To a solution of *anti*-4ab (12.0 mg, 0.06 mmol, 1.00 equiv.) and MeOH (1.5 mL) was added 10% palladium on carbon (1.2 mg, 10% by weight). The mixture was stirred under a hydrogen gas atmosphere (balloon) for 13 h at room temperature. The mixture was filtered through a pad of Celite and concentrated. The residue was purified by column chromatography on silica gel (5:1 *n*-pentane/EtOAc) to afford target product (2*R*,3*S*)-**5** as a colorless oil (10.4 mg, 86% yield).

(2R,3S)-2-ethyl-3-phenylbutane-1,3-diol ((2R,3S)-5):

R_f = 0.5 (cyclohexane/EtOAc = 5/1). ¹**H NMR** (400 MHz, CDCl₃): δ 0.75 (t, *J* = 7.47 Hz, 3H), 1.13–1.22 (m, 2H), 1.58 (s, 3H), 1.58–1.63 (m, 1H), 3.66 (dd, *J* = 11.26, 4.87 Hz, 1H), 3.97 (dd, *J* = 11.30, 2.53 Hz, 2H), 7.14–7.33 (m, 5H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 12.6, 18.7, 29.7, 51.0, 61.5, 78.5, 124.9, 126.5, 128.0, 146.9 ppm. **HRMS** (APCl) for C₁₂H₁₇O₂ [M-H]⁺: calculated 193.12231, found. 193.12269. Optical rotation: $[\alpha]_D^{20} = -22.6$ (*c* 0.5, CHCl₃).

The absolute configuration of *syn*-**4ab** was determined after conversion to compound (2R,3S)-**6**, which can also be generated from the reported catalytic asymmetric allylation acetphenone with crotylborate [(2S,3R)-**6** is known compound,^[7] [α]_D²² = +4.4 (*c* 1.09, CHCl₃), 83% *ee*]. Based on comparison of the sign of the optical rotation of **6**, the absolute configuration of *syn*-**4ab** was determined to be *R*,*R*. The absolute configurations of other *syn*-products were deduced by analogy.

To a stirred solution of *syn-4ab* (50.0 mg, 0.26 mmol, 1.0 equiv.) in pyridine (2.5 mL) at 0 °C was added tosyl chloride (62.0 mg, 0.31 mmol, 1.2 equiv.) in one portion. After being stirred at 0 °C for 8 h, an additional portion of tosyl chloride (62.0 mg, 0.31 mmol, 1.2 equiv.) was added. The mixture was stirred an additional 16 h at room temperature. The mixture was concentrated under vacuum to remove the pyridine. The mixture was quenched with brine (10 mL). The aqueous layer was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with water and brine, dried, and concentrated. The residue was purified by column chromatography on silica gel

(cyclohexane/EtOAc = 5/1) to afford target product **12** (80.2 mg, 89% yield) as a white solid.

To a flame-dried Schlenk tube was added tosylate **12** (62.0 mg, 0.18 mmol, 1.0 equiv.) and Et₂O (5 mL). The tube was cooled to -25 °C. Lithium aluminum hydride (21.0 mg, 0.54 mmol, 3.0 equiv.) was added in one portion. After stirring at -25 °C for 19 h, H₂O (21 µL), 15% aqueous NaOH (21 µL), and H₂O (63 µL) were added successively. Filtration and evaporation gave crude product. The residue was purified by column chromatography on silica gel (10:1 *n*-pentane/EtOAc) to afford (2*R*,3*S*)-**6** as a colorless oil (28.6 mg, 91% yield).

(*R*)-2-((*R*)-1-Hydroxy-1-phenylethyl)but-3-en-1-yl 4-methylbenzenesulfonate (12): **R**_f = 0.48 (cyclohexane/EtOAc = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 1.39 (s, 3H), 1.82 (s, 1H), 2.35 (s, 3H), 2.59-2.64 (m, 1H), 3.82 (dd, *J* = 10.06, 3.81 Hz, 1H), 3.89 (dd, *J* = 10.06, 8.68 Hz, 1H), 5.04–5.09 (m, 1H), 5.18 (dd, *J* = 10.33, 1.53 Hz, 1H), 5.62–5.71 (m, 1H), 7.14–7.24 (m, 7H), 7.53 (d, *J* = 8.34 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.6, 29.4, 53.9, 70.3, 75.2, 120.4, 124.6, 126.9, 127.9, 128.3, 129.6, 132.8, 134.0, 144.5, 145.9 ppm. HRMS (APCI) for C₁₉H₂₂O₄SNa [M+Na]⁺: calculated 369.1137, found. 369.1127. Optical rotation: $[\alpha]_D^{20}$ = +18.6 (*c* 1.0, CH₂Cl₂).

(2R,3S)-3-Methyl-2-phenylpent-4-en-2-ol ((2R,3S)-6):

R_f = 0.5 (cyclohexane/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 0.87 (d, J = 6.99 Hz, 3H), 1.54 (s, 3H), 1.87 (s, 1H), 2.55 (q, J = 6.72 Hz, 1H), 5.09–5.12 (m, 1H), 5.13–5.14 (m, 1H), 5.78–5.87 (m, 1H), 7.22–7.26 (m, 1H), 7.32–7.36 (m, 2H), 7.39–7.42 (m,

2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 14.8, 28.5, 48.9, 75.8, 116.3, 125.2, 126.4, 127.9, 139.9, 146.9 ppm. **HRMS** (APCl) for C₁₂H₁₅ [M-OH]⁺: calculated 159.1174, found. 159.1166. Optical rotation: $[\alpha]_D^{20} = -8.9$ (*c* 1.1, CHCl₃).

6 Transformations of the Products

In a nitrogen-filled glovebox, to a flame-dried Schlenk tube was added CuOAc (2.5 mg, 20 µmol, 5 mol%), ligand L9 (20 mg, 24 µmol, 6 mol%), NaOtBu (16.0 mg, 160 µmol, 40 mol%). The tube was taken out of the glovebox, evacuated, and backfilled with N_2 (3 times) followed by the addition of toluene/THF (2.0 mL, 8/2, v/v). After stirring for 30 min at room temperature, B₂(pin)₂ (152 mg, 0.60 mmol, 1.5 equiv.) in toluene/THF (1.0 mL, 8/2, v/v) was added. After stirring at room temperature for about 1 min, it was cooled to -20 °C. Isoprene 2a (200 µL, 2.0 mmol, 5.0 equiv.) was added via syringe, followed by acetophenone **1a** (48.1 mg, 0.40 mmol, 1.0 equiv.) in toluene/THF (0.5 mL, 8/2, v/v). After stirring at -20 °C for 45 h, The reaction was guenched by passing the mixture through a short plug of celite and eluting with Et₂O. The filtrate was concentrated in vacuo to provide a crude mixture as a yellow oil, which was used in the next step without further purification. $Pd(OAc)_2$ (5.0 mg, 20 µmol, 5 mol%), RuPhos (19 mg, 40 µmol, 10 mol%), KOtBu (135 mg, 1.2 mmol, 3.0 equiv.), and bromobenzene (112 mg, 0.72 mmol, 1.8 equiv.) were added to a solution of unpurifed mixture obtained from previous step in toluene (3.0 mL) and water (0.3 mL). The solution was stirred at 80 °C for 24 h. Then, the reaction was quenched by passing the mixture through a short plug of celite and eluting with Et₂O. The filtrate was concentrated and purified by silica gel chromatography (5:1 cyclohexane/EtOAc) to afford 7 (88.0 mg, 83% yield for

two steps, syn:anti = 89:11, syn-7 = 91% ee) as a colorless oil.

(2R,3S)-3-Benzyl-4-methyl-2-phenylpent-4-en-2-ol (syn-7):

R_f = 0.48 (cyclohexane/EtOAc = 5/1). ¹**H NMR** (400 MHz, CDCl₃): δ 1.55 (s, 3H), 1.67 (s, 3H), 1.99 (broad s, 1H), 2.57 (dd, J = 13.15, 2.03 Hz, 1H), 2.67 (t, J = 13.06 Hz, 1H), 2.73 (dd, J = 11.70, 2.25 Hz, 1H), 4.84 (s, 1H), 4.96 (s, 1H), 6.94 (d, J = 7.11 Hz, 2H), 7.07–7.10 (m, 1H), 7.14–7.17 (m, 2H), 7.24–7.28 (m, 1H), 7.36–7.40 (m, 2H), 7.52–7.53 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 23.9, 29.9, 34.4, 59.3, 76.3, 114.9, 124.9, 125.5, 126.5, 127.9, 128.1, 128.7, 141.2, 144.8, 147.7 ppm. **HRMS** (APCI) for C₁₉H₂₁ [M-OH]⁺: calculated 249.1643, found. 249.1646.

Optical rotation: $[\alpha]_D^{20}$ = -29.6 (*c* 1.0, CH₂Cl₂, 91% *ee*). The enantiomeric excess of *syn*-**7** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.6 mL/min): *t*_R = 14.0 min (major), *t*_R = 15.5 min (minor).

To a solution of *anti*-**4ha** (13.0 mg, 0.06 mmol, 1.00 equiv.) in1.5 mL MeOH was added 10% palladium on carbon (1.3 mg, 10% by weight). The mixture was stirred under a hydrogen gas atmosphere (balloon) for 26 h at room temperature. The mixture was filtered through a pad of Celite and concentrated. The residue was purified by column chromatography on silica gel (5:1 *n*-pentane/EtOAc) to afford target product *anti*-**8** as a colorless oil (11.6 mg, 87 % yield, 90% *ee*).

(2R,3S)-2-lsopropyl-3-(m-tolyl)butane-1,3-diol (anti-8):

R_f = 0.3 (cyclohexane/EtOAc = 5/1). ¹**H NMR** (400 MHz, CDCl₃): δ 0.68 (d, J = 6.86 Hz, 3H), 0.85 (d, J = 6.98 Hz, 3H), 1.69 (s, 3H), 1.72–1.79 (m, 2H), 2.37 (s, 3H), 2.75 (broad s, 1H), 3.15 (broad s, 1H), 3.93–4.01 (m, 2H), 7.05–7.09 (m, 1H), 7.20–7.23 (m, 2H), 7.28 (s, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 18.6, 21.7, 24.4, 26.8, 30.5, 53.9, 60.5, 79.2, 122.3, 125.9, 127.3, 127.9, 137.6, 147.0 ppm. **HRMS** (APCI) for C₁₄H₂₁O [M-OH]⁺: calculated 205.1585, found. 205.1592.

Optical rotation: $[\alpha]_D^{20}$ = -76.8 (*c* 0.25, CH₂Cl₂, 90% *ee*). The enantiomeric excess of *anti-***8** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.3 mL/min): *t*_R = 26.4 min (minor), *t*_R = 27.9 min (major).

Compound syn-4aa (20.6 mg, 0.10 mmol, 1.0 equiv.) was dissolved in CH_2Cl_2 (1.0 mL) at 0 °C. Et₃N (21 µL, 0.15 mmol, 1.5 equiv.) was added, followed by the addition of MsCl (12 µL, 0.15 mmol, 1.5 equiv.). Then the reaction mixture was stired for 50 min at room temperature, before being poured into saturated aqueous NaHCO₃ (10 mL). The organic layer was separated and washed with saturated aqueous NaCl, dried over MgSO₄. The filterate was concentrated under reduced pressure. The resulting residue was dissolved in 1.5 mL DMF/H₂O (10:1) and NaN₃ (13 mg, 0.20 mmol, 2.0 equiv.) was added. The solution was stired at 80 °C for 12 h. Then it was cooled to room temperature, diluted with H₂O (10 mL) and extracted with ethyl acetate (10 mL x 3). The combined organic layers were concentrated under reduced pressure to give crude

reaction mixture, which was purified by flash column chromatography (10:1 *n*-pentane/EtOAc) to afford *syn*-**9** (18.7 mg, 81% for two steps, 93% *ee*) as a colorless oil.

(2R,3R)-3-(Azidomethyl)-4-methyl-2-phenylpent-4-en-2-ol (syn-9):

R_f = 0.45 (cyclohexane/EtOAc = 10/1). ¹**H NMR** (400 MHz, CD₂Cl₂): δ 1.50 (s, 3H), 1.87 (s, 3H), 2.02 (s, 1H), 2.65 (dd, J = 11.03, 3.96 Hz, 1H), 3.11 (dd, J = 12.57, 3.99 Hz, 1H), 3.41 (dd, J = 12.44, 11.01 Hz, 1H), 5.03 (s, 1H), 5.14–5.15 (m, 1H), 7.24–7.28 (m, 1H), 7.34–7.38 (m, 2H), 7.42–7.45 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CD₂Cl₂): δ 23.2, 30.4, 51.0, 57.0, 75.8, 116.1, 125.1, 127.1, 128.6, 144.3, 147.5 ppm. **HRMS** (APCI) for C₁₃H₁₈NO [M+H-N₂]⁺: calculated 204.13829, found. 204.13838.

Optical rotation: $[\alpha]_D^{20}$ = -18.6 (*c* 0.5, CH₂Cl₂, 93% *ee*). The enantiomeric excess of *syn*-**9** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.6 mL/min): *t*_R = 15.1 min (major), *t*_R = 16.3 min (minor).

To a suspension of NaH (18 mg of 60% dispersion in mineral oil, 0.44 mmol, 2.0 equiv.) in THF (1.5 mL) was added dropwise a solution of *syn-4ab* (42.0 mg, 0.22 mmol, 1.0 equiv.) in THF (0.6 mL) at 0 °C. The mixture was stirred for 30 min at room temperature and then allyl bromide (21.0 μ L, 0.24 mmol, 1.1 equiv.) was added dropwise at 0 °C. The reaction mixture was stirred for 14 hours at room temperature, at which point the reaction was quenched with water and extracted with diethyl ether (5 mL ×3). The combined organic layer was dried over MgSO₄, filtered, and the solvent was removed

in vacuo. The obtained residue was purified by flash column chromatography on silica gel (10:1 *n*-pentane/EtOAc) to furnish **13** (39.7 mg, 78 % yield) as a colorless oil.

To a stirred solution of **13** (31 mg, 0.13 mmol, 1.0 equiv) in CH_2CI_2 (7 mL, 0.02 M) was added Hoveyda-Grubbs II catalyst (4.2 mg, 0.007 mmol, 5 mol%). After stirring at 40 °C for 12 h, it was cooled to room temperature and the reaction solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography on silica gel (5:1 *n*-pentane/EtOAc) to furnish *syn*-**10** (26.3 mg, 96% yield, 95% *ee*) as a colorless oil.

(2*R*,3*R*)-3-((allyloxy)methyl)-2-phenylpent-4-en-2-ol (13): $R_f = 0.40$ (cyclohexane/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 1.46 (s, 3H), 2.56 (dt, *J* = 9.26, 3.61 Hz, 1H), 3.31 (dd, *J* = 9.06, 3.67 Hz, 1H), 3.42 (dd, *J* = 9.12, 3.67 Hz, 1H), 3.73–3.83 (m, 2H), 4.25 (s, 1H), 5.11–5.20 (m, 3H), 5.22 (dd, *J* = 10.33, 1.99 Hz, 1H), 5.74–5.83 (m, 1H), 6.14–6.23 (m, 1H), 7.21–7.26 (m, 1H), 7.32–7.36 (m, 2H), 7.42–7.45 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 28.4, 53.8, 72.4, 72.9, 76.6, 117.3, 117.8, 124.9, 126.4, 128.0, 133.9, 136.5, 148.1 ppm. HRMS (APCI) for C₁₅H₁₉O [M-OH]⁺: calculated 215.1436, found. 215.1429.

(*R*)-1-((*R*)-3,6-Dihydro-2H-pyran-3-yl)-1-phenylethan-1-ol (*syn*-10): $\mathbf{R}_f = 0.30$ (cyclohexane/EtOAc = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 1.56 (s, 3H), 2.43–2.46 (m, 1H), 3.48 (dd, *J* = 11.67, 3.98 Hz, 1H), 3.56 (s, 1H), 3.71–3.75 (m, 1H), 4.07–4.13 (m, 1H), 4.16–4.21 (m, 1H), 5.97–6.01 (m, 1H), 6.04–6.09 (m, 1H), 7.22–7.27 (m, 1H), 7.33–7.38 (m, 2H), 7.46–7.49 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 28.0, 43.6, 66.0, 66.4, 76.9, 124.2, 125.0, 126.5, 128.2, 129.3, 147.8 ppm. **HRMS** (APCI) for C₁₃H₁₅O [M-OH]⁺: calculated 187.1123, found. 187.1114.

Optical rotation: $[\alpha]_D^{20}$ = -43.3 (*c* 1.0, CH₂Cl₂, 94% *ee*). The enantiomeric excess of *syn*-**10** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane:*i*PrOH = 97:3, flow rate 0.5 mL/min): *t*_R = 30.6 min (minor), *t*_R = 35.9 min (major).

To a stirred solution of *syn*-**4aa** (42.0 mg, 0.20 mmol, 1.0 equiv.) in pyridine (2.5 mL) at 0 °C was added tosyl chloride (45.8 mg, 0.24 mmol, 1.2 equiv.) in one portion. After being stirred at 0 °C for 8 h, an additional portion of tosyl chloride (45.8 mg, 0.24 mmol, 1.2 equiv.) was added. The mixture was stirred an additional 16 h at room temperature. The mixture was concentrated under vacuum to remove the pyridine. The mixture was quenched with brine (10 mL). The aqueous layer was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with water and brine, dried, and concentrated. The residue was purified by column chromatography on silica gel (cyclohexane/EtOAc = 5/1) to afford target product **14** (67.8 mg, 94% yield) as a white solid.

To a flame-dried Schlenk tube was added tosylate **14** (37.5 mg, 0.10 mmol, 1.0 equiv.) and THF (1.5 mL). The tube was cooled to -25 °C. 2.5 M *n*BuLi (48.0 µL, 0.11 mmol, 1.1 equiv.) was added via syringe. After stirring at -25 °C for 1 h, it was warmed to room temperature and stirred an additional 14 h at room temperature. Then it was quenched by *aq* NH₄Cl (0.2 mL). MgSO₄ (100 mg) were added and the mixture was filtered. Careful rotary evaparator concentration provided the crude volatile **11**. The residue was purified by column chromatography on silica gel (20:1 *n*-pentane/Et₂O) to afford *trans*-**11** (17.1 mg, 91% yield, 93% ee) as a colorless oil.

(*R*)-2-((*R*)-1-Hydroxy-1-phenylethyl)-3-methylbut-3-en-1-yl4-methylbenzenesulfonate (14): $R_f = 0.45$ (cyclohexane/EtOAc = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 1.38 (s, 3H), 1.66 (s, 3H), 1.74 (broad s, 1H), 2.35 (s, 3H), 2.66 (dd, J = 10.54, 3.96Hz, 1H), 3.77 (dd, J = 10.20, 3.91 Hz, 1H), 4.05 (t, J = 10.34 Hz, 1H), 4.75 (s, 1H),4.95-4.96 (m, 1H), 7.14-7.18 (m, 3H), 7.19-7.27 (m, 4H), 7.50 (d, J = 8.32 Hz, 2H)ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.6, 23.1, 29.9, 55.9, 69.8, 75.2, 115.9, 124.5,126.9, 127.9, 128.3, 129.6, 132.8, 142.1, 144.4, 146.2 ppm. HRMS (APCl) for $C_{20}H_{23}O_4S$ [M-H]*: calculated 359.13116, found. 359.13104.

(2R,3R)-2-Methyl-2-phenyl-3-(prop-1-en-2-yl)oxetane (trans-11):

R_f = 0.45 (cyclohexane/EtOAc = 20/1). ¹**H NMR** (400 MHz, CD₂Cl₂): δ 1.54 (s, 3H), 1.81 (s, 3H), 3.54 (t, *J* = 7.86 Hz, 1H), 4.52 (dd, *J* = 8.38, 6.26 Hz, 1H), 4.69 (dd, *J* = 7.75, 6.35 Hz, 1H), 4.96 (s, 1H), 5.14 (s, 1H), 7.24–7.29 (m, 1H), 7.36–7.40 (m, 2H), 7.45–7.48 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CD₂Cl₂): δ 23.2, 23.9, 52.4, 67.4, 89.0, 112.8, 124.2, 127.2, 128.7, 141.8, 149.2 ppm. **HRMS** (APCI) for C₁₃H₁₇O [M+H]⁺: calculated 189.12739, found:189.12771.

Optical rotation: $[\alpha]_D^{20}$ = +62.5 (*c* 0.4, CH₂Cl₂, 93% *ee*). The enantiomeric excess of *trans*-**11** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane:*i*PrOH = 97:3, flow rate 0.25 mL/min): *t*_R = 21.9 min (major), *t*_R = 25.5 min (minor).

7 Proposed Catalytic Cycle and Model for the Stereochemical Outcome

Based on literature reports,^[8] a plausible mechanism is depicted in Figure S1. The boron nucleophile Cu–B(pin)^[9] is formed by the reaction of the copper (pre)catalyst and the base with B₂(pin)₂. A formal migratory insertion of 1,3-diene **2b** into the copper–boron bond then leads to the thermodynamically more stable (*Z*)-allylcopper complex **B**,^[10] which can undergo diastereoselective addition to the ketone **1a** to afford intermediates **C** and **D**. Subsequent transmetalation with B₂(pin)₂ regenerates Cu–B(pin) and releases the product **E** (Figure S1, top). Hydrolysis eventually affords the tertiary homoallylic alcohol **3ab**. However, the corresponding (*E*)-allylcopper complex cannot be excluded as the actual carbon nucleophile. For example, Hoveyda and coworkers reported a copper-catalyzed borylative coupling of 1,3-dienes and α , β -unsaturated acceptors.^[8c] Based on DFT calculations, a catalytic cycle that involves the participation of the (*E*)-allylcopper complex was proposed, and another plausible catalytic cycle could therefore be operative (Figure S1, bottom).

Figure S1. Proposed catalytic cycle.

The enantio- and diastereoselectivity are both determined in the ketone addition step, which proceeds through a six-membered Zimmerman–Traxler-type transition state.^[11] The stereochemical course will be sensitive to the steric environment around the

copper catalyst, thereby leading to a dramatic switch in diastereoselectivity depending on the chiral ligand structure. We did not find sufficiently convincing literature support to derive mechanistic models to rationalize the stereochemical outcome with **L1** as the ligand. One issue is the copper/ligand ratio. Feringa and co-workers reported the molecular structure of a copper–MonoPhos complex where three chiral phosphoramidite ligands are bound to the copper center creating a C_3 -symmetrical complex.^[12] It is therefore hard to show models. In turn, Liu, Buchwald, and co-workers recently reported a copper-catalyzed enantioselective reductive coupling of ketones and 1,3dienes with a josiphos chiral ligand.^[8a] In that work, a stereochemical model has been provided to explain the diastereo- and enantioselectivity of the process. Based on those computations, we propose a stereochemical model that accounts for the observed enantioselectivity of the *syn*-products (Figure S2).

Figure S2. A plausible model for the stereochemical outcome.

As can be seen from Table 1 in the manuscript, replacing the cyclohexyl substituents on a phosphorus atom of L6 (or L7) with bulkier *t*Bu groups markedly enhanced the enantioselectivity (L6 vs L8 and L7 vs L9). However, a slight modification of the substituents on the other phosphorus atom from $3,5-(CF_3)_2C_6H_3$ group (as in L9) to smaller phenyl- (as in L8) or $3,5-Me_2-4-MeOC_6H_2$ group (as in L10) produced similar enantioselectivity, albeit with significantly decreased reactivity. The model depicted in Figure S2 is in agreement with the stereochemical information observed in these experiments.

8 HPLC Traces

(2*R*,3*S*)-3-Phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4aa): The enantiomeric excess of *anti*-4aa was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_{R} = 34.4 min (minor), t_{R} = 37.1 min (major).

(2*R*,3*R*)-3-Phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4aa): The enantiomeric excess of *syn*-4aa was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): $t_{\rm R}$ = 38.7 min (major), $t_{\rm R}$ = 42.6 min (minor).

(2*R*,3*S*)-2-(Prop-1-en-2-yl)-3-(*p*-tolyl)butane-1,3-diol (*anti*-4ba): The enantiomeric excess of *anti*-4ba was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.6 mL/min): $t_{\rm R}$ = 18.7 min (minor), $t_{\rm R}$ = 25.9 min (major).

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak F #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-						
1	18.711	VV	0.4903	3365.65796	100.61079	4.2580
2	25.877	BB	0.7990	7.56776e4	1160.15002	95.7420

(2*R*,3*R*)-2-(Prop-1-en-2-yl)-3-(*p*-tolyl)butane-1,3-diol (*syn*-4ba): The enantiomeric excess of *syn*-4ba was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.6 mL/min): $t_{\rm R}$ = 21.3 min (major), $t_{\rm R}$ = 25.8 min (minor).

S56

(2*R*,3*S*)-3-(4-Methoxyphenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4ca): The enantiomeric excess of *anti*-4ca was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 93:7, flow rate 0.4 mL/min): t_R = 50.8 min (minor), t_R = 54.9 min (major).

(2*R*,3*R*)-3-(4-Methoxyphenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4ca): The enantiomeric excess of *syn*-4ca was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 93:7, flow rate 0.4 mL/min): t_R = 57.6 min (major), t_R = 62.1 min (minor).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	57.636	MF	1.6518	1.09421e4	110.40554	97.8768
2	62.050	FM	1.6162	237.35686	2.44764	2.1232

(2*R*,3*S*)-3-(4-Fluorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4da): The enantiomeric excess of *anti*-4da was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 98:2, flow rate 0.3 mL/min): $t_{\rm R}$ = 73.0 min (minor), $t_{\rm R}$ = 77.5 min (major).

(2*R*,3*R*)-3-(4-Fluorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4da): The enantiomeric excess of *syn*-4da was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 98:2, flow rate 0.3 mL/min): t_R = 81.8 min (major), t_R = 98.3 min (minor).

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	81.837	MM	1.8540	3.31634e4	298.13193	97.5498
2	98.334	MM	1.6652	832.98364	8.33711	2.4502

(2R,3S)-3-(4-Chlorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol The (anti-4ea): enantiomeric excess of anti-4ea was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.6 mL/min): $t_{\rm R}$ = 25.4 min (minor), $t_{\rm R}$ = 33.2 min (major).

152.24208

29.0805

4

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	25.444 VV	0.6423	1065.11511	19.71410	3.7305
2	33.174 VV	0.9687	2.74864e4	344.54700	96.2695

(2*R*,3*R*)-3-(4-Chlorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4ea): The enantiomeric excess of *syn*-4ea was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.6 mL/min): t_R = 27.0 min (minor), t_R = 38.6 min (major).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.008	BB	0.5457	1398.11743	30.10945	4.0422
2	38.546	MM	1.9592	3.31896e4	282.33713	95.9578

(2*R*,3*S*)-3-(4-Bromophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4fa): The enantiomeric excess of *anti*-4fa was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 30.0 min (minor), t_R = 36.4 min (major).

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	29.990 36.357	 MM MM	0.5300 0.7839	63.47422 1849.97266	1.99610 39.33429	 3.3173 96.6827

(2*R*,3*R*)-3-(4-Bromophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4fa): The enantiomeric excess of *syn*-4fa was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 30.4 min (major), t_R = 34.8 min (minor).

4-((2S,3R)-2-Hydroxy-3-(hydroxymethyl)-4-methylpent-4-en-2-yl)benzoate (*anti-***4ga**): The enantiomeric excess of *anti*-**4ga** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.4 mL/min): $t_{\rm R}$ = 82.2 min (minor), $t_{\rm R}$ = 99.0 min (major).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	82.145	MM	2.5233	719.13525	4.74995	5.6863
2	98.946	MM	3.1342	1.19277e4	63.42724	94.3137

4-((2R,3R)-2-Hydroxy-3-(hydroxymethyl)-4-methylpent-4-en-2-yl)benzoate (*syn-***4ga**): The enantiomeric excess of *syn-***4ga** was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.4 mL/min): $t_{\rm R}$ = 93.0 min (minor), $t_{\rm R}$ = 112.9 min (major).

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	93.017	MM	2.6355	4696.60205	29.70082	9.1211
2	112.897	MM	4.9947	4.67952e4	156.15024	90.8789

(2*R*,3*S*)-2-(Prop-1-en-2-yI)-3-(*m*-tolyI)butane-1,3-diol (*anti*-4ha): The enantiomeric excess of *anti*-4ha was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AS-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 33.0 min (major), t_R = 36.5 min (minor).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	33.003	MM	0.8858	1.96250e4	369.26688	95.8958
2	36.506	VB	0.6217	839.92010	15.96771	4.1042

(2*R*,3*R*)-2-(Prop-1-en-2-yI)-3-(*m*-tolyI)butane-1,3-diol (*syn*-4ha): The enantiomeric excess of *syn*-4ha was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AS-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): $t_{\rm R}$ = 30.1 min (major), $t_{\rm R}$ = 67.2 min (minor).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.132	MM	0.8954	4.25704e4	792.38373	95.9489
2	67.202	MM	1.6167	1797.39172	18.52912	4.0511

(2*R*,3*S*)-3-(Benzo[d][1,3]dioxol-5-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4ia): The enantiomeric excess of *anti*-4ia was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 92:8, flow rate 0.4 mL/min): t_R = 41.1 min (minor), t_R = 43.8 min (major).

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	41.119 43.779	 BB MM	0.6765 1.1320	 1726.10229 2.17350e4	 36.98433 320.00214	 7.3573 92.6427

(2*R*,3*R*)-3-(Benzo[d][1,3]dioxol-5-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4ia): The enantiomeric excess of *syn*-4ia was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 92:8, flow rate 0.4 mL/min): t_R = 48.5 min (minor), t_R = 51.9 min (major).

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	/9 /5/ MM	0 9619	863 44904	14 96026	 1 5112
2	51.912 MM	1.6109	1.82638e4	188.95515	95.4858

(2*R*,3*S*)-2-(Prop-1-en-2-yl)-3-(o-tolyl)butane-1,3-diol (*anti*-4ja): The enantiomeric excess of *anti*-4ja was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 96:4, flow rate 0.4 mL/min): $t_{\rm R}$ = 36.3 min (minor), $t_{\rm R}$ = 49.0 min (major).

(2*R*,3*R*)-2-(Prop-1-en-2-yl)-3-(o-tolyl)butane-1,3-diol (*syn*-4ja): The enantiomeric excess of *syn*-4ja was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): $t_{\rm R}$ = 49.5 min (major), $t_{\rm R}$ = 63.3 min (minor).

4

56.530 BB

(2*R*,3*S*)-3-(Naphthalen-2-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4ka): The enantiomeric excess of *anti*-4ka was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 43.8 min (minor), t_R = 55.6 min (major).

0.9029 2093.28809

29.67883

13.7953

S72

(2*R*,3*R*)-3-(Naphthalen-2-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4ka): The enantiomeric excess of *syn*-4ka was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 46.5 min (major), t_R = 48.9 min (minor).

Signal 5: DAD1 E, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	46.534	MF	0.9847	6687.73682	113.19811	94.5002
2	48.929	FM	0.9761	389.21548	6.64585	5.4998

(2*R*,3*S*)-3-(6-Methoxypyridin-3-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*anti*-4la): The enantiomeric excess of *anti*-4la was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 92:8, flow rate 0.4 mL/min): t_R = 36.9 min (major), t_R = 41.1 min (minor).

Signal 5: DAD1 E, Sig=280,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	38.010	MF	0.7580	1923.51257	42.29352	20.9507
2	41.750	FM	0.9480	1898.81323	33.38183	20.6817
3	47.649	MF	1.0367	2679.38623	43.07478	29.1837
4	50.531	MF	1.1797	2679.40820	37.85402	29.1839

(2*R*,3*R*)-3-(6-Methoxypyridin-3-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (*syn*-4la): The enantiomeric excess of *syn*-4la was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 92:8, flow rate 0.4 mL/min): t_R = 47.2 min (major), t_R = 51.0 min (minor).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	47.194	MF	1.0212	1179.24988	19.24644	95.0349
2	50.952	FM	1.0733	61.60931	9.56719e-1	4.9651

(2*R*,3*S*)-3-Phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (*anti*-4ma): The enantiomeric excess of *anti*-4ma was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.6 mL/min): $t_{\rm R}$ = 15.8 min (minor), $t_{\rm R}$ = 22.7 min (major).

Peak RetTime Type # [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 15.801 MM	0.4964	2233.22290	74.97643	6.6339
2 22.677 MM	1.1013	3.14305e4	475.65314	93.3661

(2*R*,3*R*)-3-Phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (*syn*-4ma): The enantiomeric excess of *syn*-4ma was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.4 mL/min): $t_{\rm R}$ = 26.8 min (major), $t_{\rm R}$ = 32.0 min (minor).

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	26.793 MM	0.7782	2.79638e4	598.91937	82.0515
2	31.995 VV	0.7209	6117.00146	107.33590	17.9485

(2*R*,3*S*)-3,5-Dimethyl-2-(prop-1-en-2-yl)hex-4-ene-1,3-diol (*syn*-4na): The enantiomeric excess of *syn*-4na was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.3 mL/min): $t_{\rm R}$ = 39.2 min (minor), $t_{\rm R}$ = 41.1 min (major).

(2*R*,3*R*)-3-Methyl-5-phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (*anti*-4oa): The enantiomeric excess of *anti*-4oa was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 38.3 min (minor), t_R = 89.2 min (major).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.014	MM	1.0810	1.49449e4	230.42384	32.0163
2	50.708	MM	1.4354	8223.24902	95.48369	17.6166
3	65.456	MM	1.8470	8358.86133	75.42542	17.9071
4	87.689	MM	2.8972	1.51521e4	87.16428	32.4601

(2*R*,3*S*)-3-Methyl-5-phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (*syn*-4oa): The enantiomeric excess of *syn*-4oa was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 50.7 min (minor), t_R = 64.7 min (major).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.014	MM	1.0810	1.49449e4	230.42384	32.0163
2	50.708	MM	1.4354	8223.24902	95.48369	17.6166
3	65.456	MM	1.8470	8358.86133	75.42542	17.9071
4	87.689	MM	2.8972	1.51521e4	87.16428	32.4601

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
50.680	MF	1.3929	679.44989	8.12986	4.1817
64.728	MM	1.8956	1.55688e4	136.88451	95.8183
	RetTime [min] 50.680 64.728	RetTime Type [min] 50.680 MF 64.728 MM	RetTime Type Width [min] [min] 50.680 MF 1.3929 64.728 MM 1.8956	RetTime Type Width Area [min] [min] [mAU*s] 50.680 MF 1.3929 679.44989 64.728 MM 1.8956 1.55688e4	RetTime Type Width Area Height [min] [min] [mAU] 50.680 MF 1.3929 679.44989 8.12986 64.728 MM 1.8956 1.55688e4 136.88451

(2*R*,3*S*)-3-Phenyl-2-vinylbutane-1,3-diol (*anti*-4ab): The enantiomeric excess of *anti*-4ab was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 97:3, flow rate 0.4 mL/min): $t_{\rm R}$ = 46.8 min (major), $t_{\rm R}$ = 52.9 min (minor).

	#	[min]		[min]	[mAU*s]	[mAU]	%
-							
	1	45.898	MM	1.2534	4.05511e4	539.20087	19.0696
	2	50.989	BV	1.3967	3.82744e4	349.76962	17.9990
	3	55.124	VV	1.1617	6.78309e4	691.91504	31.8983
	4	62.036	MM	1.8311	6.59908e4	600.65033	31.0330

(2*R*,3*R*)-3-Phenyl-2-vinylbutane-1,3-diol (*syn*-4ab): The enantiomeric excess of *syn*-4ab was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane:*i*PrOH = 97:3, flow rate 0.4 mL/min): $t_{\rm R}$ = 55.4 min (major), $t_{\rm R}$ = 63.4 min (minor).

1	45.898 MM	1.2534	4.05511e4	539.20087	19.0696
2	50.989 BV	1.3967	3.82744e4	349.76962	17.9990
3	55.124 VV	1.1617	6.78309e4	691.91504	31.8983
4	62.036 MM	1.8311	6.59908e4	600.65033	31.0330

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	55.363	MM	1.4670	2.03902e4	231.64612	97.3442
2	63.395	MM	1.7103	556.28955	5.42094	2.6558

(2*R*,3*S*)-2-(6-Methylhepta-1,5-dien-2-yl)-3-phenylbutane-1,3-diol (*anti*-4ac): The enantiomeric excess of *anti*-4ac was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 22.2 min (minor), t_R = 35.2 min (major).

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	22.203	BV	0.4579	1348.72400	35.60748	3.7643	
2	35.235	BB	1.1438	3.44807e4	354.18423	96.2357	

(2*R*,3*R*)-2-(6-Methylhepta-1,5-dien-2-yl)-3-phenylbutane-1,3-diol (*syn*-4ac): The enantiomeric excess of *syn*-4ac was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): t_R = 23.7 min (major), t_R = 31.4 min (minor).

Реак	Recitme	туре	width	Area	nergut	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.186	BV	0.5921	1.53128e4	391.65991	33.4858
2	24.264	VB	0.5879	7667.82373	187.97578	16.7679
3	32.033	VV	0.7294	7517.20459	137.15277	16.4385
4	35.657	BB	1.1547	1.52314e4	156.60896	33.3078

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	23.671	VV	0.6241	4.84861e4	1091.79065	95.1507
2	31.377	BV	0.6220	2471.06616	46.95186	4.8493

(2*R*,3*S*)-2-(5,5-Dimethoxypent-1-en-2-yl)-3-phenylbutane-1,3-diol (*anti-4ad*): The enantiomeric excess of *anti-4ad* was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 92:8, flow rate 0.4 mL/min): t_R = 27.9 min (major), t_R = 30.6 min (minor).

I Cuik	Recrime Type	Minach	Alcu	inc i Birc	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	28.323 MF	0.8965	3645.40698	67.77480	29.4428
2	31.279 MF	1.0028	3627.10498	60.28340	29.2950
3	33.825 MF	1.0803	2592.66016	39.99982	20.9401
4	38.234 FM	1.4530	2516.14722	28.86229	20.3221

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[min] [mAU*s]		%
1	27.916 MF	0.8661	2.44187e4	469.89258	96.3210
2	30.571 FM	0.9310	932.67212	16.69679	3.6790

(2*R*,3*R*)-2-(5,5-Dimethoxypent-1-en-2-yl)-3-phenylbutane-1,3-diol (*syn*-4ad): The enantiomeric excess of *syn*-4ad was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane: *i*PrOH = 92:8, flow rate 0.4 mL/min): t_R = 42.2 min (minor), t_R = 50.7 min (major).

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	42.155	MM	0.8872	3375.19995	63.40290	4.5972
2	50.658	MM	1.1956	7.00434e4	976.38129	95.4028

(2*R*,3*R*)-2-Methyl-3-phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (*anti-4ae*): The enantiomeric excess of *anti-4ae* was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.3 mL/min): t_R = 40.3 min (minor), t_R = 43.7 min (major).

(2*R*,3*R*)-3-Phenyl-2-(1-phenylvinyl)butane-1,3-diol (*syn*-4af): The enantiomeric excess of *syn*-4af was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 96:4, flow rate 0.4 mL/min): $t_{\rm R}$ = 69.9 min (minor), $t_{\rm R}$ = 83.7 min (major).

(2*R*,3*S*)-3,5-Dimethyl-2-vinylhex-4-ene-1,3-diol (*syn*-4nb): The enantiomeric excess of *syn*-4nb was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane:*i*PrOH = 95:5, flow rate 0.3 mL/min): $t_{\rm R}$ = 42.6 min (minor), $t_{\rm R}$ = 44.9 min (major).

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	42.553	MF	0.8827	1266.62622	23.91700	3.8723
2	44.886	FM	0.8766	3.14434e4	597.86255	96.1277

(2*R*,3*S*)-3,5-Dimethyl-2-(6-methylhepta-1,5-dien-2-yl)hex-4-ene-1,3-diol (*syn*-4nc): The enantiomeric excess of *syn*-4nc was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane:*i*PrOH = 97:3, flow rate 0.25 mL/min): t_{R} = 62.4 min (major), t_{R} = 65.0 min (minor).

(2*R*,3*S*)-3-Benzyl-4-methyl-2-phenylpent-4-en-2-ol (*syn-7*): The enantiomeric excess of *syn-7* was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.6 mL/min): $t_{\rm R}$ = 14.0 min (major), $t_{\rm R}$ = 15.5 min (minor).

2	15.359	FM	0.5840	1852.50989	52.86738	19.2836
3	20.227	MF	0.6068	2996.96851	82.32286	31.1967
4	22.421	FM	0.6708	2992.09204	74.33650	31.1460

Peak #	RetTime Type [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.963	MF	0.5337	3.42844e4	1070.64587	95.6879
2	15.522	FM	0.6098	1544.98755	42.22543	4.3121

S92

(2R,3S)-2-IsopropyI-3-(m-tolyI)butane-1,3-diol (anti-8): The enantiomeric excess of anti-8 was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel ID column, column temperature 20 °C, solvent Heptane: iPrOH = 96:4, flow rate 0.3 mL/min): $t_{\rm R}$ = 26.4 min (minor), $t_{\rm R}$ = 27.9 min (major).

69.92561

95.1496

2

(2*R*,3*R*)-3-(Azidomethyl)-4-methyl-2-phenylpent-4-en-2-ol (*syn-*9): The enantiomeric excess of *syn-*9 was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OJ-H column, column temperature 20 °C, solvent Heptane: *i*PrOH = 95:5, flow rate 0.6 mL/min): t_R = 15.1 min (major), t_R = 16.3 min (minor).

(*R*)-1-((*R*)-3,6-Dihydro-2H-pyran-3-yl)-1-phenylethan-1-ol (*syn*-10): The enantiomeric excess of *syn*-10 was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane:*i*PrOH = 97:3, flow rate 0.5 mL/min): $t_{\rm R}$ = 30.6 min (minor), $t_{\rm R}$ = 35.9 min (major).

Реак	Retlime	туре	ωιατη	Area	Height	Area
#	# [min]		[min]	[mAU*s]	[mAU]	%
1	30.505	MM	0.5917	1.75489e4	494.33951	49.8550
2	35.849	MM	0.7065	1.76510e4	416.39059	50.1450

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.603	MM	0.5908	375.04608	10.58073	2.9743
2	35.882	MM	0.6962	1.22347e4	292.89719	97.0257

(2*R*,3*R*)-2-Methyl-2-phenyl-3-(prop-1-en-2-yl)oxetane (*trans*-11): The enantiomeric excess of *trans*-11 was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IC column, column temperature 20 °C, solvent Heptane: *i*PrOH = 97:3, flow rate 0.25 mL/min): t_R = 21.9 min (major), t_R = 25.5 min (minor).

#	[min]	турс	[min]	[mAll*c]	[mAll]	%		
	[[[[]]]]		[]		[IIIAO]	⁄° 		
1	21 028	BB	0 1162	1 2813604	478 81070	06 3584		
2	21.920		0.4102	1.2813064	16 51961	2 6/16		
~	23.307	DD	0.4100	404.20001	10.01001	2.0410		

9 NMR Spectra

(2R,3S)-3-Phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4aa): ¹H NMR (500 MHz, CDCl₃)

Electronic Supplementary Information for Chemical Science

(2R,3S)-2-(Prop-1-en-2-yl)-3-(p-tolyl)butane-1,3-diol (anti-4ba): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3-(4-Methoxyphenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4ca): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3-(4-Fluorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4da): ¹H NMR (500 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCI₃)

-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm

(2R,3S)-3-(4-Chlorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4ea): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3-(4-Bromophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4fa): ¹H NMR (400 MHz, CDCl₃)

4-((2S,3R)-2-Hydroxy-3-(hydroxymethyl)-4-methylpent-4-en-2-yl)benzoate (anti-4ga): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-2-(Prop-1-en-2-yl)-3-(m-tolyl)butane-1,3-diol (anti-4ha): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3-(Benzo[d][1,3]dioxol-5-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4ia): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-2-(Prop-1-en-2-yl)-3-(o-tolyl)butane-1,3-diol (anti-4ja): 1H NMR (400 MHz, CDCl3)

(2R,3S)-3-(Naphthalen-2-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4ka): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3-(6-Methoxypyridin-3-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4la): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3-Phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (anti-4ma): ¹H NMR (400 MHz, CDCl₃)

3-Methyl-5-phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (4oa): ¹H NMR (400 MHz, CDCl₃)

anti-**4oa :** syn-**4oa =** 1:2

C NMR (100 MHz, CDCl₃)	144.16 143.90 142.47 142.40	128.41 128.33 125.77	115.33		74.97	62.88 62.40 57.17 56.43	43.50	30.14 29.86 25.87 24.19 23.84	
	NP	V/	V		Ŵ	Ϋ́́	11	VIV	
		I			1				
			1				1		
	1								
				ta					- İnternet data ber ser ber selek der der Bannet frem som
							ll		
190 180 170 160	150 140	130 1	20 110	100 90	80 70	0 60 5	ou 40	30 20	10 0 pp

(2R,3S)-2-(6-Methylhepta-1,5-dien-2-yl)-3-phenylbutane-1,3-diol (anti-4ac): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-2-(5,5-Dimethoxypent-1-en-2-yl)-3-phenylbutane-1,3-diol (anti-4ad): ¹H NMR (400 MHz, CD₂Cl₂)

(2R,3R)-2-Methyl-3-phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (anti-4ae): ¹H NMR (400 MHz, CDCl₃)

(2R,3R)-3-Phenyl-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4aa): ¹H NMR (500 MHz, CDCl₃)

(2R,3R)-2-(Prop-1-en-2-yl)-3-(p-tolyl)butane-1,3-diol (syn-4ba): ¹H NMR (400 MHz, CDCl₃)

(2R,3R)-3-(4-Methoxyphenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4ca): ¹H NMR (400 MHz, CDCl₃)

(2R,3R)-3-(4-Fluorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4da): ¹H NMR (400 MHz, CDCl₃)

¹⁹ F NMR (376	MHz, CI	OCI₃)							0077	60.011								
-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm

(2R,3R)-3-(4-Chlorophenyl)-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4ea): ¹H NMR (400 MHz, CDCl₃)

(2R,3R)-3-(4-BromophenyI)-2-(prop-1-en-2-yI)butane-1,3-diol (syn-4fa): ¹H NMR (400 MHz, CDCl₃)

4-((2R,3R)-2-Hydroxy-3-(hydroxymethyl)-4-methylpent-4-en-2-yl)benzoate (syn-4ga): ¹H NMR (400 MHz, CDCl₃)

(2R,3R)-2-(Prop-1-en-2-yl)-3-(m-tolyl)butane-1,3-diol (syn-4ha): ¹H NMR (400 MHz, CDCl₃)

NMR (100 MHz, CDCl₃)	 137.6	128.0		76.54	62.70			
			dawy, sy ju w bu da					

Me OH

9.0

8.0

(2R,3R)-3-(Benzo[d][1,3]dioxol-5-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4ia): ¹H NMR (400 MHz, CDCl₃)

0.98

7.0

2:05

6.0

1.00

5.0

3.12

1.0

ppm

2.0

0.97

3.0

୍ଧାଞ୍ଚ

4.0

0.99

(2R,3R)-2-(Prop-1-en-2-yl)-3-(o-tolyl)butane-1,3-diol (syn-4ja): ¹H NMR (400 MHz, CDCl₃)

¹³ C NMR (100 MHz, CDCl₃)	144.45	134.94	114.68	 	
					

(2R,3R)-3-(Naphthalen-2-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4ka): ¹H NMR (400 MHz, CDCl₃)

⁹ C NMR (100 MHz, CDCl₃)	144.90	133.00 132.22 132.22 126.17 127.82 125.75 125.75 125.45 125.45 115.11	76.81		
	50 1			60 50 40	

(2R,3R)-3-(6-Methoxypyridin-3-yl)-2-(prop-1-en-2-yl)butane-1,3-diol (syn-4la): ¹H NMR (400 MHz, CDCl₃)

(2R,3R)-3-Phenyl-2-(prop-1-en-2-yl)pentane-1,3-diol (syn-4ma): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3,5-Dimethyl-2-(prop-1-en-2-yl)hex-4-ene-1,3-diol (syn-4na): ¹H NMR (400 MHz, CD₂Cl₂)

(2R,3R)-3-Phenyl-2-vinylbutane-1,3-diol (syn-4ab): ¹H NMR (400 MHz, CDCl₃)

(2R,3R)-2-(6-Methylhepta-1,5-dien-2-yl)-3-phenylbutane-1,3-diol (syn-4ac): ¹H NMR (400 MHz, CDCl₃)

Me OH OMe OMe OH 2.02 66.0 1:03 2.96 2.92 0.97 1.02 2.58 7.0 9.0 8.0 6.0 5.0 4.0 3.0 2.0 1.0 ppm

(2R,3R)-2-(5,5-Dimethoxypent-1-en-2-yl)-3-phenylbutane-1,3-diol (syn-4ad): ¹H NMR (400 MHz, CD₂Cl₂)

(2R,3R)-3-Phenyl-2-(1-phenylvinyl)butane-1,3-diol (syn-4af): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3,5-Dimethyl-2-vinylhex-4-ene-1,3-diol (syn-4nb): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3,5-Dimethyl-2-(6-methylhepta-1,5-dien-2-yl)hex-4-ene-1,3-diol (syn-4nc): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-2-ethyl-3-phenylbutane-1,3-diol ((2R,3S)-5): ¹H NMR (400 MHz, CDCl₃)

(R)-2-((R)-1-Hydroxy-1-phenylethyl)but-3-en-1-yl 4-methylbenzenesulfonate (12): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3-Methyl-2-phenylpent-4-en-2-ol ((2R,3S)-6): ¹H NMR (400 MHz, CDCl₃)

(2R,3S)-3-Benzyl-4-methyl-2-phenylpent-4-en-2-ol (syn-7): 1H NMR (400 MHz, CDCl3)

¹³C NMR (100 MHz, CDCl₃)

128.65 128.14 127.85 126.49 126.49 124.90 124.90

			I	

76.33

(2R,3S)-2-IsopropyI-3-(m-tolyI)butane-1,3-diol (anti-8): ¹H NMR (400 MHz, CDCI₃)

(2R,3R)-3-(Azidomethyl)-4-methyl-2-phenylpent-4-en-2-ol (syn-9): ¹H NMR (400 MHz, CD₂Cl₂)

(2R,3R)-3-((Allyloxy)methyl)-2-phenylpent-4-en-2-ol (13): ¹H NMR (400 MHz, CDCl₃)

(R)-1-((R)-3,6-Dihydro-2H-pyran-3-yl)-1-phenylethan-1-ol (syn-10): ¹H NMR (400 MHz, CDCl₃)

(R)-2-((R)-1-Hydroxy-1-phenylethyl)-3-methylbut-3-en-1-yl 4-methylbenzenesulfonate (14): ¹H NMR (400 MHz, CDCl₃)

(2R,3R)-2-Methyl-2-phenyl-3-(prop-1-en-2-yl)oxetane (trans-11): 1H NMR (400 MHz, CD₂Cl₂)

10 References

- R. K. Harris, E. D. Becker, R. Cabral de Menezes, S. M. Goodfellow and P. Granger, *Pure Appl. Chem.*, 2001, **73**, 1795–1818.
- [2] J. K. Park, H. H. Lackey, M. D. Rexford, K. Kovnir, M. Shatruk and D. T. McQuade, Org. Lett., 2010, 12, 5008–5011.
- [3] K. Tani, D. C. Behenna, R. M. McFadden and B. M. Stoltz, Org. Lett., 2007, 9, 2529–2531.
- [4] (a) I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, *J. Am. Chem. Soc.*, 2009, **131**, 13020–13030; (b) D. Qian, H. Hu, F. Liu, B. Tang, W. Ye, Y. Wang and J. Zhang, *Angew. Chem. Int. Ed.*, 2014, **53**, 13751–13755; (c) C. R. Smith, D. J. Mans and T. V. RajanBabu, *Org. Synth.*, 2008, **85**, 238–247; (d) R. Shintani, K. Moriya and T. Hayashi, *J. Am. Chem. Soc.*, 2011, **133**, 16440–16443.
- [5] (a) J. Y. Wu, B. Moreau and T. Ritter, *J. Am. Chem. Soc.*, 2009, **131**, 12915–12917; (b) F.
 K. Cheung, A. M. Hayes, D. J. Morris and M. Wills, *Org. Biomol. Chem.*, 2007, **5**, 1093–1103.
- [6] D. Zhao, K. Oisaki, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 14440– 14441.
- [7] R. Wada, K. Oisaki, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2004, 126, 8910– 8911.
- [8] (a) C. Li, R. Y. Liu, L. T. Jesikiewicz, Y. Yang, P. Liu and S. L. Buchwald, *J. Am. Chem.* Soc., 2019, **141**, 5062–5070; (b) L. Jiang, P. Cao, M. Wang, B. Chen, B. Wang and J. Liao, *Angew. Chem. Int. Ed.*, 2016, **55**, 13854–13858; (c) X. Li, F. Meng, S. Torker, Y. Shi and A. H. Hoveyda, *Angew. Chem. Int. Ed.*, 2016, **55**, 9997–10002.
- [9] For seminal work on the reaction of nucleophilic Cu–B(pin), see: (a) H. Ito, H. Yamanaka, J. Tateiwa and A. Hosomi, *Tetrahedron Lett.*, 2000, **41**, 6821–6825; (b) K. Takahashi, T. Ishiyama and N. Miyaura, *Chem. Lett.*, 2000, 982–983.
- [10] The Z-Allyl–Cu complex is more stable: (a) R. B. Bates and W. A. Beavers, J. Am. Chem. Soc., 1974, 96, 5001–5002; (b) V. Liepins and J. E. Bäckvall, Eur. J. Org. Chem., 2002, 3527–3535; (c) P. R. Schleyer, J. Kaneti, Y.-D. Wu and J. Chandrasekhar, J. Organomet. Chem., 1992, 426, 143–157.
- [11] For a review of the Zimmerman-Traxler-type transition state, see: T. Mejuch, N. Gilboa, E. Gayon, H. Wang, K. N. Houk and I. Marek, Acc. Chem. Res., 2013, 46, 1659–1669.
- [12] A. H. M. de Vries, A. Meetsma and B. L. Feringa, Angew. Chem. Int. Ed., 1996, 35, 2374– 2376.