SUPPORTING INFORMATION

FOR

Copper-catalyzed enantioselective arylalkynylation of alkenes

Guangyue Lei, Hanwen Zhang, Bin Chen, Meichen Xu, Guozhu Zhang*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
1. General Experimental Information

NMR spectra were recorded at room temperature on the following spectrometers: Agilent (400 MHz) and Bruker (400 MHz). EPR spectra were recorded at room temperature on the following spectrometer: Bruker E500 10/12. 1H spectra were calibrated in relation to the reference measurement of TMS (0.00 ppm). 13C spectra were calibrated in relation to deuterated solvents, namely CDCl$_3$ (77.00 ppm). The following abbreviations were used for 1H NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as combinations of them. When combinations of multiplicities are given the first character noted refers to the largest coupling constant. ESI -HR and EI-HR (GC-TOF) spectrometer was applied. The method is denoted in brackets. For the most significant bands the wave number $\tilde{\nu}$ (cm$^{-1}$) is given.

Chemicals were purchased from commercial suppliers. Unless stated otherwise, all the substrates and solvents were purified and dried according to standard methods prior to use. Reactions requiring inert conditions were carried out in glove box.
2. Experimental detail

2.1 General Procedure

In a dried sealed tube, Ligand 9 (0.037 mmol, 5 mol %), K₂CO₃ (0.4 mmol, 2.0 equiv.) and Cu(MeCN)₄PF₆ (0.037 mmol, 5 mol %) were dissolved in anhydrous CH₃CN (2.0 mL) under a N₂ atmosphere, and the mixture was stirred for 10 min. Then diaryliodonium salts (0.25 mmol, 1.25 equiv.), terminal olefin (0.2 mmol, 1.0 equiv.) and terminal alkyne (0.4 mmol, 2.0 equiv.) were added sequentially. The tube was sealed with Teflon septum, the reaction mixture was stirred at room temperature for 24 h. After completion (monitored by TLC plate), the desired product was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate.

2.2 Synthesis and Characterization of Ligand

Ligands (L₁ to L₉) was synthesized according to reference¹.

2.3 Screening of Reaction Conditions
Table S1. Ligand screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Yield (%)<sup>a</sup></th>
<th>ee (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>53</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>L2</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>L3</td>
<td>52</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>L6</td>
<td>trace</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>L7</td>
<td>69</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>L8</td>
<td>49</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>L9</td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>L10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>L11</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>2,2,2-tripyridine</td>
<td>68</td>
<td>0</td>
</tr>
</tbody>
</table>

^aThe reactions were carried out at room temperature.
^bYields determined by ¹H NMR analysis with internal standard diethyl phthalate.
^cDetermined by chiral HPLC analysis.

Table S2. Catalyst screening.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Yield (%)<sup>a</sup></th>
<th>ee (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuI</td>
<td>59</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>CuBr</td>
<td>63</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>CuCl</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>CuOAc</td>
<td>47</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>Cu(MeCN)4PF<sub>6</sub></td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>CuCN</td>
<td>68</td>
<td>85</td>
</tr>
</tbody>
</table>

^aThe reactions were carried out at room temperature.
^bYields determined by ¹H NMR analysis with internal standard diethyl phthalate.
^cDetermined by chiral HPLC analysis.
Table S3. Solvent screening

<table>
<thead>
<tr>
<th>Entry<sup>a</sup></th>
<th>Solvent</th>
<th>Yield (%)<sup>b</sup></th>
<th>ee (%)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeOH</td>
<td>trace</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>toluene</td>
<td>34</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>DME</td>
<td>27</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>MeCN</td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>DMF</td>
<td>trace</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>THF</td>
<td>49</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>dioxane</td>
<td>trace</td>
<td>-</td>
</tr>
</tbody>
</table>

^aThe reactions were carried out at room temperature. ^bYields determined by ¹HNMR analysis with internal standard diethyl phthalate. ^cDetermined by chiral HPLC analysis.

Table S4. Base screening

<table>
<thead>
<tr>
<th>Entry<sup>a</sup></th>
<th>Base</th>
<th>Yield (%)<sup>b</sup></th>
<th>ee (%)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>Na<sub>2</sub>CO<sub>3</sub></td>
<td>57</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>Li<sub>2</sub>CO<sub>3</sub></td>
<td>56</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>K<sub>2</sub>CO<sub>3</sub></td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>K<sub>3</sub>PO<sub>4</sub></td>
<td>69</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>NaHCO<sub>3</sub></td>
<td>43</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>KHCO<sub>3</sub></td>
<td>49</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>K<sub>2</sub>HPO<sub>4</sub></td>
<td>34</td>
<td>85</td>
</tr>
</tbody>
</table>

^aThe reactions were carried out at room temperature. ^bYields determined by ¹HNMR analysis with internal standard diethyl phthalate. ^cDetermined by chiral HPLC analysis.
2.4 Synthesis and Characterization of products

\((R)-(3-(p\text{-tolyl})\text{but-1-yne-1,4-diyl})\text{dibenzene (4aa)}\)

According to general procedure, from 0.2 mmol of alkene, the desired product 4aa (46.2 mg, 0.16 mmol) was obtained as colorless oil in 78% yield.

\(^1\text{H NMR (400 MHz, CDCl}_3\) δ 7.45 – 7.38 (m, 2H), 7.35 – 7.27 (m, 8H), 7.25 (d, \(J = 7.7\) Hz, 2H), 7.18 (d, \(J = 7.7\) Hz, 2H), 4.09 (t, \(J = 7.3\) Hz, 1H), 3.14 (d, \(J = 7.3\) Hz, 2H), 2.39 (s, 3H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\) δ 139.0, 138.3, 136.4, 131.5, 129.5, 129.1, 128.1, 128.0, 127.7, 127.5, 126.4, 123.7, 91.2, 84.1, 45.1, 40.4, 21.1. IR (neat) cm\(^{-1}\) ν: 3059, 2920, 1690, 1601, 1492, 1450, 1316, 1177, 1023, 807, 755, 593, 559, 524. HRMS: m/z (EI) calculated [M]\(^+\): 296.1565, found: 296.1562. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.8 mL/min, 210 nm), \(t_{\text{minor}}\) = 25.9 min, \(t_{\text{major}}\) = 29.4 min, ee = 86%.

\([\alpha]_D^{25} = 5.4, (c = 0.47, \text{CHCl}_3)\).

Methyl \((R)-4-(1,4\text{-diphenylbut-3-yn-2-yl})\text{benzoate (4a)}\)

According to general procedure, from 0.2 mmol of alkene, the desired product 4a (56.4 mg, 0.17 mmol) was obtained as colorless oil in 83% yield.

\(^1\text{H NMR (400 MHz, CDCl}_3\) δ 7.90 (d, \(J = 7.9\) Hz, 2H), 7.35 – 7.27 (m, 4H), 7.23 – 7.19 (m, 3H), 7.18 – 7.12 (m, 3H), 7.05 (d, \(J = 6.9\) Hz, 2H), 4.05 (t, \(J = 7.1\) Hz, 1H), 3.82 (s, 3H), 3.10 – 2.97 (m, 2H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\) δ 166.9, 146.4, 138.2, 131.5, 129.7, 129.5, 128.8, 128.2, 128.1, 128.0, 127.8, 126.6, 123.3, 90.0, 84.7, 52.0, 44.7, 40.7. IR (neat) cm\(^{-1}\) ν: 3060, 2949, 1718, 1691, 1605, 1491, 1435, 1275, 1178, 1106, 1018, 936, 857, 756, 694, 559, 485. HRMS : m/z (ESI) calculated [M+Na]\(^+\): 363.1361, found: 363.1355. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 98:2, 0.8 mL/min, 210 nm), \(t_{\text{minor}}\) = 8.9 min, \(t_{\text{major}}\) = 9.9 min, ee = 89%.

5
[α]D25 = 8.1, (c =0.15, CHCl3).

(R)-(3-(4-(trifluoromethyl)phenyl)but-1-yn-1,4-diyl)dibenzene (4b)

According to general procedure, from 0.2 mmol of alkene, the desired product 4b (55.3 mg, 0.16 mmol) was obtained as colorless oil in 79% yield.

1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 7.9 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.41 - 7.35 (m, 2H), 7.32 - 7.19 (m, 6H), 7.14 (d, J = 7.1 Hz, 2H), 4.13 (t, J = 7.2 Hz, 1H), 3.19 - 3.05 (m, 2H).

13C NMR (100 MHz, CDCl3) δ 140.2, 138.1, 131.5, 129.5, 129.2 (q, J = 32.3 Hz), 128.3, 128.1, 128.1, 128.0, 126.7, 125.4 (q, J = 3.0 Hz), 124.2 (q, J = 270.1 Hz), 123.2, 89.9, 84.8, 44.8, 40.1.

19F NMR (376 MHz, CDCl3) δ -62.2 (s, 3F). IR (neat) cm⁻¹ ν: 3063, 2924, 1692, 1600, 1492, 1450, 1413, 1321, 1118, 1065, 1016, 833, 754, 693, 603, 530. HRMS: m/z (EI) calculated [M]+: 350.1282, found: 350.1287. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.2:0.8, 0.35 mL/min, 210 nm), tminor = 15.2 min, tmajor = 15.9 min, ee = 86%.

[α]D25 = 4.9, (c =0.28, CHCl3).

(R)-but-3-yn-1,2,4-triyltribenzene (4c)

According to general procedure, from 0.2 mmol of alkene, the desired product 4c (40.6 mg, 0.14 mmol) was obtained as colorless oil in 72% yield.

1H NMR (400 MHz, CDCl3) δ 7.49 - 7.42 (m, 4H), 7.41 - 7.28 (m, 9H), 7.26 (d, J = 7.2 Hz, 2H), 4.15 (t, J = 7.2 Hz, 1H), 3.19 (d, J = 7.2 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 141.2, 138.8, 131.5, 129.5, 128.4, 128.1, 128.0, 127.8, 127.7, 126.8, 126.4, 123.6, 90.9, 84.3, 45.1, 40.8. IR (neat) cm⁻¹ ν: 3059, 2921, 1688, 1597, 1490, 1449, 1271, 1175, 1070 1026, 913, 843, 754, 691, 559, 513. HRMS: m/z (EI) calculated [M]+: 282.1409, found: 282.1411. HPLC (Chiralcel OD-H
column, hexanes:i-PrOH = 100:0, 0.8 mL/min, t_{\text{minor}} = 34.0 min, t_{\text{major}} = 30.7 min, ee = 87%.

\[[\alpha]_D^{25} = 103.8 \text{ (c =0.05, CHCl}_3). \]

(4d)

(R)-4-(1,4-diphenylbut-3-yn-2-yl)-1,1'-biphenyl

According to general procedure, from 0.2 mmol of alkene, the desired product 4d (53.7 mg, 0.15 mmol) was obtained as colorless oil in 75% yield.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.56 (dd, \(J = 16.7, 7.7\) Hz, 4H), 7.45 – 7.37 (m, 5H), 7.36 – 7.15 (m, 9H), 4.11 (t, \(J = 7.2\) Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 140.8, 140.4, 139.7, 138.8, 131.5, 129.5, 128.7, 128.2, 128.1, 128.0, 127.8, 127.2, 127.1, 127.0, 126.5, 123.6, 90.8, 84.4, 45.0, 40.5. IR (neat) cm\(^{-1}\) \(\tilde{\nu}\): 3057, 2921, 1688, 1599, 1516, 1486, 1448, 1405, 1284, 1111, 912, 833, 756, 691, 569, 509. HRMS: m/z (EI) calculated [M]+: 358.1722, found: 358.1732. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.5:0.5, 0.8 mL/min, 210 nm),

\(t_{\text{minor}} = 13.7\) min, \(t_{\text{major}} = 15.7\) min, ee = 89%.

\[[\alpha]_D^{25} = 7.0, \text{ (c =0.33, CHCl}_3). \]

(4e)

(R)-4-(1,4-diphenylbut-3-yn-2-yl)phenyl acetate

According to general procedure, from 0.2 mmol of alkene, the desired product 4e (59.8 mg, 0.18 mmol) was obtained as colorless oil in 88% yield.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45 – 7.38 (m, 4H), 7.36 – 7.30 (m, 5H), 7.28 (d, \(J = 6.9\) Hz, 1H), 7.23 (d, \(J = 7.4\) Hz, 2H), 7.09 (d, \(J = 8.3\) Hz, 2H), 4.13 (t, \(J = 7.2\) Hz, 1H), 3.15 (d, \(J = 7.3\) Hz, 2H), 2.34 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 169.5, 149.4, 138.8, 138.6, 131.5, 129.5, 128.7,
According to general procedure, from 0.2 mmol of alkene, the desired product 4f (50.7 mg, 0.15 mmol) was obtained as colorless solid in 75% yield. Melting Point = 53 °C – 54 °C.

\[^1\text{H}\] NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.46 – 7.39 (m, 6H), 7.37 – 7.26 (m, 8H), 4.12 (t, \(J = 7.1\) Hz, 1H), 3.24 – 3.05 (m, 2H), 1.39 (s, 9H).

\[^{13}\text{C}\] NMR (100 MHz, CDCl\(_3\)) \(\delta\) 149.7, 139.2, 138.4, 131.5, 129.5, 128.1, 128.0, 127.7, 127.2, 126.4, 125.4, 123.7, 91.1, 84.2, 45.1, 40.4, 34.4, 31.4. IR (neat) cm\(^{-1}\) \(\tilde{\nu}\): 3053, 2922, 1690, 1598, 1508, 1360, 1334, 1288, 1149, 1069, 1021, 969, 860, 753, 692, 568, 522. HRMS: m/z (ESI) calculated [M+H]: 339.2113, found: 339.2112. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.7:0.3, 0.8 mL/min, 210 nm), \(t_{\text{minor}} = 14.3\) min, \(t_{\text{major}} = 16.5\) min, ee = 88%.

\([\alpha]_D^{25} = 28.1, (c = 0.35, \text{CHCl}_3)\).

\((R)-(3-(4-(tert-butyl)phenyl)but-1-yne-1,4-diyl)dibenzene (4f)\)

\((R)-(3-(4-bromophenyl)but-1-yne-1,4-diyl)dibenzene (4g)\)

According to general procedure, from 0.2 mmol of alkene, the desired product 4g (61.2 mg, 0.17 mmol) was obtained as colorless oil in 85% yield.
1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, $J = 8.1$ Hz, 2H), 7.40 – 7.35 (m, 4H), 7.26 (dd, $J = 12.4$, 5.3 Hz, 4H), 7.20 (d, $J = 8.1$ Hz, 2H), 7.14 (d, $J = 7.3$ Hz, 2H), 4.04 (t, $J = 7.2$ Hz, 1H), 3.16 – 3.00 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 140.2, 138.3, 131.5, 131.4, 129.5, 129.5, 128.2, 128.1, 128.0, 126.6, 123.3, 120.7, 90.3, 84.6, 44.8, 40.2. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3059, 2922, 1689, 1584, 1485, 1450, 1402, 1318, 1285, 1176, 1070, 815, 753, 692, 556, 515. HRMS: m/z (El) calculated [M$^+$]: 360.0514, found: 360.0508. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.5:0.5, 0.8 mL/min, 210 nm), t_{minor} = 7.5 min, t_{major} = 7.9 min, ee = 87%.

$[\alpha]_D^{25} = 0.51$, (c =0.23, CHCl$_3$).

(R)-(3-(4-chlorophenyl)but-1-yne-1,4-diyl)dibenzene (4h)

According to general procedure, from 0.2 mmol of alkene, the desired product 4h (51.8 mg, 0.16 mmol) was obtained as colorless oil in 82% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.39 (m, 2H), 7.35 – 7.24 (m, 10H), 7.18 (d, $J = 7.5$ Hz, 2H), 4.09 (t, $J = 7.1$ Hz, 1H), 3.19 – 3.05 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 139.7, 138.3, 132.6, 131.5, 129.5, 129.1, 128.5, 128.2, 128.1, 127.9, 126.6, 123.4, 90.4, 84.5, 44.9, 40.1. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3061, 2922, 1689, 1589, 1488, 1450, 1317, 1175, 1090, 1013, 819, 754, 693, 557, 541, 524. HRMS: m/z (El) calculated [M$^+$]: 316.1019, found: 316.1007. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.5 mL/min, 210 nm), t_{minor} = 10.8 min, t_{major} = 11.3 min, ee = 86%.

$[\alpha]_D^{25} = 1.3$, (c =0.42, CHCl$_3$).

(R)-(3-(4-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (4i)

According to general procedure, from 0.2 mmol of alkene, the desired product 4i (48.1 mg, 0.16
mmol) was obtained as colorless oil in 80% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.34 (m, 2H), 7.31 – 7.17 (m, 8H), 7.13 (d, $J = 7.2$ Hz, 2H), 6.97 (t, $J = 8.8$ Hz, 2H), 4.05 (t, $J = 7.2$ Hz, 1H), 3.08 (qd, $J = 13.1, 7.1$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 161.7 (d, $J = 244$ Hz), 138.5, 136.8 (d, $J = 3$ Hz), 131.5, 129.5, 129.2 (d, $J = 8$ Hz), 128.2, 128.0, 127.9, 126.5, 123.4, 115.2 (d, $J = 21$ Hz), 90.7, 84.4, 45.1, 40.0. 19F NMR (376 MHz, CDCl$_3$) δ -116.0 – 115.9 (m, 1F). IR (neat) cm$^{-1}$: 3061, 2922, 1690, 1599, 1506, 1507, 1450, 1222, 1156, 1092, 1096, 1071, 1015, 913, 832, 755, 692, 557, 524. HRMS: m/z (EI) calculated [M]$^+$: 300.1314, found: 300.1323. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.5 mL/min, 210 nm), t_{minor} = 9.9 min, t_{major} = 10.3 min, ee = 85%.

$\left[\alpha\right]_{D}^{25} = 3.4$, (c =0.23, CHCl$_3$).

(R)-(3-(4-(trifluoromethoxy)phenyl)but-1-yne-1,4-diyl)dibenzene (4j)

According to general procedure, from 0.2 mmol of alkene, the desired product 4j (56.4 mg, 0.15 mmol) was obtained as colorless oil in 77% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.51 – 7.46 (m, 2H), 7.43 (d, $J = 8.3$ Hz, 2H), 7.40 – 7.30 (m, 5H), 7.27 – 7.21 (m, 5H), 4.18 (t, $J = 7.2$ Hz, 1H), 3.26 – 3.12 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 148.0, 139.9, 138.3, 131.5, 129.5, 129.0, 128.2, 128.1, 128.0, 126.6, 123.3, 120.9, 120.5 (q, 257.6 Hz), 90.2, 84.7, 44.9, 40.1. 19F NMR (376 MHz, CDCl$_3$) δ -57.78 (s, 3F). IR (neat) cm$^{-1}$: 3062, 2923, 1692, 1599, 1504, 1450, 1416, 1253, 1210, 1158, 1018, 920, 847, 754, 692, 560, 527. HRMS: m/z (EI) calculated [M]$^+$: 366.1232, found: 366.1234. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.7:0.3, 0.8 mL/min, 210 nm), t_{minor} = 23.3 min, t_{major} = 24.4 min, ee = 91%.

$\left[\alpha\right]_{D}^{25} = 8.2$, (c =0.25, CHCl$_3$).

(R)-(3-(4-(difluoromethoxy)phenyl)but-1-yne-1,4-diyl)dibenzene (4k)
According to general procedure, from 0.2 mmol of alkene, the desired product 4k (51.5 mg, 0.15 mmol) was obtained as colorless oil in 74% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.35 (m, 2H), 7.32 (d, $J = 8.4$ Hz, 2H), 7.29 – 7.19 (m, 6H), 7.15 (d, $J = 8.1$ Hz, 2H), 7.05 (d, $J = 8.3$ Hz, 2H), 6.47 (t, $J = 74.4$ Hz, 1H), 4.07 (t, $J = 7.2$ Hz, 1H), 3.15 – 3.02 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 150.0, 138.4, 131.5, 129.5, 129.1, 128.2, 128.1, 127.9, 126.5, 123.4, 119.4, 116.0 (t, $J = 260.6$ Hz), 90.5, 84.5, 45.0, 40.1. 19F NMR (376 MHz, CDCl$_3$) δ -80.53 (d, 2F). IR (neat) cm$^{-1}$: 3062, 2923, 1690, 1600, 1504, 1506, 1451, 1381, 1217, 1120, 1039, 830, 755, 692, 561, 525. HRMS: m/z (EI) calculated [M]$^+$: 348.1326, found: 348.1329. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.5:0.5, 0.8 mL/min, 210 nm), $t_{\text{minor}} = 10.0$ min, $t_{\text{major}} = 10.9$ min, ee = 86%.

$[\alpha]_D^{25} = 12.5$, (c =0.25, CHCl$_3$).

(R)-(3-(3-bromophenyl)but-1-yn-1,4-diyl)dibenzene (4l)

According to general procedure, from 0.2 mmol of alkene, the desired product 4l (55.4 mg, 0.15 mmol) was obtained as colorless oil in 77% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.54 – 7.50 (m, 1H), 7.41 – 7.35 (m, 3H), 7.32 – 7.21 (m, 7H), 7.19 – 7.13 (m, 3H), 4.04 (t, $J = 6.7$ Hz, 1H), 3.15 – 3.03 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 143.5, 138.3, 131.5, 130.7, 130.0, 129.9, 129.5, 128.20, 128.10, 128.0, 126.6, 126.4, 90.0, 84.8, 44.9, 40.4. IR (neat) cm$^{-1}$: 3060, 2922, 1689, 1592, 1566, 1507, 1490, 1450, 1420, 1284, 1093, 1069, 1025, 995, 912, 878, 781, 753, 689, 527, 480. HRMS: m/z (EI) calculated [M]$^+$: 360.0514, found: 360.0510. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.8 mL/min, 210 nm), $t_{\text{minor}} = 34.8$ min, $t_{\text{major}} = 32.1$ min, ee = 88%.

11
$[\alpha]_D^{25} = 15.1$, (c =0.25, CHCl$_3$).

(R)-(3-(3-fluorophenyl)but-1-yn-1,4-diyl)dibenzene (4m)

According to general procedure, from 0.2 mmol of alkene, the desired product 4m (48.6 mg, 0.16 mmol) was obtained as colorless oil in 81% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.35 (m, 2H), 7.32 – 7.22 (m, 7H), 7.16 (d, $J = 6.7$ Hz, 2H), 7.09 (d, $J = 8.9$ Hz, 2H), 6.98 – 6.89 (m, 1H), 4.07 (t, $J = 7.2$ Hz, 1H), 3.16 – 3.03 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 162.8 (d, $J = 45.5$ Hz), 143.8 (d, $J = 7.1$ Hz), 138.4, 131.5, 129.8 (d, $J = 8.1$ Hz), 129.5, 128.2, 128.1, 128.0, 126.6, 123.4 (d, $J = 3.0$ Hz), 123.3, 114.7 (d, $J = 22.2$ Hz), 113.8 (d, $J = 21.2$ Hz), 90.1, 84.6, 44.8, 40.5, 40.3 (d, $J = 2.0$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -112.99 – -113.09 (m, 1F). IR (neat) $\tilde{\nu}$: 3061, 2923, 1691, 1587, 1487, 1445, 1246, 1071, 1025, 913, 872, 783, 755, 689, 521, 486. HRMS: m/z (EI) calculated [M]$^+$: 300.1314, found: 300.1309.

HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.9:0.1, 0.8 mL/min, 210 nm), t_{minor} = 29.0 min, t_{major} = 26.0 min, ee = 87%.

$[\alpha]_D^{25} = 13.3$, (c =0.25, CHCl$_3$).

(R)-(3-(3,5-bis(trifluoromethyl)phenyl)but-1-yn-1,4-diyl)dibenzene (4n)

According to general procedure, from 0.2 mmol of alkene, the desired product 4n (71.1 mg, 0.17 mmol) was obtained as colorless oil in 85% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.77 (s, 1H), 7.72 (s, 2H), 7.45 – 7.37 (m, 2H), 7.35 – 7.25 (m, 6H), 7.11 (d, $J = 7.9$ Hz, 2H), 4.22 (t, $J = 7.2$ Hz, 1H), 3.19 (dd, $J = 13.2, 7.8$ Hz, 1H), 3.09 (dd, $J = 13.2, 6.7$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 143.6, 137.4, 131.6, 131.5 (q, $J = 33.3$Hz), 129.4, 128.3, 128.3, 128.0 (q, $J = 2.0$ Hz), 127.0, 123.7 (q, $J = 273.7$ Hz), 122.8, 121.0
According to general procedure, from 0.2 mmol of alkene, the desired product 4o (67.3 mg, 0.18 mmol) was obtained as colorless oil in 89% yield.

\[^1H \text{NMR (400 MHz, CDCl}_3 \delta 7.44 \text{ (dd, } J = 8.2, 7.1 \text{ Hz, 1H}), 7.38 \text{ (dd, } J = 6.6, 3.1 \text{ Hz, 1H}), 7.30 - 7.21 \text{ (m, 6H)}, 7.15 - 7.11 \text{ (m, 3H)}, 6.96 \text{ (dd, } J = 8.3, 2.1 \text{ Hz, 1H}), 4.04 \text{ (t, } J = 7.1 \text{ Hz, 1H}), 3.17 - 3.01 \text{ (m, 2H)}. \]

\[^13C \text{NMR (100 MHz, CDCl}_3 \delta 158.9 \text{ (d, } J = 248.5 \text{ Hz}), 143.0 \text{ (d, } J = 6.1 \text{ Hz}), 137.9, 133.2, 131.5, 129.4, 128.2, 128.1, 126.7, 124.6 \text{ (d, } J = 3.0 \text{ Hz}), 123.1, 115.9 \text{ (d, } J = 23.2 \text{ Hz}), 107.1 \text{ (d, } J = 21.2 \text{ Hz}), 89.6, 84.9, 44.6, 40.1. \]

\[^19F \text{NMR (376 MHz, CDCl}_3 \delta -107.15 \text{ (dd, } J = 9.6, 7.2 \text{ Hz, 1F}). \]

IR (neat) cm\(^{-1}\) \(\tilde{\nu}\): 3061, 2922, 1690, 1598, 1480, 1450, 1414, 1281, 1239, 1041, 913, 871, 811, 755, 692, 621, 572, 496. HRMS: m/z (EI) calculated [M]\(^+\): 378.0419, found: 308.0416. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 99.5:0.5, 0.8 mL/min, 210 nm), \(t_{\text{minor}} = 10.0 \text{ min, } t_{\text{major}} = 9.1 \text{ min, ee = 88\%}. \]

\[[\alpha]_D^{25} = 1.3, (c =0.39, \text{CHCl}_3). \]

\((S)-2-(1,4\text{-diphenylbut-3-yn-2-yl})\text{thiophene (4p)}\)

\[
\begin{align*}
\text{According to general procedure, from 0.2 mmol of alkene, the desired product 4p (50.3 mg, 0.17} & \end{align*}
\]
mmol) was obtained as colorless oil in 87% yield.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.41 – 7.36 (m, 2H), 7.31 – 7.22 (m, 8H), 7.19 (dd, \(J = 4.4, 1.9\) Hz, 1H), 6.96 – 6.91 (m, 2H), 4.36 (t, \(J = 7.2\) Hz, 1H), 3.26 – 3.16 (m, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 144.7, 138.4, 131.5, 129.5, 128.2, 128.1, 127.9, 126.6, 126.6, 124.70, 124.0, 123.3, 99.2, 84.0, 45.1, 35.8.\) IR (neat) cm\(^{-1}\) \(\tilde{\nu}: 3027, 2921, 1690, 1597, 1490, 1440, 1226, 1071, 1029, 913, 847, 824, 754, 689, 543, 510.\) HRMS: m/z (ESI) calculated \([M+H]^+\): 289.1051, found: 289.1046.

HPLC (Chiralcel OD-H column, hexanes: \(i\)-PrOH = 99.6:0.4, 0.5 mL/min, 250 nm), \(t_{\text{minor}} = 15.0\) min, \(t_{\text{major}} = 14.5\) min, ee = 89%.

\([\alpha]_D^{25} = 38.2, (c =0.41, \text{CHCl}_3).\)

\((S)-2-(1,4\text{-diphenylbut-3-yn-2-yl})-3\text{-methylthiophene} (4q)\)

According to general procedure, from 0.2 mmol of alkene, the desired product 4q (43.6 mg, 0.14 mmol) was obtained as colorless oil in 72% yield.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.50 – 7.44 (m, 2H), 7.39 – 7.29 (m, 6H), 7.28 – 7.22 (m, 2H), 7.17 (d, \(J = 5.1\) Hz, 1H), 6.82 (d, \(J = 5.1\) Hz, 1H), 4.38 (t, \(J = 7.3\) Hz, 1H), 3.23 (ddd, \(J = 40.9, 13.1, 7.4\) Hz, 2H), 2.09 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) 138.6, 137.9, 133.2, 131.5, 129.9, 129.4, 128.1, 128.1, 127.9, 126.6, 123.4, 122.3, 90.7, 83.3, 44.6, 34.2, 13.5. IR (neat) cm\(^{-1}\) \(\tilde{\nu}: 3026, 2922, 1673, 1594, 1489, 1443, 1071, 1028, 914, 833, 749, 693, 606, 546, 507.\) HRMS: m/z (EI) calculated \([M]^+\): 302.1129, found: 302.1131. HPLC (Chiralcel AD-H column, hexanes: \(i\)-PrOH = 99.6:0.4, 0.5 mL/min, 250 nm), \(t_{\text{minor}} = 7.9\) min, \(t_{\text{major}} = 8.5\) min, ee = 97%.

\([\alpha]_D^{25} = 22.5, (c =0.05, \text{CHCl}_3).\)

\((S)-5-(1,4\text{-diphenylbut-3-yn-2-yl})\text{thiazole} (4r)\)

According to general procedure, from 0.2 mmol of alkene, the desired product 4r (42.2 mg, 0.15 mmol) was obtained as orange oil in 73% yield.
\[^1 \text{H NMR (400 MHz, CDCl}_3 \] \(\delta \) 8.66 (s, 1H), 7.69 (s, 1H), 7.38 (dd, \(J = 6.7 \), 3.0 Hz, 2H), 7.33 – 7.24 (m, 6H), 7.21 – 7.17 (m, 2H), 4.40 (t, \(J = 7.2 \) Hz, 1H), 3.28 – 3.09 (m, 2H).\[^{13} \text{C NMR (100 MHz, CDCl}_3 \] \(\delta \) 152.3, 140.9, 139.5, 137.7, 131.6, 129.5, 128.4, 128.3, 127.0, 122.9, 89.3, 84.3, 44.9, 33.2.\[\text{IR (neat) cm}^{-1} \tilde{\nu} : 3027, 2920, 1668, 1490, 1442, 1402, 1332, 1248, 1106, 1071, 1028, 912, 868, 794, 753, 691, 606, 557, 526.\[\text{HRMS: m/z (ESI)} \] calculated [M+H]\(^+\): 290.1003, found: 290.1010. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 95:5, 0.8 mL/min, 250 nm), \(t_{\text{minor}} = 13.3 \) min, \(t_{\text{major}} = 13.9 \) min, ee = 89%.

\[[\alpha]_D^{25} = 55.7, (c =0.05, \text{CHCl}_3). \]

\((S)-5-(1,4\text{-diphenylbut-3-yn-2-yl})-4\text{-methylthiazole} (4s)\)

\[
\begin{align*}
&\text{According to general procedure, from 0.2 mmol of alkene, the desired product } 4s \text{ (31.5 mg, 0.10 mmol) was obtained as orange oil in 52\% yield.} \\
&\text{\[^1 \text{H NMR (400 MHz, CDCl}_3 \] \(\delta \) 8.64 (s, 1H), 7.46 – 7.39 (m, 2H), 7.37 – 7.25 (m, 7H), 7.17 (d, \(J = 7.2 \) Hz, 2H), 4.34 (t, \(J = 7.2 \) Hz, 1H), 3.28 (dd, \(J = 13.1 \), 7.2 Hz, 1H), 3.10 (dd, \(J = 13.0 \), 7.3 Hz, 1H), 2.22 (s, 3H).} \\
&\text{\[^{13} \text{C NMR (100 MHz, CDCl}_3 \] \(\delta \) 150.1, 148.8, 137.7, 132.2, 131.5, 129.3, 128.3, 128.2, 126.8, 122.9, 90.0, 83.5, 44.5, 32.8, 14.8.} \\
&\text{IR (neat) cm}^{-1} \tilde{\nu} : 3058, 2924, 1668, 1597, 1543, 1488, 1443, 1411, 1310, 1264, 1173, 1069, 932, 842, 797, 755, 692, 580, 512, 480.} \\
&\text{HRMS: m/z (ESI)} \] calculated [M+H]\(^+\): 304.1160, found: 304.1158. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 98:2, 0.8 mL/min, 210 nm), \(t_{\text{minor}} = 11.3 \) min, \(t_{\text{major}} = 11.9 \) min, ee = 97%. \\
&\[[\alpha]_D^{25} = -10.6, (c =0.47, \text{CHCl}_3). \]
\]

\((S)-4-(3\text{-benzyl-4-(4-methoxyphenyl)but-1-yn-1-yl)}-1,1\text{-biphenyl} (4t)\)

\[
\begin{align*}
&\text{According to general procedure, from 0.2 mmol of alkene, the desired product } 4t \text{ (58.0 mg, 0.14}\]

15
mmol) was obtained as yellow solid in 72% yield. Melting Point = 55 °C – 56 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.62 (d, $J = 7.4$ Hz, 2H), 7.55 (d, $J = 8.2$ Hz, 2H), 7.48 (t, $J = 7.5$ Hz, 2H), 7.44 – 7.3 3 (m, 7H), 7.32 – 7.25 (m, 3H), 6.92 (d, $J = 8.5$ Hz, 2H), 3.84 (s, 3H), 3.17 – 3.08 (m, 1H), 2.99 – 2.82 (m, 4H). 13C NMR (101 MHz, CDCl$_3$) δ 158.1, 140.4, 140.3, 139.5, 131.8, 131.5, 130.3, 129.4, 128.8, 128.2, 127.4, 126.9, 126.8, 126.3, 122.8, 113.6, 93.2, 83.4, 55.2, 40.8, 40.0, 36.7. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3029, 2911, 2834, 1608, 1509, 1484, 1441, 1403, 1298, 1249, 1177, 1109,1034, 967, 836, 811, 759, 731, 692, 604, 570, 552, 531. HRMS: m/z (EI) calculated [M]$^+$: 402.1984, found: 402.1982. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:0.7, 0.7 mL/min, 210 nm), $t_{\text{minor}} = 17.2$ min, $t_{\text{major}} = 18.0$ min, ee = 0%.

(R)-2-(4-([1,1′-biphenyl]-4-yl)-2-benzylbut-3-yn-1-yl)isoindoline-1,3-dione(4u)

According to general procedure, from 0.2 mmol of alkene, the desired product 4u (69.8 mg, 0.16 mmol) was obtained as orange solid in 79% yield. Melting Point = 79 °C – 80 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.85 (dd, $J = 5.5$, 3.0 Hz, 2H), 7.71 (dd, $J = 5.4$, 3.1 Hz, 2H), 7.56 – 7.52 (m, 2H), 7.45 (dd, $J = 9.2$, 2.6 Hz, 2H), 7.41 (d, $J = 7.9$ Hz, 2H), 7.36 – 7.26 (m, 7H), 7.22 – 7.17 (m, 1H), 4.01 (dd, $J = 13.4$, 8.6 Hz, 1H), 3.85 (dd, $J = 13.4$, 6.7 Hz, 1H), 3.53 (p, $J = 7.9$, 7.4 Hz, 1H), 3.03 – 2.87 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 168.2, 140.6, 140.4, 138.3, 134.0, 132.0, 131.9, 129.2, 128.8, 128.3, 127.5, 127.0, 126.8, 126.5, 123.3, 122.2, 89.8, 83.7, 41.8, 39.1, 33.7. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3028, 2929, 1771, 1713, 1603, 1485, 1393, 1355, 1306, 1188, 1109,1073, 994, 901, 842, 761, 720, 692, 607, 487. HRMS: m/z (ESI) calculated [M+H]$^+$: 442.1807, found: 442.1803. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.8 mL/min, 210 nm), $t_{\text{minor}} = 21.2$ min, $t_{\text{major}} = 25.1$ min, ee = 22%.

$[\alpha]_D^{25} = 0.3$, (c = 0.8, CHCl$_3$).

(S)-4-(3-cyclohexyl-4-phenylbut-1-yn-1-yl)-1,1′-biphenyl(4v)
According to general procedure, from 0.2 mmol of alkene, the desired product 4v (64.2 mg, 0.18 mmol) was obtained as colorless oil in 88% yield.

\[^1H\text{ NMR (400 MHz, CDCl}_3\text{)} \delta 7.59 - 7.54 (m, 2H), 7.52 - 7.47 (m, 2H), 7.45 - 7.38 (m, 4H), 7.36 - 7.27 (m, 5H), 7.25 - 7.19 (m, 1H), 2.94 - 2.79 (m, 2H), 2.76 - 2.64 (m, 1H), 1.97 (d, \text{ } J = 11.2 \text{ Hz, 1H}), 1.85 - 1.73 (m, 3H), 1.68 (d, \text{ } J = 9.8 \text{ Hz, 1H}), 1.48 - 1.22 (m, 6H). \]

\[^{13}C\text{ NMR (101 MHz, CDCl}_3\text{)} \delta 140.6, 140.3, 140.2, 131.9, 129.2, 128.8, 128.1, 127.4, 126.9, 126.8, 126.1, 123.1, 92.6, 83.5, 41.1, 40.9, 38.8, 31.9, 28.89, 26.47, 26.5, 26.4, 26.3. \]

IR (neat) cm\(^{-1}\): 3028, 2921, 2850, 1601, 1485, 1447, 1073, 1007, 837, 760, 695, 558, 499. HRMS: m/z (EI) calculated [M]\(^+\): 364.2191, found: 364.2196. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.8 mL/min, 250 nm), \(t_{\text{minor}} = 5.9 \text{ min, } t_{\text{major}} = 6.4 \text{ min, ee = 22%}. \)

\[[\alpha]_D^{25} = 4.8, (c = 0.4, \text{ CHCl}_3). \]

Methyl (S)-6-([1,1'-biphenyl]-4-yl)-4-benzyl-3,3-dimethylhex-5-ynoate(4w)

According to general procedure, from 0.2 mmol of alkene, the desired product 4w (55.5 mg, 0.14 mmol) was obtained as yellow solid in 70% yield. Melting point = 50 °C - 51 °C.

\[^1H\text{ NMR (400 MHz, CDCl}_3\text{)} \delta 7.60 (d, \text{ } J = 8.1 \text{ Hz, 2H}), 7.53 (d, \text{ } J = 8.1 \text{ Hz, 2H}), 7.47 (t, \text{ } J = 7.7 \text{ Hz, 2H}), 7.43 - 7.34 (m, 7H), 7.30 - 7.25 (m, 1H), 3.73 (s, 3H), 3.08 (dd, \text{ } J = 12.6, 3.2 \text{ Hz, 1H}), 2.91 (dd, \text{ } J = 11.6, 3.1 \text{ Hz, 1H}), 2.70 - 2.53 (m, 3H), 1.30 (s, 6H). \]

\[^{13}C\text{ NMR (101 MHz, CDCl}_3\text{)} \delta 172.5, 140.5, 140.4, 140.3, 131.8, 129.4, 128.8, 128.1, 127.5, 127.0, 126.8, 126.2, 122.8, 91.4, 84.7, 51.3, 45.6, 44.4, 36.6, 36.0, 25.2, 25.1. \]

IR (neat) cm\(^{-1}\): 3028, 2961, 1731, 1601, 1485, 1435, 1324, 1216, 1148, 1111, 1073, 1007, 913, 842, 761, 733, 557, 500. HRMS: m/z (EI) calculated [M+H]\(^+\):
397.2168, found: 397.2258. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.8 mL/min, 250 nm), t\textsubscript{minor} = 9.7 min, t\textsubscript{major} = 11.5 min, ee = 40%.

$\left[\alpha\right]_D^{25} = 73.3$, (c = 0.4, CHCl\textsubscript{3}).

\((R)-(4-[[1,1'-biphenyl]-4-yl]-1-phenylbut-3-yn-2-yl)trimethylsilane(4x)\)

According to general procedure, from 0.2 mmol of alkene, the desired product 4x (57.4 mg, 0.16 mmol) was obtained as colorless oil in 81% yield.

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.62 (d, $J = 7.1$ Hz, 2H), 7.54 (d, $J = 8.4$ Hz, 2H), 7.51 – 7.35 (m, 9H), 7.30 – 7.26 (m, 1H), 2.94 (dd, $J = 13.6$, 4.2 Hz, 1H), 2.82 (dd, $J = 13.6$, 11.0 Hz, 1H), 2.21 (dd, $J = 10.9$, 4.2 Hz, 1H), 0.24 (s, 9H). 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 141.7, 140.6, 139.8, 131.8, 128.8, 128.7, 128.2, 127.3, 126.9, 126.8, 126.1, 123.8, 92.8, 82.1, 35.6, 23.5, -3.0. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3028, 2953, 2209, 1600, 1516, 1485, 1450, 1404, 1247, 1108, 1028, 835, 760, 693, 620, 557, 497. HRMS: m/z (EI) calculated [M]$^+$: 354.1804, found: 354.1805. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.8 mL/min, 210 nm), t\textsubscript{minor} = 5.4 min, t\textsubscript{major} = 5.1 min, ee = 32%.

$\left[\alpha\right]_D^{25} = -60.4$, (c =0.4, CHCl\textsubscript{3}).

\((S)-1-(tert-butyl)-4-(3-(4-fluorobenzyl)-4,4-dimethylpent-1-yn-1-yl)benzene(4y)\)

According to general procedure, from 0.2 mmol of alkene, the desired product 4y (55.9 mg, 0.17 mmol) was obtained as colorless oil in 83% yield.

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.36 – 7.24 (m, 6H), 7.02 (t, $J = 8.3$ Hz, 2H), 2.98 (dd, $J = 12.3$, 2.3 Hz, 1H), 2.64 – 2.46 (m, 2H), 1.33 (s, 9H), 1.16 (s, 9H). 19F NMR (376 MHz, CDCl\textsubscript{3}) δ -115.62 – 115.69 (m, 1F). 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 161.5 (d, $J = 244.0$ Hz), 150.6, 136.7, 131.1, 130.6 (d, $J = 7.9$ Hz), 125.1, 121.1, 114.8, 114.6, 90.7, 84.2, 47.3, 35.6, 34.6, 34.0, 31.2, 27.7. IR
(neat) cm$^{-1}$ v: 2959, 2866, 1692, 1364, 1268, 1221, 1156, 1110, 1093, 1017, 829, 784, 740, 563, 528, 499. HRMS: m/z (EI) calculated [M]$^+$: 336.2253, found: 336.2251.

HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.8:0.2, 0.7 mL/min, 210 nm), $t_{\text{minor}} = 8.3$ min, $t_{\text{major}} = 6.8$ min, ee = 47%.

$[\alpha]_D^{25} = 112.2$, (c =0.4, CHCl$_3$).

 According to general procedure, from 0.2 mmol of alkene, the desired product 4z (45.8 mg, 0.14 mmol) was obtained as white solid in 68% yield.3

1H NMR (400 MHz, CDCl$_3$) δ 7.53 (d, $J = 7.4$ Hz, 2H), 7.45 – 7.37 (m, 4H), 7.36 – 7.28 (m, 5H), 7.25 – 7.18 (m, 3H), 2.70 – 2.56 (m, 2H), 2.24 (d, $J = 15.3$ Hz, 1H), 1.94 (d, $J = 13.3$ Hz, 1H), 1.86 (d, $J = 9.1$ Hz, 2H), 1.70 – 1.51 (m, 2H), 1.47 – 1.36 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 145.4, 140.5, 140.0, 131.8, 128.8, 128.1, 127.6, 126.9, 126.7, 126.2, 122.9, 94.0, 81.6, 50.2, 37.1, 34.1, 33.6, 26.3, 25.8. IR (neat) cm$^{-1}$ v: 3029, 2924, 2851, 1599, 1484, 1444, 1300, 1158, 1112, 1004, 837, 757, 696, 554, 510, 483. HRMS: m/z (EI) calculated [M]$^+$: 336.1878, found: 336.1888. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.6 mL/min, 210 nm), $t_{\text{minor}} = 44.4$ min, $t_{\text{major}} = 47.7$ min, ee = 16%.

$[\alpha]_D^{25} = 7.2$, (c =0.5, CHCl$_3$).

(1S,2R,3R,4R)-2-phenyl-3-(phenylethynyl)bicyclo[2.2.1]heptane(4bb)

According to general procedure, from 0.2 mmol of alkene, the desired product 4bb (40.9 mg, 0.15 mmol) was obtained as colorless oil in 75% yield.3

1H NMR (400 MHz, CDCl$_3$) δ 7.53 – 7.47 (m, 2H), 7.43 – 7.31 (m, 7H), 7.30 – 7.23 (m, 1H), 2.92 (m, 1H), 2.85 (m, 1H), 2.63 – 2.52 (m, 2H), 2.11 (m, 1H), 1.83 – 1.68 (m, 2H), 1.67 – 1.51 (m,
2H), 1.48 (dq, \(J = 10.0, 1.5 \text{ Hz}, 1 \text{H} \)). \(^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 145.6, 131.6, 128.4, 128.2, 127.5, 126.6, 125.9, 124.0, 92.7, 82.0, 55.4, 42.9, 42.4, 42.3, 37.5, 30.7, 23.6. IR (neat) cm\(^{-1}\): 3057, 2953, 2871, 2218, 1598, 1489, 1446, 1329, 1070, 1030, 908, 839, 752, 732, 696, 548. HRMS: m/z (EI) calculated [M]\(^+\): 272.1565, found: 272.1569. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.7 mL/min, 210 nm), \(t_{\text{minor}} = 15.3 \text{ min}, t_{\text{major}} = 14.6 \text{ min}, \text{ ee} = 53\% \).

\([\alpha]_D^{25} = -86.3, (c =0.3, \text{CHCl}_3)\).

\((R)\)-but-3-yne-1,1,2,4-tetrayltetrabenzene (4cc)

According to general procedure, from 0.2 mmol of alkene, the desired product 4cc (32.9 mg, 0.09 mmol) was obtained as colorless oil in 46\% yield.

\(^1\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 7.42 – 7.20 (m, 20H), 4.73 (d, \(J = 8.1 \text{ Hz}, 1 \text{H} \)), 4.43 (d, \(J = 8.1 \text{ Hz}, 1 \text{H} \)). \(^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 142.5, 141.9, 140.4, 131.4, 129.3, 128.5, 128.4, 128.2, 128.1, 127.8, 127.7, 126.8, 126.5, 126.3, 90.6, 85.6, 58.9, 43.6. IR (neat) cm\(^{-1}\): 3027, 2919, 1804, 1751, 1666, 1592, 1487, 1445, 1347, 1239, 1148, 1072, 1025, 1071, 1015, 910, 830, 747, 691, 618, 515. HRMS: m/z (EI) calculated [M]\(^+\): 358.1722, found: 358.1720. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 99.5:0.5, 0.5 mL/min, 254 nm), \(t_{\text{minor}} = 11.9 \text{ min}, t_{\text{major}} = 12.9 \text{ min}, \text{ ee} = 74\% \).

\([\alpha]_D^{25} = 13.4, (c =0.25, \text{CHCl}_3)\).

\((S)\)-9-(1-(4-fluorophenyl)-4-phenylbut-3-yn-2-yl)-9H-carbazole (4dd)

According to general procedure, from 0.2 mmol of alkene, the desired product 4dd (45.2 mg, 0.12 mmol) was obtained as colorless oil in 58\% yield.

\(^1\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 8.13 (d, \(J = 7.7 \text{ Hz}, 2 \text{H} \)), 7.69 – 7.59 (m, 2H), 7.51 – 7.41 (m, 4H), 7.37 – 7.33 (m, 3H), 7.31 – 7.25 (m, 2H), 7.06 (dd, \(J = 8.5, 5.4 \text{ Hz}, 2 \text{H} \)), 6.87 (t, \(J = 8.7 \text{ Hz}, 2 \text{H} \)), 5.82 (t, \(J = 7.4 \text{ Hz}, 1 \text{H} \)), 3.64 – 3.39 (m, 2H)). \(^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 161.96 (d, \(J = 243.8 \text{ Hz} \)), 139.3, 132.6, 131.6, 130.8 (d, \(J = 7.9 \text{ Hz} \)), 128.6, 128.3, 125.6, 123.3, 122.3, 120.3, 119.3,
115.2 (d, J = 21.1 Hz), 110.0, 86.6, 85.7, 49.0, 40.3. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta -115.70 \ldots -115.78\) (m, 1F).

IR (neat) cm\(^{-1}\): 3054, 2922, 2854, 1594, 1445, 1327, 1222, 1158, 1024, 920, 827, 737, 686, 522. HRMS: m/z (EI) calculated \([M]^+\): 389.1580, found: 389.1586. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 99.7:0.3, 0.6 mL/min, 254 nm), \(t_{\text{major}} = 16.5\) min, \(t_{\text{minor}} = 22.1\) min, ee = 11%.

\([\alpha]_D^{25} = 14.8, (c =0.25, \text{CHCl}_3)\)

IR (neat) cm\(^{-1}\): 3026, 2922, 1673, 1594, 1489 1443, 1416, 1317, 1172, 1024, 914, 838, 750, 693, 546, 507. HRMS: m/z (EI) calculated \([M]^+\): 302.1129, found: 302.1126. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 99.6:0.4, 0.7 mL/min, 210 nm), \(t_{\text{minor}} = 7.9\) min, \(t_{\text{major}} = 8.5\) min, ee = 97%.

\([\alpha]_D^{25} = 10.5, (c =0.4, \text{CHCl}_3)\).

(8R,9S,13S,14S)-3-(R)-1,4-diphenylbut-3-yn-2-yl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (4ee)

According to general procedure, from 0.2 mmol of alkene, the desired product 4ee (55.0 mg, 0.12 mmol) was obtained as colorless oil in 60% yield.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.46 \ldots 7.28\) (m, 1H), 7.38 – 7.28 (m, 10H), 7.24 – 7.16 (m, 1H), 4.12 – 4.04 (m, 1H), 3.22 – 3.10 (m, 2H), 3.05 – 2.92 (m, 2H), 2.63 – 2.45 (m, 2H), 2.42 – 2.31 (m, 1H), 2.28 – 2.01 (m, 5H), 1.80 – 1.45 (m, 8H), 0.98 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 220.8, 139.1, 138.9, 136.5, 131.5, 129.4, 128.1, 128.1, 128.0, 127.7, 126.4, 125.4, 125.0, 123.7, 91.1, 84.1, 50.4, 47.9, 45.0, 44.2, 40.4, 38.1, 35.8, 31.5, 29.4, 26.4, 25.6, 21.5, 13.8.

IR (neat) cm\(^{-1}\): 2923, 2860, 1731, 1599, 1490, 1446, 1253, 1077, 1007, 907, 822, 727, 695, 576, 522, 443. HRMS: m/z (EI) calculated \([M]^+\): 458.2610, found: 458.2618. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.7 mL/min, 210 nm), \(t_{\text{minor}} = 24.2\) min, \(t_{\text{major}} = 27.0\) min, ee = 80%.

\([\alpha]_D^{25} = 5.6, (c =0.40, \text{CHCl}_3)\).

(S)-5-(4-([1,1'-biphenyl]-4-yl)-1-phenylbut-3-yn-2-yl)-4-methylthiazole (5a)
According to general procedure, from 0.2 mmol of alkene, the desired product 5a (43.2 mg, 0.11 mmol) was obtained as orange solid in 57% yield. Melting Point = 76 °C – 77 °C.

1H NMR (400 MHz, CDCl$_3$) δ 8.57 (s, 1H), 7.52 (dd, $J = 15.8$, 7.8 Hz, 4H), 7.46 – 7.36 (m, 4H), 7.31 (t, $J = 7.4$ Hz, 1H), 7.23 (t, $J = 8.1$ Hz, 3H), 7.11 (d, $J = 6.8$ Hz, 2H), 4.30 (t, $J = 7.3$ Hz, 1H), 3.22 (dd, $J = 13.2$, 7.3 Hz, 1H), 3.04 (dd, $J = 13.2$, 7.3 Hz, 1H), 2.16 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 150.0, 148.8, 140.9, 140.3, 137.7, 132.2, 131.9, 129.3, 128.8, 128.3, 127.6, 126.9, 126.9, 126.8, 121.8, 90.7, 83.4, 44.5, 32.9, 14.8. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3061, 2918, 1533, 1484, 1450, 1405, 1320, 1110, 973, 830, 760, 692, 557, 493. HRMS: m/z (ESI) calculated [M+H$^+$]: 380.1473, found: 380.1465. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 95:5, 0.8 mL/min, 210 nm), t_{minor} = 18.6 min, t_{major} = 31.5 min, ee = 98%.

$[^{\alpha}]_{D^{25}}$ = -18.8, (c =0.40, CHCl$_3$).

(S)-5-(4-(4-methoxyphenyl)-1-phenylbut-3-yn-2-yl)-4-methylthiazole (5b)

According to general procedure, from 0.2 mmol of alkene, the desired product 5b (40.6 mg, 0.12 mmol) was obtained as orange oil in 61% yield.

1H NMR (400 MHz, CDCl$_3$) δ 8.58 (s, 1H), 7.33 (d, $J = 7.6$ Hz, 2H), 7.29 – 7.19 (m, 3H), 7.12 (d, $J = 6.9$ Hz, 2H), 6.82 (d, $J = 8.4$ Hz, 2H), 4.28 (t, $J = 7.3$ Hz, 1H), 3.78 (s, 3H), 3.22 (dd, $J = 13.4$, 7.2 Hz, 1H), 3.04 (dd, $J = 13.3$, 7.4 Hz, 1H), 2.17 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.4, 149.9, 148.7, 137.8, 132.9, 132.5, 129.3, 128.2, 126.8, 115.0, 113.8, 88.6, 83.4, 55.2, 44.6, 32.8, 14.8. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3061, 2918, 1698, 1603, 1540, 1453, 1440, 1287, 1244, 1169, 1105, 1028, 938, 830, 752, 563, 487. HRMS: m/z (ESI) calculated [M+H$^+$]: 334.1266, found: 334.1266. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 95:5, 0.8 mL/min, 210 nm), t_{minor} = 16.9 min, t_{major} = 26.6 min, ee = 97%.
$[\alpha]_D^{25} = -7.6$, (c = 0.30, CHCl$_3$).

(R)-1-methoxy-4-(4-phenyl-3-(4-trifluoromethyl)phenyl)but-1-yn-1-yl)benzene (5c)

According to general procedure, from 0.2 mmol of alkene, the desired product 5c (57.0 mg, 0.15 mmol) was obtained as colorless oil in 75% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, $J = 8.0$ Hz, 2H), 7.43 (d, $J = 8.0$ Hz, 2H), 7.32 (d, $J = 8.2$ Hz, 2H), 7.30 – 7.20 (m, 3H), 7.14 (d, $J = 7.2$ Hz, 2H), 4.12 (t, $J = 7.2$ Hz, 1H), 3.79 (s, 3H), 3.10 (qd, $J = 13.2$, 7.1 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 159.4, 145.4, 138.2, 132.9, 129.5, 129.1 (q, $J = 32.1$ Hz), 128.1, 126.6, 125.3 (q, $J = 3.8$ Hz), 124.2 (q, $J = 270.3$ Hz), 115.3, 113.8, 88.3, 84.6, 55.2, 44.8, 40.6. 19F NMR (376 MHz, CDCl$_3$) δ -62.29 (s, 3F). IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3029, 2931, 1689, 1602, 1508, 1455, 1416, 1322, 1246, 1163, 1109, 1065, 1017, 830, 731, 698, 602, 534.

HRMS: m/z (ESI) calculated [M+H]$^+$: 381.1466, found: 381.1448. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.5:0.5, 0.8 mL/min, 210 nm), $t_{\text{minor}} = 9.3$ min, $t_{\text{major}} = 9.6$ min, ee = 89%.

$[\alpha]_D^{25} = 8.5$, (c = 0.30, CHCl$_3$).

(R)-4-(4-(4-(tert-butyl)phenyl)-1-phenylbut-3-yn-2-yl)phenyl acetate (5d)

According to general procedure, from 0.2 mmol of alkene, the desired product 5d (61.1 mg, 0.15 mmol) was obtained as colorless oil in 73% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.41 (d, $J = 8.5$ Hz, 2H), 7.39 – 7.26 (m, 7H), 7.24 (d, $J = 7.9$ Hz, 2H), 7.08 (d, $J = 8.4$ Hz, 2H), 4.12 (t, $J = 7.2$ Hz, 1H), 3.14 (d, $J = 7.2$ Hz, 2H), 2.33 (s, 3H), 1.35 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 169.5, 151.0, 149.4, 138.9, 138.6, 131.2, 129.5, 128.7,
128.0, 126.4, 125.2, 121.4, 120.4, 89.8, 84.5, 45.1, 40.2, 34.6, 31.1, 21.1. IR (neat) cm\(^{-1}\) \(\tilde{\nu}\): 3030, 2960, 1758, 1687, 1502, 1366, 1192, 1163, 1013, 910, 834, 698, 560, 522. HRMS: m/z (ESI) calculated [M+H\(^+\)]\(^+\): 419.1987, found: 419.1993. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 97:3, 0.8 mL/min, 250 nm), \(t_{\text{minor}}\) = 12.1 min, \(t_{\text{major}}\) = 9.9 min, ee = 90%.
\([\alpha]_D^{25}\) = 68.0, (c =0.25, CHCl\(_3\)).

\(\left(R\right)-4-(4-(4\text{-bromophenyl})-1\text{-phenylbut-3-yn-2-yl})\text{phenyl acetate (5e)}\)

According to general procedure, from 0.2 mmol of alkene, the desired product 5e (66.9 mg, 0.16 mmol) was obtained as yellow solid in 80% yield. Melting Point = 56 °C – 57 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.42 – 7.37 (m, 2H), 7.36 – 7.31 (m, 2H), 7.29 – 7.19 (m, 5H), 7.18 – 7.13 (m, 2H), 7.06 – 7.01 (m, 2H), 4.05 (t, \(J = 7.3\) Hz, 1H), 3.08 (d, \(J = 7.3\) Hz, 2H), 2.28 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 169.5, 149.5, 138.5, 132.9, 131.4, 129.4, 128.6, 128.1, 126.5, 122.4, 122.0, 121.5, 91.9, 83.4, 44.8, 40.2, 21.1. IR (neat) cm\(^{-1}\) \(\tilde{\nu}\): 3032, 2922, 1751, 1601, 1503, 1483, 1367, 1218, 1164, 1100, 1008, 915, 819, 701, 671, 557, 517, 472. HRMS: m/z (ESI) calculated [M+Na\(^+\)]\(^+\): 441.0466, found: 441.0465. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 97:3, 0.8 mL/min, 250 nm), \(t_{\text{minor}}\) = 16.5 min, \(t_{\text{major}}\) = 14.3 min, ee = 85%.
\([\alpha]_D^{25}\) = 16.9, (c =0.40, CHCl\(_3\)).

\(\left(R\right)-4-(4\text{-fluorophenyl})-1\text{-phenylbut-3-yn-2-yl})\text{phenyl acetate (5f)}\)

According to general procedure, from 0.2 mmol of alkene, the desired product 5f (55.2 mg, 0.15 mmol) was obtained as colorless oil in 77% yield.
^{1}H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.37 - 7.29 \) (m, 4H), 7.29 - 7.19 (m, 3H), 7.19 - 7.14 (m, 2H), 7.06 - 7.01 (m, 2H), 6.99 - 6.92 (m, 2H), 4.05 (t, \(J = 7.3 \) Hz, 1H), 3.08 (d, \(J = 7.3 \) Hz, 2H), 2.28 (s, 3H). ^{13}C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta 169.5, 162.2 \) (d, \(J = 247.2 \) Hz), 149.4, 138.6 (d, \(J = 10.5 \) Hz), 133.3 (d, \(J = 8.3 \) Hz), 129.4, 128.6, 128.0, 126.5, 121.4, 119.5 (d, \(J = 3.5 \) Hz), 115.5, 115.3, 90.2, 83.3, 44.9, 40.1, 21.1. ^{19}F NMR (376 MHz, CDCl\textsubscript{3}) \(\delta -115.51 - 115.60 \) (m, 1F). IR (neat) cm-1 \(\tilde{\nu} \): 3029, 2924, 1755, 1680, 1597, 1502, 1368, 1191, 1160, 1012, 943, 835, 739, 698, 631, 613, 592, 528. HRMS: m/z (ESI) calculated [M+Na]+: 381.1267, found: 381.1248. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 97:3, 0.8 mL/min, 250 nm), \(t_{\text{minor}} = 12.6 \) min, \(t_{\text{major}} = 11.8 \) min, \(ee = 86\% \).

\([\alpha]_{D}^{25} = 22.3, (c = 0.30, \text{CHCl}_{3}).\)

Methyl (\textit{R})-4-(3-(4-acetoxyphenyl)-4-phenylbut-1-yn-1-yl)benzoate (5\textit{g})

\[
\begin{array}{c}
\text{O} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}
\]

According to general procedure, from 0.2 mmol of alkene, the desired product 5\textit{g} (56.5 mg, 0.14 mmol) was obtained as colorless oil in 71% yield.

^{1}H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.95 \) (d, \(J = 8.4 \) Hz, 2H), 7.41 (d, \(J = 8.4 \) Hz, 2H), 7.38 - 7.32 (m, 2H), 7.31 - 7.21 (m, 3H), 7.20 - 7.14 (m, 2H), 7.08 - 7.03 (m, 2H), 4.10 (t, \(J = 7.3 \) Hz, 1H), 3.89 (s, 3H), 3.10 (d, \(J = 7.3 \) Hz, 2H), 2.29 (s, 3H). ^{13}C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta 169.4, 149.4, 138.6, 138.5, 129.8, 129.4, 128.6, 128.0, 128.0, 126.4, 125.0, 122.4, 121.4, 90.1, 79.5, 44.9, 40.1, 21.0. \) IR (neat) cm-1 \(\tilde{\nu} \): 3028, 2924, 1759, 1602, 1502, 1433, 1368, 1273, 1193, 1105, 1046, 910, 855, 768, 729, 696, 559, 527. HRMS: m/z (ESI) calculated [M+Na]+: 421.1416, found: 421.1424. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 97:3, 0.8 mL/min, 250 nm), \(t_{\text{major}} = 27.7 \) min, \(ee = 86\% \).

\([\alpha]_{D}^{25} = 20.1, (c = 0.22, \text{CHCl}_{3}).\)

(\textit{R})-4-(1-phenyl-4-(thiophen-3-yl)but-3-yn-2-yl)phenyl acetate (5\textit{h})
According to general procedure, from 0.2 mmol of alkene, the desired product 5h (48.5 mg, 0.14 mmol) was obtained as colorless oil in 70% yield.

\[\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.35 - 7.30 (m, 3H), 7.26 - 7.18 (m, 4H), 7.15 (d, J = 6.8 Hz, 2H), 7.06 - 6.98 (m, 3H), 4.04 (t, J = 7.3 Hz, 1H), 3.14 - 3.00 (m, 2H), 2.26 (s, 3H). \]

\[\text{C NMR (100 MHz, CDCl}_3\text{)} \delta 169.4, 149.4, 138.6, 138.5, 129.8, 129.4, 128.6, 128.0, 128.0, 126.4, 125.0, 122.4, 121.4, 90.1, 79.5, 44.9, 40.1, 21.0. \]

IR (neat) cm\(^{-1}\): 3027, 2922, 1755, 1599, 1501, 1366, 1191, 1164, 1013, 940, 864, 780, 697, 558, 517. HRMS : m/z (ESI) calculated [M+Na]\(^+\): 369.0925, found: 369.0919. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 97:3, 0.8 mL/min, 250 nm), \(t_{\text{minor}} = 14.4\) min, \(t_{\text{major}} = 13.7\) min, ee = 87%.

\([\alpha]_D^{25} = 24.1, (c = 0.40, \text{CHCl}_3). \)

(R)-(3-([1,1'-biphenyl]-4-yl)-4-phenylbut-1-yn-1-yl)trimethylsilane (5i)

According to general procedure, from 0.2 mmol of alkene, the desired product 5i (44.6 mg, 0.13 mmol) was obtained as yellow solid in 63% yield. Melting Point = 51 °C – 52 °C.

\[\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.60 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 7.8 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.36 (d, J = 7.6 Hz, 3H), 7.28 - 7.22 (m, 3H), 7.16 (d, J = 7.2 Hz, 2H), 3.93 (t, J = 7.2 Hz, 1H), 3.06 (d, J = 7.2 Hz, 2H), 0.18 (s, 9H). \]

\[\text{C NMR (100 MHz, CDCl}_3\text{)} \delta 140.8, 140.0, 139.7, 138.6, 129.6, 128.7, 128.1, 127.9, 127.2, 127.1, 127.0, 126.4, 107.5, 88.6, 45.0, 40.9, 0.1. \]

IR (neat) cm\(^{-1}\): 3026, 2955, 2167, 1600, 1486, 1451, 1404, 1248, 1057, 835, 760, 728, 693, 568, 496. HRMS : m/z (ESI) calculated [M+Na]\(^+\): 377.1701, found: 377.1689. HPLC (Chiralcel OD-H
column, hexanes:i-PrOH = 99.7:0.3, 0.8 mL/min, 250 nm), t\textsubscript{minor} = 27.5 min, t\textsubscript{major} = 19.7 min, ee = 88%.
\[\alpha\]\textsubscript{D}25 = 1.5, (c = 0.16, CHCl\textsubscript{3}).

(3-((R)-3-(4-acetoxyphenyl)-4-phenylbut-1-yn-1-yl)cyclopenta-2,4-dien-1-yl)(cyclopenta-2,4-dien-1-yl)iron (5j)

\[
\begin{align*}
\text{O} & \\
\text{Fe} & \\
\end{align*}
\]

According to general procedure, from 0.2 mmol of alkene, the desired product 5j (73.5 mg, 0.16 mmol) was obtained as orange solid in 82% yield. Melting Point = 87 °C – 88 °C.

\(^1\)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.31 – 7.20 (m, 7H), 7.13 (d, \(J = 7.9\) Hz, 2H), 4.35 (d, \(J = 3.5\) Hz, 2H), 4.14 – 4.09 (m, 7H), 3.96 (dd, \(J = 8.6, 6.1\) Hz, 1H), 3.13 – 2.98 (m, 2H), 2.34 (s, 3H).

\(^1^3\)C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 139.2, 138.7, 136.3, 129.5, 129.1, 128.0, 127.5, 126.3, 87.1, 82.1, 71.2 (d, \(J = 4.6\) Hz), 69.7, 68.2, 66.1, 45.2, 40.4, 21.1. IR (neat) cm\(^{-1}\) \(\tilde{\nu}\): 3028, 2919, 2111, 1602, 1509, 1452, 1409, 1103, 1025, 997, 816, 727, 694, 590, 554, 489, 471. MALDI-TOFMS: m/z calculated [M-H-C\textsubscript{2}H\textsubscript{3}O]+: 404.0858, found: 404.1229. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 97:3, 0.8 mL/min, 250 nm), t\textsubscript{minor} = 7.7 min, t\textsubscript{major} = 6.6 min, ee = 86%.

\[\alpha\]\textsubscript{D}25 = 15.7, (c =0.21, CHCl\textsubscript{3}).

(S)-5-(4-cyclopropyl-1-phenylbut-3-yn-2-yl)-4-methylthiazole (5k)

\[
\begin{align*}
\text{S} & \\
\text{N} & \\
\end{align*}
\]

According to general procedure, from 0.2 mmol of alkene, the desired product 5k (35.3 mg, 0.13 mmol) was obtained as orange oil in 66% yield.

\(^1\)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.58 (s, 1H), 7.30 – 7.22 (m, 3H), 7.07 (d, \(J = 7.2\) Hz, 2H), 4.04 (t, \(J = 7.3\) Hz, 1H), 3.12 (dd, \(J = 13.1, 7.1\) Hz, 1H), 2.94 (dd, \(J = 13.1, 7.5\) Hz, 1H), 2.11 (s, 3H), 1.30 –
1.21 (m, 1H), 0.83 – 0.72 (m, 2H), 0.70 – 0.58 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 149.8, 148.5, 138.0, 133.0, 129.3, 128.1, 126.7, 86.8, 76.0, 44.9, 32.2, 14.7, 8.0, 0.6. IR (neat) cm$^{-1}$: 3084, 2922, 1696, 1601, 1493, 1450, 1413, 1377, 1312, 1199, 1027, 931, 811, 561, 489.

HRMS: m/z (ESI) calculated [M+H]$^+$: 268.1160, found: 268.1160. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.5:0.5, 0.6 mL/min, 210 nm), t_{minor} = 18.8 min, t_{major} = 19.5 min, ee = 89%.

$[\alpha]_D^{25} = -1.7$, (c =0.15, CHCl$_3$).

(R)-4-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)benzonitrile (5l)

![Chemical structure of 5l](image)

According to general procedure, from 0.2 mmol of alkene, the desired product 5l (53.2 mg, 0.16 mmol) was obtained as colorless oil in 78% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, J = 8.3 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.32 – 7.26 (m, 5H), 7.26 – 7.20 (m, 4H), 4.10 (t, J = 7.0 Hz, 1H), 3.19 – 3.06 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 143.7, 138.7, 133.0, 131.8, 131.4, 130.3, 128.9, 128.7, 128.3, 128.2, 122.8, 118.9, 110.5, 89.1, 85.3, 44.6, 39.4. IR (neat) cm$^{-1}$: 3058, 2927, 2226, 1689, 1604, 1590, 1488, 1444, 1409, 1286, 1091, 1013, 990, 910, 826, 756, 690, 613, 566, 547. HRMS: m/z (ESI) calculated [M+Na]$^+$: 364.0869, found: 364.0874. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.8 mL/min, 250 nm), t_{minor} = 13.2 min, t_{major} = 14.0 min, ee = 90%.

$[\alpha]_D^{25} = 29.7$, (c =0.49, CHCl$_3$).

(R)-1-(tert-butyl)-4-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)benzene (5m)

![Chemical structure of 5m](image)

According to general procedure, from 0.2 mmol of alkene, the desired product 5m (63.2 mg, 0.17 mmol) was obtained as colorless oil in 85% yield.
1H NMR (400 MHz, CDCl$_3$) δ 7.46 – 7.41 (m, 2H), 7.37 – 7.31 (m, 9H), 7.19 – 7.15 (m, 2H), 4.09 (dd, J = 8.1, 6.4 Hz, 1H), 3.20 – 3.03 (m, 2H), 1.37 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 149.4, 140.0, 135.5, 132.6, 131.6, 129.2, 129.1, 128.6, 128.3, 128.0, 125.1, 123.5, 90.7, 84.6, 44.5, 40.3, 34.5, 31.5. IR (neat) cm$^{-1}$ v: 3025, 2959, 1597, 1511, 1487, 1441, 1407, 1266, 1089, 1014, 910, 825, 754, 689, 570, 506, 477. HRMS: m/z (EI) calculated [M]$^+$: 372.1645, found: 372.1633. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.5 mL/min, 254 nm), t_{minor} = 33.6 min, t_{major} = 39.4 min, ee = 91%.

$[$α$]_D^{25}$ = 26.3, (c = 0.40, CHCl$_3$).

(R)-1-chloro-4-(1-(4-fluorophenyl)-4-phenylbut-3-yn-2-yl)benzene (5n)

According to general procedure, from 0.2 mmol of alkene, the desired product 5n (60.1 mg, 0.18 mmol) was obtained as colorless oil in 90% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.45 – 7.38 (m, 2H), 7.36 – 7.25 (m, 7H), 7.11 (dd, J = 8.3, 5.6 Hz, 2H), 6.98 (t, J = 8.6 Hz, 2H), 4.07 (t, J = 7.0 Hz, 1H), 3.15 – 3.04 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 161.7 (d, J = 242.8 Hz), 139.4, 133.9 (d, J = 3.2 Hz), 132.7, 131.5, 131.0 (d, J = 7.9 Hz), 129.1, 128.5, 128.3, 128.0, 123.2, 114.9 (d, J = 21.0 Hz), 90.0, 84.8, 44.0, 40.1. 19F NMR (376 MHz, CDCl$_3$) δ -116.36 – -116.48 (m, 1F). IR (neat) cm$^{-1}$ v: 3037, 2925, 1690, 1598, 1507, 1488, 1443, 1408, 1220, 1156, 1091, 1013, 909, 824, 755, 689, 546, 517, 460, 422. HRMS: m/z (EI) calculated [M]$^+$: 334.0925, found: 334.0930. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.5 mL/min, 254 nm), t_{minor} = 52.1 min, t_{major} = 56.5 min, ee = 92%. $[$α$]_D^{25}$ = 4.6, (c =0.40, CHCl$_3$).

(R)-1-chloro-4-(4-phenyl-1-(p-tolyl)but-3-yn-2-yl)benzene (5o)
According to general procedure, from 0.2 mmol of alkene, the desired product 5o (55.4 mg, 0.17 mmol) was obtained as colorless oil in 84% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.35 (m, 2H), 7.29 – 7.22 (m, 7H), 7.10 – 7.00 (m, 4H), 4.01 (dd, $J = 7.6, 6.6$ Hz, 1H), 3.10 – 2.95 (m, 2H), 2.31 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 139.8, 136.0, 135.3, 132.5, 131.5, 129.4, 129.1, 128.8, 128.5, 128.2, 127.9, 123.4, 90.5, 84.4, 44.5, 40.2, 21.1. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3022, 2920, 1690, 1595, 1487, 1443, 1407, 1318, 1089, 1013, 911, 822, 754, 689, 616, 545, 517, 481. HRMS: m/z (EI) calculated [M]$^+$: 330.1175, found: 330.1173

HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 99.6:0.4, 0.8 mL/min, 250 nm), $t_{\text{minor}} = 10.5$ min, $t_{\text{major}} = 11.5$ min, ee = 89%.

$[\alpha]_{D}^{25} = 9.3$, (c =0.41, CHCl$_3$).

(R)-4,4′-(4-phenylbut-3-yne-1,2-diyl)bis(chlorobenzene) (5p)

According to general procedure, from 0.2 mmol of alkene, the desired product 5p (58.1 mg, 0.17 mmol) was obtained as colorless oil in 83% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.35 (m, 2H), 7.32 – 7.20 (m, 9H), 7.04 (d, $J = 8.3$ Hz, 2H), 4.04 (t, $J = 7.0$ Hz, 1H), 3.10 – 2.99 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 139.2, 136.7, 132.4, 131.5, 130.9, 129.1, 128.6, 128.3, 128.2, 128.1, 123.1, 89.8, 84.8, 44.0, 39.9. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3029, 2924, 1689, 1591, 1488, 1444, 1406, 1284, 1217, 1090, 1013, 823, 805, 754, 689, 543, 513. HRMS: m/z (EI) calculated [M]$^+$: 350.0692, found: 350.0634. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.8 mL/min, 254 nm), $t_{\text{minor}} = 38.9$ min, $t_{\text{major}} = 44.9$ min, ee = 88%.

$[\alpha]_{D}^{25} = 10.6$, (c =0.41, CHCl$_3$).

(R)-4-(4-phenyl-1-(4-(trifluoromethyl)phenyl)but-3-yn-2-yl)phenyl acetate (5q)
According to general procedure, from 0.2 mmol of alkene, the desired product 5q (71.8 mg, 0.18 mmol) was obtained as colorless oil in 88% yield.

\[^1H \text{NMR (400 MHz, CDCl}_3 \delta 7.56 (d, } J = 8.0 \text{ Hz, 2H), 7.43 – 7.36 (m, 4H), 7.35 – 7.29 (m, 5H), 7.09 (d, } J = 8.6 \text{ Hz, 2H), 4.14 (dd, } J = 7.8, 6.5 \text{ Hz, 1H), 3.25 – 3.11 (m, 2H), 2.33 (s, 3H).} \]
\[^13C \text{NMR (100 MHz, CDCl}_3 \delta 169.5, 149.6, 142.6, 138.2, 131.5, 129.8, 128.9 (q, } J = 32.1 \text{ Hz), 128.6, 128.3, 128.1, 125.0 (q, } J = 3.7 \text{ Hz), 124.3 (q, } J = 270.2 \text{ Hz), 123.1, 121.6, 89.8, 84.9, 44.6, 39.8, 21.1.} \]
\[^19F \text{NMR (376 MHz, CDCl}_3 \delta -62.23 (s, 3F).} \]
\[\text{IR (neat) cm}^{-1} \delta: 3051, 2928, 1756, 1616, 1504, 1417, 1369, 1322, 1254, 1162, 1119, 1065, 1016, 908, 847, 822, 754, 730, 692, 595, 558, 525.} \]
\[\text{HRMS: m/z (ESI) calculated [M+Na]^+: 431.1235, found: 431.1235.} \]
\[\text{HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 99:1, 0.4 mL/min, 254 nm), } t_{\text{minor}} = 26.4 \text{ min, } t_{\text{major}} = 29.0 \text{ min, ee = 86%.} \]
\[[\alpha]_{D}^{25} = 23.4, (c =0.49, \text{CHCl}_3). \]

(R)-4-(1-((1,1'-biphenyl)-4-yl)-4-phenylbut-3-yn-2-yl)phenyl acetate (5r)

According to general procedure, from 0.2 mmol of alkene, the desired product 5r (71.6 mg, 0.17 mmol) was obtained as yellow solid in 86% yield. Melting Point = 103 °C – 104 °C.

\[^1H \text{NMR (400 MHz, CDCl}_3 \delta 7.65 (d, } J = 7.1 \text{ Hz, 2H), 7.57 (d, } J = 8.2 \text{ Hz, 2H), 7.52 – 7.42 (m, 6H), 7.39 (d, } J = 7.4 \text{ Hz, 1H), 7.36 – 7.28 (m, 5H), 7.11 (d, } J = 8.6 \text{ Hz, 2H), 4.17 (td, } J = 7.2, 4.0 \text{ Hz, 1H), 3.19 (d, } J = 7.2 \text{ Hz, 2H), 2.35 (s, 3H).} \]
\[^13C \text{NMR (100 MHz, CDCl}_3 \delta 169.5, 149.5, 140.9, 139.3, 138.8, 137.7, 131.5, 129.9, 128.7, 128.2, 127.9, 127.1, 127.0, 126.7, 123.4, 121.5, 90.6, 84.6, 44.7, 40.2, 21.1.} \]
\[\text{IR (neat) cm}^{-1} \delta: 3037, 2922, 1756, 1596, 1503, 1487, 1441, 1406, 1371, 1194, 1177, 1014, 941, 905, 851, 822, 756, 689, 664, 595, 561, 522, 481.} \]
\[\text{HRMS: m/z} \]
(ESI) calculated [M+Na]+: 439.1674, found: 439.1690. HPLC (Chiralcel AD-H column, hexanes:i-PrOH = 99:1, 0.4 mL/min, 254 nm), t_minor = 26.4 min, t_major = 29.0 min, ee = 87%.

[α]D25 = 38.5, (c =0.20, CHCl3).

(R)-3-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)pyridine (5s)

According to general procedure, from 0.2 mmol of alkene, the desired product 5s (50.9 mg, 0.16 mmol) was obtained as colorless oil in 80% yield.

1H NMR (400 MHz, CDCl3) δ 8.55 – 8.42 (m, 2H), 7.48 – 7.39 (m, 3H), 7.34 – 7.26 (m, 7H), 7.21 (dd, J = 7.7, 4.8 Hz, 1H), 4.12 (t, J = 6.9 Hz, 1H), 3.16 – 3.05 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 150.7, 148.0, 138.8, 136.9, 133.5, 132.9, 131.5, 129.0, 128.6, 128.2, 128.1, 122.9, 122.9, 89.2, 85.2, 41.6, 39.6. IR (neat) cm⁻¹: 3032, 2920, 2852, 1681, 1584, 1483, 1415, 1416, 1272, 1089, 1015, 913, 820, 750, 700, 638, 528. HRMS: m/z (EI) calculated [M]+: 317.0971, found: 317.0979. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 98:2, 0.7 mL/min, 210 nm), t_minor = 41.7 min, t_major = 60.0 min, ee = 77 %.

[α]D25 = 42.3, (c =0.25, CHCl3).

(R)-1-methoxy-4-(5,5,5-trifluoro-1-phenylpent-1-yn-3-yl)benzene (5t)

According to general procedure, from 0.2 mmol of alkene, the desired product 5t (10.3 mg, 0.03 mmol) was obtained as colorless oil in 17% yield.

1H NMR (400 MHz, CDCl3) δ 7.49 – 7.44 (m, 2H), δ 7.41 – 7.37 (m, 2H), 7.36 – 7.31 (m, 3H), 4.19 (dd, J = 9.1, 5.4 Hz, 1H), 3.84 (s, 3H), 2.79 – 2.46 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 158.9, 131.7, 131.6, 128.4, 128.2, 128.1, 125.6 (q, J = 251 Hz), 123.0, 114.2, 88.8, 83.9, 55.3, 42.3 (q, J = 27.2 Hz), 31.8. 19F NMR (376 MHz, CDCl3) δ -64.29 (t, 3F). HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.8 mL/min, 210 nm), t_minor = 25.4 min, t_major = 33.2 min, ee = 67 %.
3. Transformations of diarylated propargylic compounds

(S)-4-(1-phenylbut-3-ylnyl)-1,1'-biphenyl (8)

The 5i (40 mg, 0.11 mmol) was added to the solvent MeOH (10 mL), then K$_2$CO$_3$ (47 mg, 0.33 mmol) was added to the solution, the mixture was stirred at room temperature for 24 h. The mixture was concentrated in vacuo, the residue was purified by silica gel column chromatography (PE) to yield the desired product 8 (28.7 mg, 0.10 mmol) as orange solid in 90% yield, Melting Point = 56 °C – 57 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, J = 7.1 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.34 – 7.19 (m, 4H), 7.16 (d, J = 6.5 Hz, 2H), 3.92 (ddd, J = 8.3, 6.6, 2.5 Hz, 1H), 3.14 – 3.01 (m, 2H), 2.28 (d, J = 2.5 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 140.7, 139.8, 139.8, 138.5, 129.4, 128.7, 128.1, 128.0, 127.2, 127.1, 127.0, 126.5, 85.2, 72.1, 44.6, 39.5. IR (neat) cm$^{-1}$ ν: 3281, 3027, 2917, 1599, 1487, 1451, 1404, 1331, 1120, 1127, 1074, 909, 838, 762, 724, 692, 657, 559, 486. HRMS: m/z (EI) calculated [M]$^+$: 282.1409, found: 282.1414. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 1.0 mL/min, 250 nm), t_{minor} = 40.2 min, t_{major} = 47.2 min, ee = 88%. [α]$_D^{25}$ = -22.3, (c =0.1, CHCl$_3$).

(R)-butane-1,2,4-triyltribenzene (9)

The 4c (40 mg, 0.14 mmol) was added to the solvent MeOH (10 mL), Pd/C (10 mg) was added to the solution, then stirred under an H$_2$ atmosphere (balloon) at room temperature for 24 h. the mixture was filtered through Celite, and the filtrate was concentrated in vacuo to give the corresponding desired product 9 (38.6 mg, 0.14 mmol) as a colorless oil in 95% yield.
1H NMR (400 MHz, CDCl$_3$) δ 7.29 – 7.06 (m, 11H), 7.03 (d, J = 7.4 Hz, 2H), 6.97 (d, J = 7.2 Hz, 2H), 2.91 – 2.78 (m, 3H), 2.51 – 2.33 (m, 2H), 2.07 – 1.87 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 144.7, 142.3, 140.4, 129.1, 128.3, 128.3, 128.2, 128.0, 127.8, 126.1, 125.8, 125.6, 47.4, 43.8, 37.0, 33.7. IR (neat) cm$^{-1}$ $\tilde{\nu}$: 3025, 2921, 1600, 1493, 1451, 1072, 1028, 907, 753, 732, 695, 614, 590, 545, 510, 487. HRMS: m/z (EI) calculated [M]$^+$: 286.1722, found: 286.1728. HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 100:0, 0.8 mL/min, 254 nm), t_{minor} = 25.0 min, t_{major} = 32.5 min, ee = 86%.

$[\alpha]_D^{25} = -7.0$, (c = 0.21, CHCl$_3$).

4. References

5. Spectrogram information

(R)-(3-(p-tolyl)but-1-yn-1,4-diyl)dibenzene (4aa) 1H NMR

(R)-(3-(p-tolyl)but-1-yn-1,4-diyl)dibenzene (4aa) 13C NMR
4aa-HPLC (racemic)

4aa-HPLC (86%)
Methyl (R)-4-(1,4-diphenylbut-3-yn-2-yl)benzoate (4a) 1H NMR

Methyl (R)-4-(1,4-diphenylbut-3-yn-2-yl)benzoate (4a) 13C NMR
4a-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[min]</td>
<td></td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.941</td>
<td>BR</td>
<td>0.1795</td>
<td>6381.62305</td>
<td>538.78510</td>
<td>50.3537</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.925</td>
<td>BB</td>
<td>0.2131</td>
<td>6291.96240</td>
<td>455.68155</td>
<td>49.6463</td>
<td></td>
</tr>
</tbody>
</table>

Totals: 1.26736e4 994.46664

4a-HPLC (89%)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[min]</td>
<td></td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.949</td>
<td>MM</td>
<td>0.1815</td>
<td>242.00954</td>
<td>21.91176</td>
<td>5.2624</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.930</td>
<td>MM</td>
<td>0.2309</td>
<td>4367.67529</td>
<td>315.26351</td>
<td>94.7376</td>
<td></td>
</tr>
</tbody>
</table>

Totals: 4610.28484 337.17507
(R)-(3-(4-(trifluoromethyl)phenyl)but-1-yne-1,4-diyl)dibenzene (4b) 1H NMR

(4b)

1H NMR spectrum

(R)-(3-(4-(trifluoromethyl)phenyl)but-1-yne-1,4-diyl)dibenzene (4b) 13C NMR

(4b)

13C NMR spectrum
(R)-(3-(4-(trifluoromethyl)phenyl)but-1-yne-1,4-diyl)dibenzene (4b) 19F NMR

4b-HPLC (racemic)
4b-HPLC (86%)

| Peak RetTime Type Width Area Height Area % |
|---|---------------------------------|---------------------|-------------------|---------------------|-------------------|
| 1 15.230 MF 0.3006 191.07643 10.59255 7.0643 | 2 15.892 FM 0.2923 2513.72266 143.32932 92.9357 |

Totals: 2704.79909 153.92186

(R)-but-3-yne-1,2,4-tribenzene (4c) 1H NMR
(R)-but-3-yne-1,2,4-triyltribenzene (4c) 13C NMR

4c-HPLC (racemic)
4c-HPLC (87%)

(R)-4-(1,4-diphenylbut-3-yn-2-yl)-1,1'-biphenyl (4d) ^1^H NMR
(R)-4-(1,4-diphenylbut-3-yn-2-yl)-1,1'-biphenyl (4d) 13C NMR

4d-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.379</td>
<td>BV</td>
<td>0.356</td>
<td>1.5017e4</td>
<td>624.73</td>
<td>98.44</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15.533</td>
<td>VB</td>
<td>0.341</td>
<td>1.4755e4</td>
<td>651.15</td>
<td>49.56</td>
<td></td>
</tr>
</tbody>
</table>

Totals: 2.9772e4 1275.89862
4d-HPLC (89%)
(R)-4-(1,4-diphenylbut-3-yn-2-yl)phenyl acetate (4e) 13C NMR

4e-HPLC (racemic)
4e-HPLC (87%)
(R)-(3-(4-(tert-butyl)phenyl)but-1-yn-1,4-diyl)dibenzene (4f) 13C NMR

4f-HPLC (racemic)
4f-HPLC (88%)

(R)-(3-(4-bromophenyl)but-1-yne-1,4-diyl)dibenzene (4g) 1H NMR
(R)-(3-(4-bromophenyl)but-1-yn-1,4-diyl)dibenzene (4g) \(^{13}\text{C}\) NMR

4g - HPLC (racemic)
4g-HPLC (87%)

(R)-(3-(4-chlorophenyl)but-1-yne-1,4-diyl)dibenzene (4h) 1H NMR
(R)-(3-(4-chlorophenyl)but-1-yne-1,4-diyl)dibenzene (4h) 13C NMR

4h-HPLC (racemic)
4h-HPLC (86%)

(\(\text{R}\)-(3-(4-fluorophenyl)but-1-yn-1,4-diyl)dibenzene (4i) \(\text{1H NMR}\)

\begin{center}
\begin{tabular}{llllll}
\hline
\# & RetTime & Type & Width [min] & Area [mAU's] & Height [mAU] & Area [%] \\
\hline
1 & 18.764 & MF & 0.1929 & 428.86860 & 36.98890 & 7.0937 \\
2 & 11.341 & FM & 0.2121 & 5666.42529 & 448.60681 & 92.9063 \\
\hline
\multicolumn{5}{|l|}{\textbf{Totals}}: & 6034.49390 & 477.59571 \\
\end{tabular}
\end{center}
(R)-(3-(4-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (4i) 13C NMR

(5R)-(3-(4-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (4i) 19F NMR
4i-HPLC (racemic)

4i-HPLC (85%)
(R)-(3-(4-(trifluoromethoxy)phenyl)but-1-yne-1,4-diyl)dibenzene (4j) \(^1\)H NMR

\(\text{\[\text{Diagram of molecule}\]}\)

(R)-(3-(4-(trifluoromethoxy)phenyl)but-1-yne-1,4-diyl)dibenzene (4j) \(^13\)C NMR

\(\text{\[\text{Diagram of molecule}\]}\)
(R)-(3-(4-(trifluoromethoxy)phenyl)but-1-yn-1,4-diyl)dibenzene (4j) 19F NMR

4j-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.572</td>
<td>BV</td>
<td>0.4880</td>
<td>7765.99463</td>
<td>243.53392</td>
<td>49.7659</td>
</tr>
<tr>
<td>2</td>
<td>24.152</td>
<td>VB</td>
<td>0.5673</td>
<td>7839.07178</td>
<td>210.60063</td>
<td>50.2341</td>
</tr>
</tbody>
</table>

Totals: 1.56051e4 454.13455
4j-HPLC (91%)

(R)-(3-(4-(difluoromethoxy)phenyl)but-1-yne-1,4-diyl)dibenzene (4k) \(^1\)H NMR
(R)-(3-(4-(difluoromethoxy)phenyl)but-1-yne-1,4-diyl)dibenzene (4k) 13C NMR

(R)-(3-(4-(difluoromethoxy)phenyl)but-1-yne-1,4-diyl)dibenzene (4k) 19F NMR
4k-HPLC (racemic)

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----- ----- ----- ----- -----
1 10.180 MM 0.1863 3720.31201 332.89948 50.3711
2 10.941 MM 0.2175 3665.49878 280.83096 49.6289

Totals : 7385.81079 613.73044

4k-HPLC (86%)

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----- ----- ----- ----- -----
1 9.969 MM 0.2319 557.17188 48.04671 7.2427
2 10.890 MM 0.2004 7135.66309 593.36810 92.7573

Totals : 7692.83496 633.41481
(R)-(3-(3-bromophenyl)but-1-yne-1,4-diyl)dibenzene (4l) \(^1\)H NMR

(\(R\))-(3-(3-bromophenyl)but-1-yne-1,4-diyl)dibenzene (4l) \(^13\)C NMR
41-HPLC (racemic)

![HPLC Chromatogram](image)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
</tr>
<tr>
<td>1</td>
<td>32.511</td>
<td>0.7317</td>
<td>2.02258e4</td>
<td>398.11240</td>
</tr>
<tr>
<td>2</td>
<td>34.119</td>
<td>0.8488</td>
<td>2.09689e4</td>
<td>368.08430</td>
</tr>
</tbody>
</table>

Totals :
4.11947e4 766.11670

41-HPLC (88%)

![HPLC Chromatogram](image)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
</tr>
<tr>
<td>1</td>
<td>32.147</td>
<td>0.8721</td>
<td>1.05525e4</td>
<td>201.67253</td>
</tr>
<tr>
<td>2</td>
<td>34.790</td>
<td>0.9190</td>
<td>691.71771</td>
<td>12.54500</td>
</tr>
</tbody>
</table>

Totals : 1.32442e4 214.21753
(R)-(3-(3-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (4m) \(^1\)H NMR

(\(R\))-(3-(3-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (4m) \(^{13}\)C NMR
(R)-(3-(3-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (4m) 1F NMR

4m-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime Type Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 26.735 VB 0.623 1.33147e4 323.49527 49.8900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 29.373 BB 0.6746 1.33735e4 300.86349 50.1100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals: 2.66882e4 624.35876
4m-HPLC (87%)

(R)-(3-(3,5-bis(trifluoromethyl)phenyl)but-1-yne-1,4-diyl)dibenzene (4n) 1H NMR
(R)-(3-(3,5-bis(trifluoromethyl)phenyl)but-1-yne-1,4-diyl)dibenzene (4n) 13C NMR

(19F NMR)

(R)-(3-(3,5-bis(trifluoromethyl)phenyl)but-1-yne-1,4-diyl)dibenzene (4n) 19F NMR
4n-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.160 MM</td>
<td>0.3553</td>
<td>446.14746</td>
<td>209.47916</td>
</tr>
<tr>
<td>2</td>
<td>21.772 MM</td>
<td>0.5178</td>
<td>4520.31104</td>
<td>145.51048</td>
</tr>
</tbody>
</table>

Totals : 8986.45850 354.98964

4n-HPLC (90%)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.975 MM</td>
<td>0.3545</td>
<td>4903.82568</td>
<td>230.5783</td>
</tr>
<tr>
<td>2</td>
<td>21.486 MM</td>
<td>0.4984</td>
<td>256.75543</td>
<td>8.58644</td>
</tr>
</tbody>
</table>

Totals : 5160.58112 239.16447
(R)-(3-(4-bromo-3-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (40) 1H NMR

(\(R\))-(3-(4-bromo-3-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (40) 13C NMR
(R)-(3-(4-bromo-3-fluorophenyl)but-1-yne-1,4-diyl)dibenzene (4o) 19F NMR

19F NMR spectrum of 4o

$4o$-HPLC (racemic)

HPLC profile with retention times and areas:

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width [min]</th>
<th>Area [mAU*]s</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9.064 BB</td>
<td>0.1721</td>
<td>1.14939e4</td>
<td>1055.32397</td>
<td>49.6229</td>
</tr>
<tr>
<td>2 9.888 BBA</td>
<td>0.1640</td>
<td>1.16686e4</td>
<td>1106.62158</td>
<td>50.3771</td>
</tr>
</tbody>
</table>

Totals: 2.31626e4 2161.94556
4o-HPLC (88%)

(S)-2-(1,4-diphenylbut-3-yn-2-yl)thiophene (4p) H NMR
(S)-2-(1,4-diphenylbut-3-yn-2-yl)thiophene (4p) 13C NMR

4p-HPLC (racemic)
4p-HPLC (89%)

Peak RetTime Type Width Area Height Area %
--- | ------- | ------- | ------- |------- | ------- | ------- |
1 53.913 MM 1.7942 6.93555e4 644.24097 94.7857
2 77.258 BB 1.6133 3815.36938 33.76534 5.2143

(S)- (S)-2-(1,4-diphenylbut-3-yn-2-yl)-3-methylthiophene (4q) 1H NMR

![NMR spectrum of (S)- (S)-2-(1,4-diphenylbut-3-yn-2-yl)-3-methylthiophene (4q)]
(S)-2-(1,4-diphenylbut-3-yn-2-yl)-3-methylthiophene (4q) 13C NMR

4q - HPLC (racemic)
4q - HPLC (97%)

5-(1,4-diphenylbut-3-yn-2-yl)thiazole (4r) 1H NMR
(S)-5-(1,4-diphenylbut-3-yn-2-yl)thiazole (4r) 13C NMR

4r-HPLC (racemic)
4r-HPLC (89%)
(S)-5-(1,4-diphenylbut-3-yn-2-yl)-4-methylthiazole (4s) \(^{13}\)C NMR

4s-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 11.310 MM</td>
<td></td>
<td>0.2468</td>
<td>7847.02490</td>
<td>531.62866</td>
<td>49.4588</td>
</tr>
<tr>
<td>2 11.921 MM</td>
<td></td>
<td>0.2799</td>
<td>8018.77051</td>
<td>477.51276</td>
<td>50.5412</td>
</tr>
</tbody>
</table>

Totals : 1.58658e4 1009.14142
4s-HPLC (97%)

(S)-4-(3-benzyl-4-(4-methoxyphenyl)but-1-yn-1-yl)-1,1'-biphenyl(4t) 1H NMR
(S)-4-(3-benzyl-4-(4-methoxyphenyl)but-1-yn-1-yl)-1,1'-biphenyl(4t) 13C NMR

4t-HPLC (racemic)
(R)-2-(4-((1,1'-biphenyl)-4-yl)-2-benzylbut-3-yn-1-yl)isoindoline-1,3-dione (4u) H NMR
(R)-2-(4-([1,1'-biphenyl]-4-yl)-2-benzylbut-3-yn-1-yl)isoindoline-1,3-dione(4u) 13C NMR

4u-HPLC (racemic)
4u-HPLC (22%)

(S)-4-(3-cyclohexyl-4-phenylbut-1-yn-1-yl)-1,1'-biphenyl(4v) 1H NMR
(S)-4-(3-cyclohexyl-4-phenylbut-1-yn-1-yl)-1,1'-biphenyl(4v) 13C NMR

4v - HPLC (racemic)
4v - HPLC (22%)

Methyl (S)-6-([1,1'-biphenyl]-4-yl)-4-benzyl-3,3-dimethylhex-5-ynoate(4w) 1H NMR
Methyl (S)-6-([1,1'-biphenyl]-4-yl)-4-benzyl-3,3-dimethylhex-5-ynoate(4w) 13C NMR

4w - HPLC (racemic)

Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*s] [mAU] | | | |
1 9.752 BV R 0.2454 2671.92676 168.11839 50.5226 |
2 11.546 BB 0.2864 2616.65479 142.41815 49.4774 |

Totals : 5288.58154 310.53654
4w - HPLC (40%)

(R)-(4-[[1,1'-biphenyl]-4-yl]-1-phenylbut-3-yn-2-yl)trimethylsilane (4x) 1H NMR
(R)-(4-([1,1'-biphenyl]-4-yl)-1-phenylbut-3-yn-2-yl)trimethylsilane(4x) 13C NMR

4x - HPLC (racemic)
4x - HPLC (32%)

(S)-1-(tert-butyl)-4-(3-(4-fluorobenzyl)-4,4-dimethylpent-1-yn-1-yl)benzene (4y)

NMR
(S)-1-(tert-butyl)-4-(3-(4-fluorobenzyl)-4,4-dimethylpent-1-yn-1-yl)benzene (4y) 13C NMR

(S)-1-(tert-butyl)-4-(3-(4-fluorobenzyl)-4,4-dimethylpent-1-yn-1-yl)benzene (4y) 19F NMR
4y - HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width</th>
<th>Area [mAU*s]</th>
<th>Height</th>
<th>Area [mAU]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.034</td>
<td>0.1476</td>
<td>6813.32275</td>
<td>769.57043</td>
<td>49.7777</td>
</tr>
<tr>
<td>2</td>
<td>8.953</td>
<td>0.1730</td>
<td>6874.18848</td>
<td>612.03546</td>
<td>50.2223</td>
</tr>
</tbody>
</table>

Totals:

| | 1.36875e4 | 1381.60590 |

4y - HPLC (47%)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width</th>
<th>Area [mAU*s]</th>
<th>Height</th>
<th>Area [mAU]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.803</td>
<td>0.1423</td>
<td>6419.51221</td>
<td>751.75439</td>
<td>73.5322</td>
</tr>
<tr>
<td>2</td>
<td>8.336</td>
<td>0.1608</td>
<td>2310.69019</td>
<td>219.61028</td>
<td>26.4678</td>
</tr>
</tbody>
</table>

Totals:

| | 8730.20239 | 971.36467 |
4-(((1S,2S)-2-phenylcyclohexyl)ethynyl)-1,1'-biphenyl(4z) 1H NMR

4-(((1S,2S)-2-phenylcyclohexyl)ethynyl)-1,1'-biphenyl(4z) 13C NMR
4z - HPLC (racemic)

![HPLC Racemic Graph]

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.762</td>
<td>BV</td>
<td>1.1610</td>
<td>1.43996e4</td>
<td>181.02777</td>
<td>48.4033</td>
</tr>
<tr>
<td>2</td>
<td>46.600</td>
<td>VB</td>
<td>1.1536</td>
<td>1.53496e4</td>
<td>196.22044</td>
<td>51.5967</td>
</tr>
</tbody>
</table>

Totals:
- Total Area: 2.97491e4
- Area: 377.24821

4z - HPLC (16%)

![HPLC 16% Graph]

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.358</td>
<td>BV</td>
<td>1.1211</td>
<td>6150.77393</td>
<td>80.98526</td>
<td>41.9888</td>
</tr>
<tr>
<td>2</td>
<td>47.653</td>
<td>VBA</td>
<td>1.1768</td>
<td>8525.78027</td>
<td>107.90273</td>
<td>58.0912</td>
</tr>
</tbody>
</table>

Totals:
- Total Area: 1.46766e4
- Area: 188.88799
(1S,2R,3R,4R)-2-phenyl-3-(phenylethynyl)bicyclo[2.2.1]heptane (4bb) 1H NMR

(1S,2R,3R,4R)-2-phenyl-3-(phenylethynyl)bicyclo[2.2.1]heptane (4bb) 13C NMR
4bb - HPLC (racemic)

- HPLC (53%)
(R)-but-3-yne-1,1,2,4-tetrayltetraphenylene (4cc) 1H NMR

(R)-but-3-yne-1,1,2,4-tetrayltetraphenylene (4cc) 13C NMR
4cc - HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret Time</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.252</td>
<td>FM</td>
<td>0.3082</td>
<td>4.16361e4</td>
<td>2251.64014</td>
<td>50.6928</td>
</tr>
<tr>
<td>2</td>
<td>12.748</td>
<td>VB</td>
<td>0.3233</td>
<td>4.04980e4</td>
<td>1934.27112</td>
<td>49.3072</td>
</tr>
</tbody>
</table>

4cc - HPLC (74%)

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret Time</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.872</td>
<td>BV</td>
<td>0.2154</td>
<td>270.86295</td>
<td>18.98906</td>
<td>13.6031</td>
</tr>
<tr>
<td>2</td>
<td>12.866</td>
<td>VB</td>
<td>0.2574</td>
<td>1720.32104</td>
<td>101.16702</td>
<td>86.3969</td>
</tr>
</tbody>
</table>
(S)-9-(1-(4-fluorophenyl)-4-phenylbut-3-yn-2-yl)-9H-carbazole (4dd) 1H NMR

(S)-9-(1-(4-fluorophenyl)-4-phenylbut-3-yn-2-yl)-9H-carbazole (4dd) 13C NMR
(S)-9-(1-(4-fluorophenyl)-4-phenylbut-3-yn-2-yl)-9H-carbazole (4dd) 1F NMR

4dd - HPLC (racemic)
(8R,9S,13S,14S)-3-((R)-1,4-diphenylbut-3-yn-2-yl)-13-methyl-
6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (4ee) ^1H NMR
(8R,9S,13S,14S)-3-((R)-1,4-diphenylbut-3-yn-2-yl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (4ee) 13C NMR

4ee - HPLC (racemic)
4ee - HPLC (80%)
(S)-5-((1,1'-biphenyl)-4-yl)-1-phenylbut-3-yn-2-yl)-4-methylthiazole (5a)

\(^{13}\)C NMR

5a-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak #</th>
<th>RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.487</td>
<td>MM</td>
<td>0.3951</td>
<td>8391.54785</td>
<td>353.94012</td>
<td>49.68051</td>
</tr>
<tr>
<td>2</td>
<td>31.315</td>
<td>MM</td>
<td>0.6787</td>
<td>8525.16895</td>
<td>209.33530</td>
<td>50.3949</td>
</tr>
</tbody>
</table>

Totals: 1.69167e4 563.27542
5a-HPLC (98%)
(S)-5-(4-(4-methoxyphenyl)-1-phenylbut-3-yn-2-yl)-4-methylthiazole (5b) 13C NMR

5b-HPLC (racemic)
5b-HPLC (97%)

(R)-1-methoxy-4-(4-phenyl-3-(4-(trifluoromethyl)phenyl)but-1-yn-1-yl)benzene (5c)

1H NMR
(R)-1-methoxy-4-(4-phenyl-3-(4-(trifluoromethyl)phenyl)but-1-yn-1-yl)benzene (5c)

13C NMR

![13C NMR spectrum](image1)

19F NMR

![19F NMR spectrum](image2)
5c-HPLC (racemic)

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
1 9.293 BV 0.1750 2878.46045 183.05428 47.8262
2 9.628 VB 0.1968 2258.67676 174.75003 52.1738

Totals : 4329.13721 357.80431

5c-HPLC(89%)

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
1 9.280 MF 0.1710 55.69259 5.42655 5.7177
2 9.605 FM 0.1987 918.34875 77.04473 94.2823

Totals : 974.04134 82.47128
(R)-4-(4-(4-(tert-butyl)phenyl)-1-phenylbut-3-yn-2-yl)phenyl acetate (5d) 1H NMR

(5d) 13C NMR
5d-HPLC (racemic)

![Graph showing chromatogram for 5d-HPLC (racemic)]

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.860 BB</td>
<td>2685.21021</td>
<td>238.97029</td>
<td>49.1553</td>
</tr>
<tr>
<td>2</td>
<td>12.091 BB</td>
<td>2777.49243</td>
<td>200.51863</td>
<td>50.8447</td>
</tr>
</tbody>
</table>

Totals: 5462.70264 439.48892

5d-HPLC (90%)

![Graph showing chromatogram for 5d-HPLC (90%)]

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.888 BB</td>
<td>2505.36328</td>
<td>222.45306</td>
<td>94.9610</td>
</tr>
<tr>
<td>2</td>
<td>12.144 MM</td>
<td>132.94568</td>
<td>10.87436</td>
<td>5.0390</td>
</tr>
</tbody>
</table>

Totals: 2638.30896 232.52743
(R)-4-(4-(4-bromophenyl)-1-phenylbut-3-yn-2-yl)phenyl acetate (5e) 1H NMR

(R)-4-(4-(4-bromophenyl)-1-phenylbut-3-yn-2-yl)phenyl acetate (5e) 13C NMR
5e-HPLC (racemic)

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.314</td>
<td>BB</td>
<td>0.2454</td>
<td>1253.12061</td>
<td>78.85398</td>
<td>50.1000</td>
</tr>
<tr>
<td>2</td>
<td>16.442</td>
<td>BB</td>
<td>0.2825</td>
<td>1248.12048</td>
<td>68.19524</td>
<td>49.9000</td>
</tr>
</tbody>
</table>

Totals: 2581.24109 147.04922

5e-HPLC (85%)

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.333</td>
<td>MM</td>
<td>0.2655</td>
<td>2405.17944</td>
<td>151.01247</td>
<td>92.6888</td>
</tr>
<tr>
<td>2</td>
<td>16.472</td>
<td>MM</td>
<td>0.3058</td>
<td>189.71829</td>
<td>10.34094</td>
<td>7.3112</td>
</tr>
</tbody>
</table>

Totals: 2594.89774 161.35341
(R)-4-(4-(4-fluorophenyl)-1-phenylbut-3-yn-2-yl)phenyl acetate (5f) 1H NMR

(R)-4-(4-(4-fluorophenyl)-1-phenylbut-3-yn-2-yl)phenyl acetate (5f) 13C NMR
(R)-4-(4-(4-fluorophenyl)-1-phenylbut-3-yn-2-yl)phenyl acetate (5f) 19F NMR

5f-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.876</td>
<td>BB</td>
<td>0.2004</td>
<td>3529.47437</td>
<td>271.89395</td>
<td>50.2265</td>
</tr>
<tr>
<td>2</td>
<td>12.675</td>
<td>BB</td>
<td>0.2133</td>
<td>3497.64600</td>
<td>253.04170</td>
<td>49.7735</td>
</tr>
</tbody>
</table>

Totals: 7027.12036 524.93565
Methyl (R)-4-(3-(4-acetoxyphenyl)-4-phenylbut-1-yn-1-yl)benzoate (5g) 1H NMR
Methyl (R)-4-(3-(4-acetoxyphenyl)-4-phenylbut-1-yn-1-yl)benzoate (5g) 13C NMR

5g-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.531 BB</td>
<td>0.4962</td>
<td>2344.14111</td>
<td>73.07982</td>
</tr>
<tr>
<td>2</td>
<td>30.633 BB</td>
<td>0.5549</td>
<td>2367.88159</td>
<td>65.94847</td>
</tr>
</tbody>
</table>

Totals: 4712.02271 139.02829
5g-HPLC (86%)

(R)-4-(1-phenyl-4-(thiophen-3-yl)but-3-yn-2-yl)phenyl acetate (5h) \(^{1}\text{H} \text{NMR} \)
(R)-4-(1-phenyl-4-(thiophen-3-yl)but-3-yn-2-yl)phenyl acetate (5h) 13C NMR

5h-HPLC (racemic)
5h-HPLC (87%)

(R)-(3-[(1,1’-biphenyl]-4-yl)-4-phenylbut-1-yn-1-yl)trimethylsilane (5i) 1H NMR
(R)-$(3-[[1,1’\text{-biphenyl}]-4-yl)-4-phenylbut-1-yn-1-yl]trimethylsilane (5i) 13C NMR

5i-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.796</td>
<td>BB</td>
<td>0.4747</td>
<td>1878.0308</td>
<td>60.2423</td>
<td>50.0839</td>
</tr>
<tr>
<td>2</td>
<td>27.176</td>
<td>BB</td>
<td>0.6792</td>
<td>1871.7353</td>
<td>41.8144</td>
<td>49.9161</td>
</tr>
</tbody>
</table>

Totals: 3749.76624 102.05680
5i-HPLC (88%)

(3-((R)-3-(4-acetoxyphenyl)-4-phenylbut-1-yn-1-yl)cyclopenta-2,4-dien-1-yl)(cyclopenta-2,4-dien-1-yl)iron (5j) 1H NMR
(3-((R)-3-(4-acetoxyphenyl)-4-phenylbut-1-yn-1-yl)cyclopenta-2,4-dien-1-yl)(cyclopenta-2,4-dien-1-yl)iron (5j) 13C NMR

5j-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width</th>
<th>Area [mAU's]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 6.570 VB</td>
<td>0.1103</td>
<td>139.70467</td>
<td>19.33775</td>
<td>49.5236</td>
</tr>
<tr>
<td>2 7.748 BB</td>
<td>0.1312</td>
<td>142.39235</td>
<td>16.57516</td>
<td>50.4764</td>
</tr>
</tbody>
</table>

Totals : 282.89702 35.91291
5j-HPLC (86%)

(S)-5-(4-cyclopropyl-1-phenylbut-3-yn-2-yl)-4-methylthiazole (5k) 1H NMR
(S)-5-(4-cyclopropyl-1-phenylbut-3-yn-2-yl)-4-methylthiazole (5k) 13C NMR

5k-HPLC (racemic)
5k-HPLC (89%)

(R)-4-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)benzonitrile (5l) \(^1\)H NMR
(R)-4-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)benzonitrile (5l) 13C NMR

5l-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 13.165 BV</td>
<td>0.2745</td>
<td>6507.35742</td>
<td>365.91867</td>
<td>49.8556</td>
</tr>
<tr>
<td>2 14.034 VB</td>
<td>0.2967</td>
<td>6545.85615</td>
<td>339.84003</td>
<td>50.1444</td>
</tr>
</tbody>
</table>

Total: 1.30524e4 705.75870
HPLC (90%)

(R)-1-(tert-butyl)-4-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)benzene (5m)

¹H NMR
(R)-1-(tert-butyl)-4-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)benzene (5m)

13C NMR

5m-HPLC (racemic)
5m-HPLC (91%)

![HPLC chromatogram](image)

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret Time</th>
<th>Width [min]</th>
<th>Area [mAU s]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.551</td>
<td>0.7346</td>
<td>808.88336</td>
<td>18.35139</td>
<td>4.5629</td>
</tr>
<tr>
<td>2</td>
<td>39.365</td>
<td>0.9781</td>
<td>1.69186e4</td>
<td>288.29596</td>
<td>95.4371</td>
</tr>
</tbody>
</table>

Totals: 1.7727e4 306.64734

(R)-1-chloro-4-(1-(4-fluorophenyl)-4-phenylbut-3-yn-2-yl)benzene (5n) ¹H NMR

![NMR spectrum](image)
(R)-1-chloro-4-(1-(4-fluorophenyl)-4-phenylbut-3-yn-2-yl)benzene (5n) 13C NMR

(R)-1-chloro-4-(1-(4-fluorophenyl)-4-phenylbut-3-yn-2-yl)benzene (5n) 19F NMR
(R)-1-chloro-4-(4-phenyl-1-(p-tolyl)but-3-yn-2-yl)benzene (5o) 1H NMR

(R)-1-chloro-4-(4-phenyl-1-(p-tolyl)but-3-yn-2-yl)benzene (5o) 13C NMR
50-HPLC (racemic)

```
Peak RetTime Type Width  Area  Height  Area  %
#  [min]  [min]  [mAU*s]  [mAU]  %
1 9.721 BV  0.1972  5335.59668  417.19208  47.9889
2 10.495 MM  0.3025  5881.36523  319.65601  52.0111

Totals :    1.1137e4  736.84808
```

50-HPLC (89%)

```
Peak RetTime Type Width  Area  Height  Area  %
#  [min]  [min]  [mAU*s]  [mAU]  %
1 10.506 MF  0.2655  61.93018  3.88757  5.5172
2 11.521 FM  0.3797  1060.55469  46.55320  94.4828

Totals :    1122.48487  50.44077
```
(R)-4,4'-((4-phenylbut-3-yn-1,2-diyl)bis(chlorobenzene) (5p) 1H NMR

(R)-4,4'-((4-phenylbut-3-yn-1,2-diyl)bis(chlorobenzene) (5p) 13C NMR
5p-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Width</th>
<th>Area [mAU*sec]</th>
<th>Height</th>
<th>Area [mAU]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.212</td>
<td>1.106</td>
<td>2.08704e4</td>
<td>246.79596</td>
<td>50.4551</td>
</tr>
<tr>
<td>2</td>
<td>44.789</td>
<td>1.3167</td>
<td>2.04939e4</td>
<td>225.61923</td>
<td>49.5449</td>
</tr>
</tbody>
</table>

Totals:

- 4.13643e4
- 472.41519

5p-HPLC (88%)

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Width</th>
<th>Area [mAU*sec]</th>
<th>Height</th>
<th>Area [mAU]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.936</td>
<td>1.0340</td>
<td>949.72449</td>
<td>15.30774</td>
<td>6.0247</td>
</tr>
<tr>
<td>2</td>
<td>44.916</td>
<td>1.4644</td>
<td>1.48141e4</td>
<td>168.59967</td>
<td>93.9753</td>
</tr>
</tbody>
</table>

Totals:

- 1.57638e4
- 183.90742
(R)-4-(4-phenyl-1-(4-(trifluoromethyl)phenyl)but-3-yn-2-yl)phenyl acetate (5q)

1H NMR

13C NMR
(R)-4-(4-phenyl-1-(4-(trifluoromethyl)phenyl)but-3-yn-2-yl)phenyl acetate (5q)

19F NMR

5q-HPLC (racemic)
5q-HPLC (86%)

(R)-4-((1,1'-biphenyl)-4-y1)-4-phenylbut-3-yn-2-yl)phenyl acetate (5r) 1H NMR
(R)-4-(1-[(1,1'-biphenyl]-4-yl)-4-phenylbut-3-yn-2-yl)phenyl acetate (5r) 13C NMR

5r-HPLC (racemic)
5r-HPLC (87%)

(R)-3-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)pyridine (5s) ¹H NMR
(R)-3-(2-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)pyridine (5s) 13C NMR

5s - HPLC (racemic)
5s - HPLC (77%)

(R)-1-methoxy-4-(5,5,5-trifluoro-1-phenylpent-1-yn-3-yl)benzene (5t) 1H NMR
(R)-1-methoxy-4-(5,5,5-trifluoro-1-phenylpent-1-yn-3-yl)benzene (5t) 13C NMR

(R)-1-methoxy-4-(5,5,5-trifluoro-1-phenylpent-1-yn-3-yl)benzene (5t) 19F NMR
5t-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.980</td>
<td>MM</td>
<td>0.6490</td>
<td>6998.23291</td>
<td>179.72815</td>
<td>49.7533</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32.303</td>
<td>MM</td>
<td>0.8573</td>
<td>7067.64551</td>
<td>137.39944</td>
<td>50.2467</td>
<td></td>
</tr>
</tbody>
</table>

5t-HPLC (67%)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.427</td>
<td>MM</td>
<td>0.6904</td>
<td>2454.23340</td>
<td>59.24569</td>
<td>16.2278</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>33.159</td>
<td>MM</td>
<td>1.1206</td>
<td>1.26694e4</td>
<td>188.43742</td>
<td>83.7722</td>
<td></td>
</tr>
</tbody>
</table>
(S)-4-(1-phenylbut-3-yn-2-yl)-1,1'-biphenyl (8) 1H NMR

(8)

(S)-4-(1-phenylbut-3-yn-2-yl)-1,1'-biphenyl (8) 13C NMR

(8)
8-HPLC (racemic)

<table>
<thead>
<tr>
<th>Peak RetTime Type Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
</tr>
<tr>
<td>1 39.702 BB</td>
<td>1.8894</td>
<td>2885.12695</td>
<td>39.39529</td>
</tr>
<tr>
<td>2 48.278 BB</td>
<td>1.2066</td>
<td>2916.57056</td>
<td>35.57143</td>
</tr>
<tr>
<td>Totals:</td>
<td>5801.69751</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-HPLC (88%)

<table>
<thead>
<tr>
<th>Peak RetTime Type Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
</tr>
<tr>
<td>1 40.242 MM</td>
<td>1.0335</td>
<td>939.85620</td>
<td>15.15703</td>
</tr>
<tr>
<td>2 47.238 MM</td>
<td>1.8441</td>
<td>1.57245e4</td>
<td>142.11549</td>
</tr>
<tr>
<td>Totals:</td>
<td>1.66644e4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(R)-butane-1,2,4-triyltribenzene (9) 1H NMR

(9)-butane-1,2,4-triyltribenzene (9) 13C NMR
9-HPLC (racemic)

![Graph and Table]

9-HPLC (86%)

![Graph and Table]
6. The NOESY, H-H COSY and 1H Spectra
7. Single Crystal X-Ray Diffraction Data (4f)

A crystal structure of the compound 4f was obtained by recrystallization from PE/DCM.

Table S5. Crystal data and structure refinement for mo_d8v19247_0m.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>mo_d8v19247_0m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C26 H26</td>
</tr>
<tr>
<td>Formula weight</td>
<td>338.47</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.423(7) Å</td>
</tr>
<tr>
<td></td>
<td>b = 10.032(6) Å</td>
</tr>
<tr>
<td></td>
<td>c = 11.391(7) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>1042.1(12) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.079 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.061 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>364</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.200 x 0.150 x 0.100 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.514 to 24.996°.</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-11<=h<=11, -11<=k<=11, -13<=l<=13</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>9901</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3551 [R(int) = 0.0520]</td>
</tr>
<tr>
<td>Completeness to theta</td>
<td>25.242°</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7456 and 0.5795</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3551 / 55 / 269</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.046</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0628, wR2 = 0.1624</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1028, wR2 = 0.1939</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>2.3(10)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.208 and -0.155 e Å$^{-3}$</td>
</tr>
</tbody>
</table>
8. EPR study

General Procedure for the ERP Analysis. After 1 h, the solution sample was taken out into a small tube and then analyzed by EPR. EPR spectra was recorded at room temperature on a EPR spectrometer operated at 9.870 GHz. Typical spectrometer parameters are shown as follows, sweep width: 3000 G; center field sets: 3500 G; time constant: 163.84 ms; sweep time: 41.943 s; modulation amplitude: 4.0 G; modulation frequency: 100 kHz; receiver gain: 7.1 × 10^4; microwave power: 2.016 mW.

The EPR spectrum of control experiment showed the existence of carbon radical and Cu^{II}.

Figure 1. EPR spectrum of the reaction

The EPR spectrum of control experiment showed the existence of carbon radical and Cu^{II}.

\[
g = 2.00583 \\
A_H = 14.3776 \\
A_H = 21.1275
\]
9. Cyclic Voltammetry Analysis

Preparation of copper(I) phenylacetylide: according to reference procedure (Angew. Chem. Int. Ed. 2015, 54, 13896 –13901) CuI (1.0 g, 5.0 mmol) was dissolved in ammonium hydroxide to form a blue solution. While stirring, this solution was added drop wise to the solution of phenylacetylene (0.5g, 5.1 mmol) in 50 mL of ethanol. The system was allowed to stand for 15 min to form a yellow precipitate suspension. The precipitate was filtered out and washed with water, ethanol, and diethyl ether, three times each. The solid was vacuum-dried, a bright yellow solid was obtained.

Cyclic voltammogram of Cu(I)-phenylacetylide measured in acetonitrile, scan rate 0.1 V/s, electrolyte: 0.1 M [TBA][PF₆]; auxiliary electrode: a 20 × 20 mm² platinum thin film; working electrode: glassycarbon; reference electrode: Ag/AgCl. CV data collected in a dry-N₂ atmosphere using three electrode system measured by Zennium Electrochemical Workstation.