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1 Experimental Details

1.1 Synthetic Details

All reagents were purchased from commercial sources and used without further purification,

unless otherwise stated. N -Methylaniline was distilled under inert conditions and stored in a

Schlenk flask. Column chromatography was performed with commercial glass columns using

silica gel 60M (particle size 0.040063 mm) as stationary phase, whereas flash column chro-

matography was carried out with a PuriFlash 420 system of Interchim using commercially

available silica gel columns (PF-30SIHP-F0025). Melting points were determined using an

Olympus BX41 polarisation microscope and are not corrected. 1H und 13C NMR spectra

were measured on a Bruker Avance III HD 400 MHz spectrometer and calibrated to the

residual protic solvent signal.

1.2 UV/Vis and Fluorescence Spectroscopy

Steady-state absorption spectra were recorded using a V770 UV-Vis spectrometer (JASCO

Inc., Japan) and emission spectra were measured with a FLS980-D2D2-ST (Edinburgh Instru-

ments Ltd., UK) fluorescence spectrometer and corrected against the photomultiplier sensi-

tivity and the lamp intensity. All spectra were recorded at 298 K, if not stated otherwise, and

the temperature was controlled by a sample holder with Peltier element. The fluorescence

quantum yields (Φfl) were determined as average value of four different excitation wave-

lengths relative using N,N’ -(2,6-di-iso-propylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-

tetracarboxylic acid bisimide (Φfl = 0.96 in chloroform1) and N,N’ -bis(2,6-di-iso-propylphenyl)-

perylene-3,4:9,10-tetracarboxylic acid bisimide (Φfl = 1.00 in chloroform) as standards under

highly diluted conditions (OD ≤ 0.05) and magic angle conditions (54.7o). The fluorescence

lifetimes were determined by Time Correlated Single Photon Counting (TCSPC) using an

EPL picosecond pulsed diode laser (λfl = 505.8 nm) with a pulse width of 141.7 ps with an

FLS980-D2D2-ST spectrometer (Edinburgh Instruments Ltd., UK) under magic angle con-

ditions (54.7o). The fitting of the data was carried out using the Tail-Fit-routine supplied by

Edinburgh Instruments Ltd., Inc.

1.3 Temperature-dependent Spectroscopy

Temperature-dependent absorption and emission spectra were recorded with a JASCO V770

and FLS980 spectrometer, respectively using a Cold Finger Dewar by PTI. A highly diluted

sample (OD ≤ 0.05) was placed in a commercial NMR tube and cooled using o-xylene/dry

ice (−25 oC) or acetone/dry ice (−78 oC) bath. The quantum yield at lower temperature
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was determined by choosing an excitation wavelength, which showed no changes of the opti-

cal density upon cooling and comparing the integral of the resulting fluorescence spectra at

different temperatures. Cooling with acetone/dry ice could only be used for dichloromethane

as DCBT aggregated in methylcyclohexane and chloroform freezes at this temperature.

1.4 Electrooptical Absorption Measurements.

Electrooptical Absorption Measurements (EOAM) were carried out using a self-constructed

spectrometer in methylcyclohexane at 298 K and evaluated according to literature known

procedure1,2.

1.5 Crystallographic Analysis

Single crystals of DCBT suitable for X-ray crystallographic analysis were obtained by slow

evaporation of hexane into a concentrated dichloromethane solution. Single crystal X-ray

data were collected at 100 K on a Bruker D8 Discover Diffractometer with a LynxEye-1D-

Detector and multi-layered mirror monochromated CuKα radiation. The structures were

solved using direct methods expanded with Fourier techniques and refined with the Shelx

software package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms

were included in the structure factor calculation on geometrically idealized positions. Crys-

tallographic data have been deposited with the Cambridge Crystallographic Data Centre as

supplementary publication no. CCDC 1957268.

These data can be obtained free of charge from The Cambrige Crystallographic Data Centre

via www.ccdc.cam.ac.uk/data_request/cif.

1.6 Broadband Ultrafast Transient Absorption

We employed ultrafast transient absorption in the ultraviolet/visible (UV/Vis) region as de-

scribed in detail elsewhere3–5. A commercial Ti:sapphire oscillator (Solstice, Spectra-Physics)

provided pulses with a duration of 120 fs and a central wavelength of 800 nm at a repetition

rate of 1 kHz. The ≈ 50 fs pump pulses (with varying central excitation wavelengths of

λex = 506 nm, 514 nm, and 518 nm) were derived from the second-harmonic output of a

commercial nonlinear optical parametric amplifier (TOPAS White, Light Conversion). The

broadband UV/Vis probe pulses were generated by focusing a small fraction of the residual

800 nm light into a linearly moving CaF2 disk, generating a white-light continuum from

350 nm to 650 nm. For the transient absorption experiments, pump and probe pulses were

focused individually and non-collinearly to achieve spatial overlap in a flow cell with a sample

thickness of 200 µm, which at the chosen sample concentration led to optical densities of 0.3–

0.5 for the various solvents. The relative polarizations of the pump and the probe beams were
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set to the magic angle of 54.7o by turning the pump polarization with achromatic waveplates.

The pumpprobe delay was varied by delaying the probe beam with a mechanical translation

stage (M-IMS600, Newport) up to 1.0 ns in methylcyclohexane and acetonitrile and up to

3.5 ns in chloroform. Every second pump pulse was blocked by a chopper driven at 500 Hz.

After passing the sample, the UV/Vis probe pulses were detected shot-to-shot using a spec-

trometer (Acton SP2500i, Princeton Instruments) with an attached CCD camera (Pixis 2K,

Princeton Instruments). The transient UV/Vis data were evaluated via target analysis6 with

the software package Glotaran7 based on the R-package TIMP8.

1.7 Computational Details

For the simulation of vibrationally resolved absorption and fluorescence spectra of the studied

system, the structure has been first optimized in the framework of density functional theory

(DFT), using the long-range corrected ωB97XD functional9 and the def2-TZVP basis set?

as implemented in the Gaussian 16 quantum chemical software package10. The excited state

properties have been calculated in the frame of time-dependent density functional theory

(TDDFT) employing the same functional and basis set. The solvent effects are treated in

an implicit way via the polarizable continuum model using the integral equation formalism

variant (IEFPCM)11–15. When excited state properties are calculated, the reaction field of

the solvent is adjusted to the electronic density of the excited state (equilibrium solvation).

The vibrationally resolved absorption spectra for the lowest excited state and the vibra-

tionally resolved emission spectra from the lowest singlet excited state were simulated within

the Franck-Condon approximation16. For this purpose the geometries of the ground and

excited electronic states have been optimized and the harmonic vibrational analysis has been

performed. In the spectral simulations, the adiabatic hessian (AH) model, which takes the

the Duschinsky transformation17 into account, has been used.

The S0/S1-MECI geometry of the merocyanine dye was searched using the projected gradient

method by Bearpark et. al18 at the level of the CASSCF19–22 methodology as implemented

in the Brilliantly Advanced General Electronic-structure Library (BAGEL) by Shiozaki and

coworkers23. The four higherlying occupied π orbitals and the four lower virtual ones, us-

ing 8 π electrons, were included in the active space of the CASSCF calculations. Starting

orbitals have been generated by performing HF calculations and have been optimized in a

state-averaged manner with equal weights for the S0 and S1 states. Starting from the FC

point we explored the minimum energy conical intersections (MECI’s) between the S0 and

the S1 at the CASSCF level in gas phase. The obtained geometries show rotations of either

one of the double bonds connecting the benzothiazole group and the polymethine chain by

about 90 degree. For the calculation of thermodynamic properties, we optimized the transi-

tion state, which connects the FC minimum and the MECI geometry, in the first excited state
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at the linear-response TDDFT level by using the ωB97XD functional and the def2-TZVP

basis set. The Gibbs free energy of the S1 minimum and the transition state geometry were

calculated at 298.15 K and 1 atm.

The constrained density functional theory24,25 calculations at the B3LYP/def2-SVP level in

combination with configuration interaction were done using the Q-Chem program suite26.

2 Synthesis and Characterization

The target compound was synthesized according to the literature known procedure depicted

in scheme 127. Starting compounds 128 and 429,30 were prepared according to literature.

Scheme 1: Synthesis of the target merocyanine DCBT.

2.1 3-Butyl-2-[2-(methylphenylamino)ethenyl]benzothiazolium iodide (3)

Compound 1 (1.97 g, 5.91 mmol), N -methylaniline (1.92 mL, 0.99 g/mL, 1.90 g, 17.7 mmol)

and triethylorthoformate (2.69 mL, 0.90 g/mL, 2.41 g, 16.2 mmol) were dissolved in 2-

methoxyethanol and heated under reflux for 2 h. The obtained solution was cooled down

to room temperature and treated with diethylether (400 mL). The precipitate was collected

by filtration, washed with acetone (30 mL) and diethylether (400 mL). The solid was sub-

sequently dissolved in methanol (20 mL) and precipitated again with diethylether (450 mL)

to give 3 (1.42 g, 53%) as a purple solid. The compound was used without further purifi-

cation. 1H NMR (400 MHz, CD2Cl2): δ = 8.03 (d, J = 12.6 Hz, 1H), 7.89-7.34 (m, 9H),

6.37 (d, J = 12.6 Hz, 1H), 4.68 (t, J = 7.4 Hz, 2H), 3.84-3.81 (m, 3H), 1.96-1.85 (m, 2H),

1.64-1.54 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H) ppm. 13C NMR (101 MHz, CD2Cl2): δ = 170.7,

153.3, 146.0, 141.4, 130.4, 128.9, 128.0, 126.9, 123.4, 122.2, 114.5, 99.8, 90.1, 48.7, 41.1, 30.3,

20.5, 14.0 ppm. HRMS (ESI-TOF, positive, MeCN/CHCl3): m/z calculated for C20H23N2S+

[M-I]+: 323.1577, found: 323.1576. Melting point: 70-73 oC.
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Fig. S1: 1H NMR spectrum (400 MHz) of compund 3 in CD2Cl2 at 298 K

2.2 4-(Dicyanomethylene)-2-tert-butyl-6-[3-(3-butyl-benzothiazol-2-ylidene)1-propenyl]-

4H-pyran (DCBT merocyanine)

A suspension of compound 3 (180 mg, 400 µmol) and compound 4 (64.3 mg, 300 µmol)

in a mixture of pyridine (1 mL) and triethylamine (0.2 mL) was stirred at 115 oC for 5 h.

After cooling down to room temperature, the solvent was removed under reduced pressure

and the crude product was purified by column chromatography (silica, cyclohexane/CH2Cl2
1:2), followed by flash chromatography (silica, cyclohexane to cyclohexane/CH2Cl2 1:1) to

afford pure DCBT (55.8 mg, 43%) as a dark purple solid. 1H NMR (400 MHz, CD2Cl2):

δ = 7.43-7.39 (m, 2H), 7.31-7.27 (m, 1H), 7.09-7.05 (m, 1H), 6.98-6.96 (m, 1H), 6.41 (d,

J = 2.0 Hz, 1H), 6.35 (d, J = 2.0 Hz, 1H), 5.86 (d, J = 14.3 Hz, 1H), 5.57 (d, J = 11.9 Hz,

1H), 3.86 (t, J = 7.7 Hz, 2H), 1.77-1.69 (m, 2H), 1.51-1.43 (m, 2H), 1.37 (s, 9H), 1.00 (t,

J = 7.3 Hz, 3H) ppm. 13C NMR (101 MHz, CD2Cl2): δ = 171.5, 161.9, 156.6, 155.7, 142.6,

139.4, 127.2, 124.6, 122.7, 121.9, 116.98, 116.96, 110.3, 108.5, 102.7, 101.9, 91.6, 54.5, 45.3,

36.7, 29.1, 28.3, 20.6, 14.0 ppm. HRMS: (ESI-TOF, positive, MeCN/CHCl3): m/z calculated

for C26H28N3OS+ [M+H]+: 430.1948, found: 430.1940. UV/Vis (CH2Cl2, c = 2.06 · 10−5 M):

λmax = 559 nm (ε = 70500 M−1 cm−1). melting point: 244-246 oC.
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Fig. S2: 1H NMR spectrum (400 MHz) of DCBT in CD2Cl2 at 298 K
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Fig. S3: 13C NMR spectrum (101 MHz) of DCBT in CD2Cl2 at 298 K
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2.3 Structural Elucidation

The proton and carbon signals of DCBT were assigned by ROESY, COSY, HSQC and

HMBC NMR spectroscopy. From the obtained data the ground state structure in solution

could be determined to be the all-trans structure reported for similar chromophores like

4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran. This could further be

proven by an obtained crystal structure of the compound.

Fig. S4: An Excerpt of the ROESY spectrum (400 MHz) in CD2Cl2 at 298 K with the obtained crystal
structure of DCBT. The observed 1H-1H couplings are marked by colored circles in the spectrum and
correlations are indicated with double arrows in the structure. Additionally to the positive (red) and negative
(turquoise) ROESY-signals the COSY signals (blue) of the compound are depicted.

3 Crystallographic Analysis

Crystal data for DCBT: C26H27N3OS, Mr = 429.56 g mol−1, red needle-shaped crys-

tal, triclinic space group P-1, a = 7.0287(2) Å, b = 11.0372(3) Å, c = 15.2233(5) Å,

α = 76.459(1)o, β = 89.714(1)o, γ = 78.323(1)o, V = 1123.28(6) Å3, Z = 2, ρcalcd =

1.270 g cm−3, µ = 1.451 mm−1, F (000) = 456, T = 100(2) K, R1 = 0.037, wR2 = 0.095,

4415 independent reflections [2Θ ≤72.26o] and 284 parameters.

3.1 Crystallographic data
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Compound DCBT

Formula C26H27N3OS
Molecular weight (g·mol−1) 429.56
Temperature (K) 100(2)
Wavelength (Å) 1.54178
Crystal system triklin
Space group P-1
Unit cell dimensions
a (Å) 7.0287(2)
b (Å) 11.0372(3)
c (Å) 15.2233(5)
a (o) 76.459(1)
b (o) 89.714(1)
g (o) 78.323(1)
Volume (Å3) 1123.28(6)
Z 2
Calculated density (Mg·m−3) 1.27
Absorption coefficient (mm−1) 1.451
F(000) 456
Theta range for data collection 2.99o to 72.26o

Reflections collected 19865
Reflections unique 4415
minimal/maximal Transmission 0.522 / 0.754
Refinement method Full-matrix least-squares on F2
Data / Parameters / Restrains 4415 / 284 / 0
Goodness-of-fit for F2 1.04
Final R Indices [I >2s(I)] R1 = 0.037, wR2 = 0.095
R Indices (all data) R1 = 0.042, wR2 = 0.098
Largest difference peak and hole (e·Å−3) 0.28 / 0.31
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Table S1: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for
DCBT. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

S1 9323(1) 912(1) 7736(1) 17(1)
O1 2173(1) 3054(1) 8300(1) 17(1)
N1 9964(2) 1826(1) 6066(1) 16(1)
N2 3963(2) 6248(1) 5700(1) 26(1)
N3 -6086(2) 5624(1) 8520(1) 28(1)
C1 11622(2) 414(1) 7335(1) 17(1)
C2 13220(2) 435(1) 7814(1) 20(1)
C3 14915(2) 696(1) 7355(1) 21(1)
C4 14994(2) 117(1) 6443(1) 20(1)
C5 13403(2) 731(1) 5962(1) 18(1)
C6 11704(2) 996(1) 6418(1) 16(1)
C7 8498(2) 1897(1) 6665(1) 16(1)
C8 6666(2) 2623(1) 6462(1) 17(1)
C9 5186(2) 2734(1) 7088(1) 17(1)
C10 3374(2) 3452(1) 6831(1) 17(1)
C11 1794(2) 3645(1) 7406(1) 16(1)
C12 4(2) 4368(1) 7107(1) 16(1)
C13 1515(2) 4543(1) 7709(1) 16(1)
C14 1038(2) 3905(1) 8643(1) 18(1)
C15 750(2) 3188(1) 8906(1) 17(1)
C16 9660(2) 2532(1) 5118(1) 17(1)
C17 8640(2) 1864(1) 4548(1) 18(1)
C18 8365(2) 2576(1) 3554(1) 18(1)
C19 10201(2) 2389(1) 3030(1) 22(1)
C20 3356(2) 5282(1) 7412(1) 17(1)
C21 3752(2) 5833(1) 6470(1) 19(1)
C22 4873(2) 5474(1) 8020(1) 20(1)
C23 1479(2) 2453(1) 9852(1) 22(1)
C24 3015(4) 3082(2) 10170(1) 54(1)
C25 2399(3) 1075(2) 9843(1) 32(1)
C26 195(3) 2430(2) 10493(1) 44(1)
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Table S2: Anisotropic displacement parameters (103 Å2) for DCBT.

U11 U22 U33 U23 U13 U12

S1 16(1) 18(1) 16(1) 2(1) 3(1) 1(1)
O1 16(1) 16(1) 16(1) 3(1) 1(1) 1(1)
N1 16(1) 17(1) 16(1) 2(1) 3(1) 2(1)
N2 20(1) 32(1) 22(1) 1(1) 1(1) 1(1)
N3 23(1) 32(1) 23(1) 3(1) 5(1) 3(1)
C1 17(1) 16(1) 18(1) 5(1) 3(1) 5(1)
C2 20(1) 19(1) 18(1) 3(1) 1(1) 2(1)
C3 17(1) 21(1) 24(1) 4(1) 0(1) 0(1)
C4 16(1) 21(1) 24(1) 8(1) 5(1) 3(1)
C5 20(1) 18(1) 16(1) 5(1) 3(1) 5(1)
C6 15(1) 14(1) 18(1) 5(1) 1(1) 4(1)
C7 18(1) 14(1) 18(1) 4(1) 3(1) 6(1)
C8 18(1) 15(1) 17(1) 2(1) 1(1) 2(1)
C9 19(1) 14(1) 18(1) 4(1) 2(1) 4(1)
C10 19(1) 15(1) 17(1) 3(1) 2(1) 4(1)
C11 19(1) 12(1) 16(1) 3(1) 1(1) 4(1)
C12 18(1) 14(1) 15(1) 2(1) 1(1) 4(1)
C13 18(1) 12(1) 19(1) 4(1) 2(1) 4(1)
C14 19(1) 16(1) 17(1) 4(1) 4(1) 2(1)
C15 21(1) 14(1) 17(1) 5(1) 4(1) 3(1)
C16 18(1) 15(1) 17(1) 1(1) 3(1) 3(1)
C17 20(1) 14(1) 20(1) 2(1) 1(1) 4(1)
C18 18(1) 16(1) 18(1) 4(1) 0(1) 1(1)
C19 24(1) 22(1) 22(1) 7(1) 4(1) 4(1)
C20 16(1) 16(1) 19(1) 3(1) 2(1) 3(1)
C21 22(1) 19(1) 25(1) 4(1) 3(1) 2(1)
C22 19(1) 17(1) 20(1) 2(1) 1(1) 1(1)
C23 26(1) 19(1) 17(1) 1(1) 1(1) 1(1)
C24 83(2) 45(1) 32(1) 10(1) 30(1) 31(1)
C25 40(1) 24(1) 22(1) 1(1) 5(1) 8(1)
C26 45(1) 50(1) 17(1) 5(1) 10(1) 19(1)
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4 Fluorescence decay and optical properties

Fig. S5: Fluorescence decay curves of DCBT excited with an EPL picosecond pulsed diode laser (λex =
505.8 nm) in methylcyclohexane (black, λem = 546.00 nm), toluene (red, λem = 579.00 nm), chloroform (blue,
λem = 598.00 nm), dichlormethane (magenta, λem= 606.00 nm), acetonitrile (dark green, λem = 623.00 nm)
and dimethylsulfoxide (light green, λem = 637.00 nm) at 298 K.
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Fig. S6: UV/Vis absorption (dashed line) and EOA (0o: open symbol; 90o: solid symbol) spectra as well as
the multi linear regressions (solid line) of DCBT measured in methylcyclohexane at 298 K.

Table S3: Fluorescence quantum yields of DCBT in different solvents and temperatures (c ≈ 10−7 M).

Solvent Temperature/oC Φfl/%

CH2Cl2

20 17

−25 42

−78 54

CHCl3
20 15
−25 46

MCH
20 1

−25 4

Table S4: Summary of the spectroscopic data of DCBT in different solvents at 293 K (c ≈ 10−5 M).

Solvent λmax/nm λem/nm ε/103 L·mol−1 cm−1 µeg/D Stokes shift/cm−1

MCH 502 (534)a 546 58 (50)a 9.73 400
Tol 549 579 45 9.04 900

CHCl3 561 598 56 9.73 1100
CH2Cl2 559 606 70 10.8 1400
MeCN 557 623 70 11.1 1900
DMSO 576 637 53 9.78 1700

a In MCH contrary to the other solvents the 0-1 transition has the highest
intensity. For easier comparison the values for the 0-0 transition are given in brackets.
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5 Rates based on harmonic approximation and Fermi’s Golden

Rule

5.1 Fluorescence Rates

In the Born-Oppenheimer approximation the wave function of the initial and final states can

be separated into an electronic and vibrational part

|i〉 = |Ψi〉|Θi〉 |f〉 = |Ψf〉|Θf〉, (1)

with Ψ being the electronic wave function and Θ the vibrational one.

The potential energy surfaces of the S0 and S1 states are approximated to be harmonic

and have the same frequencies ωi and normal modes. The only difference is a horizontal shift

of the equilibrium geometry ∆Qi for each mode i = 1, . . . , N in normal mode coordinates

and a vertical shift to higher energy by the adiabatic excitation energy ∆E.

We assume that the initial state for all transitions is always the lowest vibrational level

in S1 and that contributions from higher vibrational levels and higher excited state can be

neglected (This equivalent to setting the temperature to T = 0 K). In the initial vibrational

wave function therefore all oscillators are in the ground state:

|Θi〉 = |~0′〉 = |0′1〉 ⊗ |0′2〉 ⊗ · · · ⊗ |0′N〉 (2)

The apostrophe indicates that the harmonic oscillator wavefunctions on S1 are shifted

relative to those on S0, i.e. φ′(Qi) = φ(Qi −∆Qi). The final vibrational state on S0 is

|Θf〉 = |~m〉 = |m1〉 ⊗ |m2〉 ⊗ · · · |mN〉 (3)

where the vector ~m gives the number of phonons in each mode. Only those final states are

allowed where the vibrational energy E~m =
∑N

i=1miωi is smaller than the adiabatic excitation

energy ∆E, since otherwise no photon can be emitted.

The overlap squared between the vibrational ground state on S1 and the final vibrational

state with ~m phonons on S0 is given by the product of the Franck-Condon factors for each

mode,

|〈0′i|mi〉|2 =

∣∣∣∣∫ +∞

−∞
φ0(Qi −∆Qi)φm(Qi)dQi

∣∣∣∣2 (4)

=
Smi
i e−Si

mi!
, (5)

where we have defined the Huang-Rhys factor for mode i in terms of the displacement

∆Qi as

Si =
1

2
∆Q2

iωi. (6)

S16



The overlap between the initial and final vibrational wavefunctions is given by the product

of Franck-Condon factors:

F~m =
∣∣∣〈~0′|~m〉∣∣∣2 =

N∏
i=1

Smi
i e−Si

mi!
(7)

The radiative rate increases as the 3rd power of the emission energy and 2nd power of the

transition dipole moment ~µeg:

krad = urad|~µeg|2
∑
~m

(∆E − E~m)3 F~mΘ (∆E − E~m) (8)

The Heaviside function Θ(·) ensures that the energy difference between the initial state and

final state is positive, so that a photon can be emitted. The factor urad = 2.142 × 1010s−1

converts the rates from atomic units to s−1 . Summing over all vibrational states ~m is a

difficult combinatorial problem, since the number of states grows exponentially with the

number of atoms. We follow the procedure proposed in Ref.16 and group the vibrational

states into classes depending on the number of simultaneously excited modes. Limiting

the sum to the first few classes C1, C2, . . . , Cnmax the computational effort can be kept low

while including those states that contribute most to the radiative rate. The convergence is

monitored via the sum of Franck-Condon factors,
∑

~m F~m, which should equal 1 if the sum

is complete.

If the vibrational structure does not change at all between the S0 and S1 minima, only the

0-0 vibrational transition has non-vanishing Franck-Condon factors, F~m = δ~m,~0, and eqn. 8

simplifies to Einstein’s expression for the spontaneous emission rate, kEinstein
rad = urad|~µeg|2∆E3.

5.2 Internal Conversion Rates - Time-Independent

Nonadiabatic transitions are mediated by the operator T for the nuclear kinetic energy

Vif = 〈Ψi|〈Θi|T |Ψf〉|Θf〉

≈ −
N∑
j=1

〈Ψi|
∂Ψf

∂Qj

〉〈Θi|
∂Θf

∂Qj

〉
(9)

where terms like 〈Ψi| ∂
2

∂Q2
j
Ψf〉 have been neglected. The electronic derivative coupling vector is

computed in Cartesian coordinates x, so we need to transform it to normal mode coordinates,

〈Ψi|∂Ψf

∂Qj
〉 =

∑
k〈Ψi|∂Ψf

∂xk
〉 ∂xk
∂Qj

.

For non-radiative transitions we also need the nuclear part of the nonadiabatic coupling

vector, i.e.

〈Θi|
∂Θf

∂Qj

〉 =
N∏
k=1,
k 6=j

〈0′k|mk〉〈0′j|
∂

∂Qj

|mj〉, (10)

The physical constants that make up the prefactor can be found in eqn. 4.18 of Ref.31
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which is derived in the appendix A. After defining the scalar product between the electronic

and the nuclear nonadiabatic coupling vectors as

N~m =
N∑
j=1

〈Ψi|
∂Ψf

∂Qj

〉 ·
〈0′j| ∂∂Qj

|mj〉
〈0′j|mj〉

=
N∑
j=1

〈Ψi|
∂Ψf

∂Qj

〉√ωj

(
mj√
2Sj
−
√
Sj
2

) (11)

the harmonic part of the internal conversion rate can be expressed as

kharm
ic = uic

∑
~m

F~mN
2
~mδ (∆E − E~m) . (12)

The factor uic = 2.598× 1017s−1 converts the rate to s−1 when all other quantities are given

in atomic units.

The δ-function enforces energy conservation. Only transitions to states with the same

energy are allowed. These are highly excited vibrational states with vibrational energies

close to the adiabatic excitation energy, E~m ≈ ∆E. Because of the discrete nature of the

vibrational states, exact alignment of initial and final vibrational states would be required

to satisfy energy conservation. However, interaction with the environment leads to some

broadening of the levels so that transitions are allowed within a narrow window of energies.

To account for this we replace the delta function by a Gaussian with finite width Γ:

δ(∆E − E~m) ≈ 1√
2πΓ2

exp

(
−1

2

(
∆E − E~m

Γ

)2
)

(13)

The width of the energy window is taken as the average spacing between vibrational levels,

Γ = 1
N

∑
i ωi.

Reaching convergence proves to be much more difficult for the internal conversion rate

than for the radiative rate, since the states that contribute most lie at high energies where

the density of states is extremely large. There is no criterion such as the sum of Franck-

Condon (FC) factors for radiative rates for assessing the convergence of IC rates. To be able

to extend the summation to high classes Cn we have to cull the number of states within each

class. To this end we select those normal modes have either larger nonadiabatic couplings

(the so-called promoting modes) and/or large Franck-Condon factors. The normal modes

are sorted in this way and the number of modes is reduced successively until the number

of integrals that have to be considered falls below a manageable threshold. Since all rates

are positive numbers, the rates obtained for a reduced subset of vibrational states are only

a lower bound. In this way one can increase the maximum number of classes Cn and the

number of integral per class until the IC rate stops changing greatly.
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5.3 Internal Conversion Rates - Time-Dependent

The sum-over-states or time-independent approach of the previous section converges only very

slowly. Therefore time-dependent approaches have been developed32–34, where the infinite

sums can be performed analytically at the expense of having to propagate in time. The

rate for internal conversion is then obtained by a discrete Fourier transformation. For the

adiabatic shift model - initial and final states only differ in the equilibrium geometry - the

time-dependent formalism takes a simple form, which is presented here for completeness.

The δ-function for enforcing energy conversion in eqn. 12 can be expressed by its Fourier

transform

δ(∆E − E~m) =
1

2π

∫ +∞

−∞
dt exp(ı(∆E − E~m)t), (14)

so that the non-radiative rate becomes

kharm
ic =

1

2π

∫ ∞
−∞

eı∆Et

{
uic

∑
~m

F~mN
2
~me
−ıE~mt

}
dt (15)

Now we introduce the abbreviations

Aj = 〈Ψi|
∂Ψf

∂Qj

〉
√

ωj
2Sj

(16)

Bj = −〈Ψi|
∂Ψf

∂Qj

〉
√
ωjSj

2
(17)

so that eqn. 11 can be written as

N~m =
∑
j

(Ajmj +Bj) (18)

The Fourier transform of the non-radiative rate becomes then

k̃ic(t) = uic

∑
~m

F~mN
2
~me
−ıE~mt

= uic

∑
~m

N∏
k=1

1

mk!
Smk
k e−Sk−ıωktmk

N∑
i=1

(Aimi +Bi)
N∑
j=1

(Ajmj +Bj)

(19)

We introduce the abbreviation

G(i)
m = e−Si

1

m!

(
Sie
−ıωit

)m
, (20)
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write out the sum over vibrational quantum numbers

∑
~m

=
∞∑

m1=0

∞∑
m2=0

. . .

∞∑
mi=0

. . .

∞∑
mN=0

(21)

and group the factors G
(i)
mi with their respective sums. This gives

k̃nr(t) = uic

N∑
i=1

N∑
j 6=i

∞∑
m1=0

G(1)
m1
. . .

∞∑
mi−1=0

G(i−1)
mi−1

∞∑
mi=0

G(i)
mi

(Aimi +Bi)
∞∑

mi+1=0

G(i+1)
mi+1

. . .

∞∑
mj−1=0

G(j−1)
mj−1

∞∑
mj=0

G(j)
mj

(Ajmj +Bj)
∞∑

mj+1=0

G(j+1)
mj+1

. . .

∞∑
mN=0

G(N)
mN

+ uic

N∑
i=1

∞∑
m1=0

G(1)
m1
. . .

∞∑
mi−1=0

G(i−1)
mi−1

∞∑
mi=0

G(i)
mi

(Aimi +Bi)
2

∞∑
mi+1=0

G(i+1)
mi+1

. . .

∞∑
mN=0

G(N)
mN
.

(22)

The double sums over i and j were split into sums where i 6= j and i = j. We introduce the

abbreviation

Xi(t) = Sie
−ıωit (23)

The sums over m are performed by recognizing the Taylor expansion of the exponential

function,
∑

m=0 x
m/m! = ex,

∑
m=0m/m!xm = xex and

∑
m=0 m

2/m!xm = (x2 + x)ex for

x = Se−ıωt:

∞∑
m=0

G(i)
m = e−Si

∞∑
m=0

1

m!
Xm
i = e−Si+Xi (24)
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and similarly

∞∑
m=0

G(i)
m (Aim+Bi)

= e−Si

{
Ai

∞∑
m=0

m

m!
Xm
i +Bi

∞∑
m=0

1

m!
Xm
i

}
= e−Si+Xi(AiXi +Bi)

(25)

and

∞∑
m=0

G(i)
m (Aim+Bi)

2

= e−Si

∞∑
m=0

Xm
i

m!

{
A2
im

2 + 2AiBim+B2
i

}
= e−Si+Xi

{
A2
iX

2
i + (2AiBi + A2

i )Xi +B2
i

}
(26)

Substituting eqns. 24, 25 and 26 into 22 gives finally

k̃ic(t) = uic

(
N∏
k=1

e−Sk+Xk(t)

)

×

{
N∑
i=1

N∑
j=1

(AiXi(t) +Bi)(AjXj(t) +Bj) +
N∑
i=1

A2
iXi(t)

} (27)

Since vibrational energy levels are discrete, energy conservation would require perfect en-

ergetic alignment of the initial and final vibrational states. Initial and final states will only

accidentally have exactly the same energy when the vibrational frequencies are commensu-

rable. Therefore we need to relax energy conservation a little bit by replacing the δ-function

with the Gaussian broadening function of eqn. 13. The physical justification is that the

coupling to an environment broadens the vibrational levels and allows transitions between

levels which are close so that their line shape functions overlap.

Using the Fourier transform of a Gaussian the broadened line shape function can be

expressed as

δ(∆E − E~m) ≈ 1

2π

∫ ∞
−∞

dt exp

(
−1

2
Γ2t2

)
exp(ı(∆E − E~m)t). (28)

If we use this definition instead of the δ-function in eqn. 15 the non-radiative rate as a

function of the excitation energy becomes
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Fig. S7: Comparison of non-radiative rates kic as functions of excitation energy computed with the time-
dependent (TD) and time-independent (TI) formalism for a fictitious system with 3 vibrational modes. The
frequencies, Huang-Rhys factors and non-adiabatic couplings of the model were set to ω1 = 1000 cm−1, ω2 =
1111 cm−1, ω2 = 2100 cm−1; S1 = 0.1, S2 = 0.01, S3 = 0.5; 〈Ψi|∂Ψf/∂Q1〉 = −0.01, 〈Ψi|∂Ψf/∂Q2〉 = 0.03,
〈Ψi|∂Ψf/∂Q3〉 = 0.005. The parameters for the discrete Fourier transform were, Nt = 216 sample points
and a maximum propagation time of T = 4000 fs. At an excitation energy of 1 eV the rate amounts to
kharm

ic = 1.36× 1012 s−1. The small discrepancy between TD and TI formalism at high energies is due to the
finite energy resolution of the discrete Fourier transform.

kharm
ic (∆E) =

1

2π

∫ ∞
−∞

eı∆Et
{
e−

1
2

Γ2t2 k̃ic(t)
}
dt. (29)

k̃ic(t) is evaluated on an equidistant grid covering the interval [−T, T ] and the non-radiative

rate at the given excitation energy ∆E is then obtained by interpolating the discrete Fourier

transform in eqn. 29. The time-dependent formalism is much more efficient than the time-

independent one at the cost that the information about which vibrational levels contribute

most to the rate is lost. Except for the discretization error, both formalisms, if converged,

give the same results (see Fig. S7).

5.3.1 Energy gap law - saddle point integrationTo derive an energy gap law from eqn.

15 some simplifying assumptions need to be made: (1) The frequencies and Huang-Rhys

factors of all modes are replaced by their average values, ωeff =
∑N

i=1 ωi
Ci∑N

j=1 Cj
is the effective

vibrational mode and S = N−1
∑N

i=1 Si. (2) The P < N modes which have non-vanishing

non-adiabatic couplings are called promoting modes. The coupling per mode is replaced
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by the average value, so that the total length of the non-adiabatic coupling vector remains

unchanged:
∣∣∣〈Ψi|∂Ψf

∂Q
〉
∣∣∣2
avg

= P−1
∑P

i=1

∣∣∣〈Ψi|∂Ψf

∂Qi
〉
∣∣∣2. Substituting eqn. 27 into eqn. 15 and

using the averaged quantities, the non-radiative rate becomes

kharm
ic =

uic
4π

∣∣∣∣〈Ψi|
∂Ψf

∂ ~Q
〉
∣∣∣∣2 ωeff

×
{
PS

∫ ∞
−∞

exp
(
ı∆Et+NS(e−ıωefft − 1)

)
dt

− (2PS − 1)

∫ ∞
−∞

exp
(
ı[∆E − ωeff]t+NS(e−ıωefft − 1)

)
dt

+ PS

∫ ∞
−∞

exp
(
ı[∆E − 2ωeff]t+NS(e−ıωefft − 1)

)
dt

}
(30)

The three integrals all have the form ∫ ∞
−∞

exp(f(t))dt (31)

with

f(t) = ıεt+NS(e−ıωefft − 1) (32)

for ε = ∆E,∆E − ωeff,∆E − 2ωeff. Integrals of this type can be approximated by saddle

point integration (see chapter 10.5 in Ref.35). The largest contribution to the integral comes

from the region around the stationary points of f(t) (where f ′(t0) = 0). After expanding the

exponent to quadratic order around the stationary point, the resulting Gaussian integral can

be solved: ∫ ∞
−∞

ef(t)dt ≈
∫ ∞
−∞

exp

f(t0) + f ′(t0)︸ ︷︷ ︸
=0

(t− t0) +
1

2
f ′′(t0)(t− t0)2

 dt

x=t−t0= ef(t0)

∫ ∞
−∞

exp

(
−1

2
[−f ′′(t0)]x2

)
dx

= ef(t0)

√
2π

(−f ′′(t0))

(33)

The derivatives of f(t) are

f ′(t) = iε− ıωeffNSe
−ıωefft (34)

f ′′(t) = −ω2
effNSe

−ıωefft (35)

f ′(t) has a single root at

ıt0 =
1

ωeff

log

(
ωeffNS

ε

)
(36)
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which corresponds to a maximum since

f ′′(t0) = −ωeffε < 0. (37)

The value of the exponent at the maximum t = t0 is

f(t0) = − ε

ωeff

(
log

(
ε

ωeffNS

)
− 1

)
−NS. (38)

Putting everything together the saddle point approximation for our integral reads:∫ ∞
−∞

ef(t)dt ≈ exp

(
− ε

ωeff

(
log

(
ε

ωeffNS

)
− 1

)
−NS

)√
2π

ωeffε
(39)

Using this approximation to evaluate the three integrals in eqn. 30 we obtain the non-

radiative rate in the saddle point approximation:

kharm
ic =

uic

2
√

2π

∣∣∣∣〈Ψi|
∂Ψf

∂ ~Q
〉
∣∣∣∣2 e−NS

×PS
{
I

(
∆E

ωeff

)
− (2− 1

PS
)I

(
∆E

ωeff

− 1

)
+ I

(
∆E

ωeff

− 2

)} (40)

where the function I(x) of the the dimensionless argument x is defined as:

I(x) =

√
1

x
exp

(
−x
[
log
( x

NS

)
− 1
])

(41)

According to eqn. 40, the non-radiative rate is proportional to the electronic non-adiabatic

coupling matrix element, decreases exponentially with the displacement between ground

and excited state minima (because of the exponential factor e−NS and the relation S =
1
2
∆Q2ωeff), which is surprising, and has a seemingly complex dependence on ∆E because of

the interference between the three I-functions at slightly shifted arguments. For adiabatic

excitation energies that are large relative to the average vibrational frequency, ∆E � ωeff,

one recognizes in eqn. 40 a term that is similar to a finite difference approximation for the

second derivative of I,

I(x)− 2I(x− 1) + I(x− 2) ≈ I ′′(x− 1) for x� 1, (42)

so that eqn. 40 simplifies to

kharm
ic ≈ uic

2
√

2π

∣∣∣∣〈Ψi|
∂Ψf

∂ ~Q
〉
∣∣∣∣2

× e−NS ×
{
I

(
∆E

ωeff

− 1

)
+ PS I ′′

(
∆E

ωeff

− 1

)} (43)
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This is the energy gap law (cf. Ref.36) at T = 0 K. For large adiabatic excitation energies

the non-radiative rate decreases faster than exponentially, because of the behaviour of I(x)

for x→∞.

Fig. S8 shows the energy dependence of the non-radiative rate according to the energy

gap for the merocyanine dye.

Eqn. 43 is similar to the energy gap law derived by Englman and Jortner (eqn. 5.4 in

Ref.36) in the weak coupling limit for T = 0 K, which in our notation would read

kharm
ic ≈ uic

2
√

2π

∣∣∣∣〈Ψi|
∂Ψf

∂ ~Q
〉
∣∣∣∣2 e−NSI (∆E

ωeff

)
(44)

Our result differs from theirs primarily by the second derivative of I(x). This additional term

arises because we take into account the scalar product between the electronic and nuclear non-

adiabatic coupling vectors in eqn. 11, while Englman and Jortner make the approximation

N2
~m ∝ C2, lumping the contributions of different vibrational states to the non-adiabatic cou-

pling into a single constant C. This simplifies their problem so that they can use tricks orig-

inally developed to calculate the shape of absorption curves37,38 to derive the non-radiative

rate at non-zero temperature (eqn. (5.12) in Ref.36). The more complicated nature of eqn.

11 precludes us from using the same techniques. However, a back-of-the-envelope calculation

shows that temperature effects on the non-radiative rate in the harmonic approximation are

likely negligible compared to the errors introduced by the harmonic approximation itself.

At room temperature the thermal energy amounts to β−1 = kB × 300 K = 209 cm−1 com-

pared to the energy of a C=C stretch vibration (a typical promoting mode) in the range

h̄ωeff = 1400− 1600 cm−1, which gives βh̄ωeff ≈ 7. The probability that the promoting mode

in the initial state is excited at room temperature is negligible:

p(n ≥ 1) =
∞∑
n=1

p(n) =

∑∞
n=1 e

−βh̄ωeff(n+ 1
2

)∑∞
n=0 e

−βh̄ωeff(n+ 1
2

)
= e−βh̄ωeff

≈ 0.0009,

(45)

Vibrational modes with lower frequencies can be excited thermally, but their contribution to

the non-adiabatic coupling vector is smaller than that of the promoting modes.

5.4 Notes on the saddle point approximation

To understand why and in which cases the saddle point approximation works, one has to

remember that integrals of analytic functions in the complex plane depend only on the

endpoints. With reference to Fig. S9 this means∫ B

A

g(z)dz =

∫
C1

g(z)dz =

∫
C2

g(z)dz. (46)
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Fig. S8: Energy gap law for non-radiative rates. Average frequencies and Huang-Rhys factors from the
merocyanine dye were used. Non-radiative rates are shown for different approximations: numerically exact
integrals by Fourier transformation according to eqn. 30 (solid blue, convolved with a Gaussian of exponent
Γ = 1

2ωeff), saddle point approximation according to eqn. 40 (dashed orange) and the energy gap law
according to eqn. 43 (dotted green). Interestingly there is a dip at ≈ 0.8 eV where kic has a local minimum.

We need to solve the following integral of an analytic function over the real line

I =

∫ ∞
−∞

e−
1
2
γt2ef(t) with f(t) = ıεt+NS(e−ıωefft − 1) (47)

where γ > 0 is a Gaussian broadening parameter. f(t) can be split into real and imaginary

parts:

ef(t) = ex(t)eıy(t) (48)

The largest contributions to the integral come from regions where (1) x(t) has a maximum,

i.e. x′(t0) = 0 and (2) where the imaginary part is stationary, i.e. y′(t0) = 0, so that the

phase does not change appreciably, since fast oscillations would cancel. Conditions (1) and

(2) cannot be fulfilled simultaneously unless t0 is allowed to be complex. Then the separate

conditions for real and imaginary parts can be combined into a single equation

f ′(z0) = 0 (49)
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Fig. S9: Integration paths in the complex plane.

which leads to

z0 = − ı

ω0

log

(
ωeffNS

ε

)
(50)

Since z0 is imaginary and does not lie on the real axis, the point is not traversed in the

line integral of eqn. 47. However, if the path is deformed so that it passes through z0 (see

Fig.S10), the value of the integral is not changed, but the integrand oscillates less and is more

strongly localized, so that it can be approximated by a Gaussian function (see Fig. S11).

The parametrization of the new path is

z(t) = z0 + t t ∈ [−∞,+∞] (51)

Since the endpoints are −∞ and +∞, it is fine to neglect the curvature. The quadratic

expansion of the exponent around z0 is

f(z) ≈ f(z0) + f ′(z0)︸ ︷︷ ︸
=0

(z − z0)− 1

2
[−f ′′(z0)](z − z0)2 (52)

Fig. S10: Deformed path passes through z0

The function f(z0 + t) is periodic, while the quadratic approximation has a single maxi-

mum. The broadening parameter γ is needed to ensure that only the first peak contributes

to the integral (see Fig. S12). After performing the quadratic expansion we can set γ = 0,

but it is important to keep in mind, that without this damping factor, the integral I(ε) would
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Fig. S11: (a) Along the real line ef(t) is a highly oscillatory function. (b) If the path is deformed so that is
passes through z0, ef(t) is localized around t = 0 and can be approximated by a Gaussian.

be a sequence of δ-peaks only envelope of which agrees with the saddle point approximation.

Fig. S12: ef(t) for (a) weak damping and (b) strong damping. If γ is chosen large enough only a single peak
survives.

We conclude that the saddle point approximation

[h]

∫ ∞
−∞

ef(t)dt =

∫ ∞
−∞

ef(z0+t)dt ≈ ef(z0)

∫ ∞
−∞

e−
1
2

[−f ′′(z0)]t2dt (53)

is asymptotically valid in the limits ε→∞ and γ →∞.

5.5 Nonadiabatic Couplings

Here we derive the expression for the non-adiabatic coupling between displaced harmonic

oscillator eigenfunctions in terms of the Huang-Rhys factors. The indices labelling the vi-
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brational modes are suppressed for clarity. The action of the momentum operator P on an

eigenstate of the harmonic oscillator is given by39

−ıdφm(Q)

dQ
= Pφm (54)

= ı

√
ωeff

2

(√
m+ 1φm+1(Q)−

√
mφm−1(Q)

)
(55)

Therefore the derivative coupling can be expressed in terms of overlap integrals to states

with m− 1 and m+ 1 phonons:

〈0′| ∂
∂Q
|m〉 =

∫ ∞
−∞

φ0(Q−∆Q)
dφm
dQ

(Q)dQ

= −
√
ωeff

(√
m+ 1

2

∫ ∞
−∞

φ0(Q−∆Q)φm+1(Q)dQ

−
√
m

2

∫ ∞
−∞

φ0(Q−∆Q)φm−1(Q)dQ

) (56)

Using the definition of the Franck-Condon factors in eqn. 5 we obtain the coupling expressed

via the Huang-Rhys factors:

〈0′| ∂
∂Q
|m〉 =

√
ωeff

(√
m

2

√
Sm−1e−S

(m− 1)!
−
√
m+ 1

2

√
Sm+1e−S

(m+ 1)!

)

= 〈0′|m〉
√
ωeff

(
m√
2S
−
√
S

2

) (57)
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6 Rates based on Kramers’s Theory

For the evaluation of the Kramers’s equation (see eqn. 8 in the main article) the electronic

energy gap between the S1 minimum and transition state, which connects the FC minimum

and the conical intersection, is used to calculate the nonradiative rate kCI
ic . However, our

calculated activation barriers EA are too high and if plugged unadulterated into Kramers’s

equation would lead to negligibly small internal conversion rates. Furthermore, also the

prefactor might be prone to errors and therefore this fitting to the experimental values corrects

both for the systematic errors in the barrier heights as well for the errors in the frequency

prefactor. In view of the clear correlation between activation barriers and quantum yields,

we introduce a parameter α for shifting the activation energies to a reasonable magnitude. α

is fitted to minimize the difference between experimental and simulated quantum yields. The

optimal value of α is obtained by finding the maximum of the sample Pearson correlation

coefficient40,

rxy =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 x

2
i )

2
√
n
∑n

i=1 y
2
i − (

∑n
i=1 y

2
i )

2
, (58)

between the two data sets. Here xi, yi are the experimental and simulated quantum yields

in the different solvents and n is the number of solvents. This gives α = 0.192 eV.

6.1 Calculation of Friction Coefficients

The microscopic friction coefficients, γ, were calculated using Stokes law:

γ =
6 · π · η · r

m
(59)

Here η is the dynamic viscosity of the solvent, r the radius of a single solvent molecule and

m the molar mass. The radii were calculated from the macroscopic density and the molar

mass by assuming that the geometry of the solvent molecule corresponds to a hard sphere.

The used data in combination with the reference are given in Tab. S5.

Table S5: Dynamic viscosities (η), molecular weights (M) and densities of the used solvents. The corre-
sponding reference is given after each value.

η/mPa · s M/g·mol−1 ρ/g·cm3

MCH 0.73441 98.1942 0.7742

Tol 0.59043 92.1444 0.8644

CHCl3 0.56345 119.3745 1.4845

CH2Cl2 0.43746 84.9346 1.3346

MeCN 0.35047 41.0547 0.7947

DMSO 2.47048 78.1348 1.1048
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7 Onsager Solvation Model

Having established by the CDFT-CI calculations and the BLA criterion that the weight c2

changes along the path FC → TS → MECI, we can interpret c2 as a reaction coordinate.

CDFT-CI also provides qualitative matrix elements of the x-component (along the principal

axis of the molecule) of the dipole operator for the diabatic wavefunctions (in Debye):

µneutral = 〈DA|ex|DA〉 = 6.1 D (60)

µzwitter = 〈D+A−|ex|D+A−〉 = 40.5 D (61)

µcross = 〈DA|ex|D+A−〉 = −3.7 D (62)

With the help of the diabatic to adiabatic transformation

Ψg =
√

1− c2|DA〉+ c|D+A−〉 (63)

Ψe = c|DA〉 −
√

1− c2|D+A−〉, (64)

the permanent dipole moments of the adiabatic ground and excited state may be expressed

as functions of the parameter c:

µg(c) =
√

1− c2µneutral + c2µzwitter + 2c
√

1− c2µcross (65)

µe(c) = c2µneutral + (1− c2)µzwitter − 2c
√

1− c2~µcross (66)

These qualitative dipole moments are plotted in the upper part of Fig. S13. The similarity

of the curves with the quantitative dipole moments from CASSCF calculations in Fig. 4

justifies the choice of c as a reaction coordinate, but it is also obvious that the amplitude of

these dipole moments is overestimated.

Now we are in a position to build a simple model that explains why the polarity of the solvent

affects different points along the reaction coordinate differently. In the Onsager model49,50,

the solute is approximated by a dipole in a spherical cavity of radius a surrounded by a

homogeneous dielectric medium of the relative dielectric constant εr (to vacuum). The dipole

moment induces a polarization in the dielectric which gives rise to a reaction field ~R, the

strength of which depends on εr:

~R =
2(εr − 1)

2εr + 1

µ

a3
(67)

If the excited state is long-lived, the reaction field has time to adjust to the excited state

dipole moment. The state-specific solvation energy is given by the interaction of the dipole

moment of the ground or excited state with the respective reaction field:
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Usol(c) = −1

2
µ · ~R = − εr − 1

2εr + 1

µ2(c)

a3
(68)

The Onsager model is only able to predict qualitative trends. For elongated planar

molecules the assumption of a spherical cavity is questionable and it is not clear which

value should be chosen for the cavity radius – we use a value of a ≈ 10 Å.

The solvation energies along the reaction path according to eqn. 68 are shown on the right

in Fig. S13b). For c ≈ 0 the excited state is largely zwitterionic and strongly stabilized by

polar solvents, whereas the stabilization is only small for c ≈ 1. This leads to an increase

in the activation energy and consequently a reduction in the rate for non-radiative decay

through the CI.
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Fig. S13: (top) Permanent dipole moments in the ground and excited state along the reaction coordinate
c. (bottom) State-specific solvation energy from Onsager’s model for solvents of increasing polarity. The
Franck-Condon point (c ≈ 0.52) is stabilized more by a polar solvent than the transition state and the
MECI (c ≈ 0.71).
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8 Transient Absorption Spectroscopy

Table S6: Overview of lifetimes resulting from global analysis of broadband ultrafast transient absorption
data in various solvents. Lifetimes marked with a star symbol are larger than the maximum measured time
delay and should therefore be regarded as infinite in the context of the performed measurements. Root-mean
square errors obtained for global fits: RMSMCH = 3.65 · 10−5 mOD, RMSCHCl3 = 4.7 · 10−4 mOD and
RMSMeCN = 2.43 · 10−4 mOD.

Solvent λex/nm τ1/fs τ2/ps τ3/ps τ4/ps τ5/ns

MCH 506 135 5.3 36 10.8*
CHCl3 518 586.7 3.6 169.9 834 12.5*
MeCN 514 168.6 1.3 8.5 1448.5*

Fig. S14: Decay-associated spectra and relaxation times (included in the plots) resulting from global analysis
of the transient absorption data of Fig. 7 in the main text for the three solvents: (a) Methylcyclohexane at
λex = 506 nm, (b) chloroform at λex = 518 nm, and (c) acetonitrile at λex = 514 nm. Lifetimes marked with
a star symbol are larger than the maximum measured time delay and should therefore be regarded as infinite
in the context of the performed measurements.
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9 Temperature Dependence of Quantum Yields

In Fig. S15 the predicted and experimental fluorescence quantum yields as functions of

the temperature are plotted as lines and crosses, respectively. In all solvents for which

experimental data are available at more than one point, the quantum yield increases at

lower temperatures. The largest temperature range could be investigated for CH2Cl2. For

this solvent of intermediate polarity a quite good agreement between experiment and theory

is found with an increase of the fluorescence quantum yield from 17 % at 293 K to 54%

at 195 K. For the least polar solvent MCH a small increase from QY=1 % at T=293 K

to 4 % at 248 K can be discerned in the experimental data. For the unpolar solvent MCH

(where the dye aggregation precludes measuremnts below 248 K) and the polar solvent DMSO

(where no measurements below 291 K are possible due to the solidification of the solvent) the

inflection points lie below or above the temperature range that can be measured. Based on

the position of the inflection point relative to room temperature, the solvents can be divided

into three groups: the unpolar solvents MCH (and Tol) which suppress the fluorescence, the

polar solvents DMSO (and MeCN) which enable fluorescence and the solvents CH2Cl2 (and

CHCl3), which allow to tune the fluorescence quantum yield of DCBT over a relatively

narrow temperature interval close to room temperature.
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Fig. S15: Temperature dependence of the quantum yield in different solvents. Solid curves correspond to the
predictions, crosses are measurements.
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