3-Bromotetrazine: Labelling of Macromolecules via Monosubstituted Bifunctional *s***-Tetrazines**

Simon D. Schnell,^a Lukas V. Hoff,^a Advaita Panchagnula,^a Maximilian H. H. Wurzenberger,^b Thomas M. Klapötke,^b Simon Sieber,^a Anthony Linden,^a Karl Gademann^a*

^a Department of Chemistry, University of Zurich, Winterthurer Strasse 190, 8057 Zurich, Switzerland

^b Department of Chemistry, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377 Munich, Germany

Table of Contents

Experimental Procedures	S-3			
Synthetic Procedures	S-5			
Substrate Scope	S-12			
Deprotection of Fmoc-protected amino acid tert-butyl esters				
Synthesis of Chemical Probes				
Whole Cell Labelling	S-39			
Targeting of ∟-Glutathione in Cyanobacteria Extracts	S-41			
Functionalization of Peptides and Proteins	S-45			
Crystallographic Data	S-53			
NMR Spectra				

Experimental Procedures

General Information, Materials and Equipment

All chemicals were purchased from Sigma-Aldrich, Acros, Alfa Aesar or Fluka and were used without further purification. All reactions were carried out in flame dried glassware under a nitrogen atmosphere. Solvents applied for chemical transformations were either puriss. quality or HPLC grade solvents. For work-up and purification, solvents were distilled from technical grade. All synthetic transformations have been monitored by either thin layer chromatography (TLC), ¹H-NMR spectroscopy or UHPLC/ESI-MS. TLC was performed on Merck silica gel 60 F₂₅₄ plates (0.25 mm thickness) precoated with a fluorescent indicator. The developed plates were examined under UV light and stained with ceric ammonium molybdate or potassium permanganate followed by heating. GC/EI-MS measurements were performed on a Finnigan Trace GC ultra from Thermo Electron Corporation with El (electron ionization), Zebron ZB-5MS (30 m) column and Finnigan Trace DSQ. Concentration under reduced pressure was performed by rotary evaporation at 40 °C. Flash chromatography was performed using silica gel 60 (230-400 mesh) from Sigma-Aldrich with a forced flow eluent at 0.3-0.5 bar pressure. All ¹H, ¹³C-NMR and ¹⁹F spectra were recorded using Bruker 300 MHz (¹H) or Bruker 400 MHz (¹H) & 101 MHz (¹³C) or Bruker 500 MHz (¹H) & 126 MHz (¹³C) spectrometers at 25 °C. Chemical shifts (δ-values) are reported in ppm, spectra were calibrated related to solvents residual proton chemical shifts (CHCl₃, δ = 7.26; methanol-d3, δ = 3.31; DMSO- d_5 , δ = 2.50) and solvents residual carbon chemical shifts (CDCl₃, δ = 77.16; methanol-d4, δ = 49.00; DMSO- d_6 , δ = 39.52), multiplicity is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved and coupling constant J in Hz. ¹⁹F spectra were referenced to the internal standard CFCl₃. IR spectra were recorded on a Varian 800 FT-IR ATR spectrophotometer. Intensities are reported as follows: very strong (vs), strong (s), medium (m), weak (w) and very weak (vw). The absorptions are reported in cm⁻¹. RP-HPLC was conducted with a Prominence modular HPLC instrument (Shimadzu) coupled to a SPD-20A UV/Vis detector (Shimadzu) using a reversedphase column (Gemini-NX C18, 5 µm, 10 Å, 150 mm x 4.6 mm; Phenomenex) for analytical HPLC. The Prep-HPLC was equipped with a CBM-20A system controller, a LC-20AP solvent delivery unit, a DGU-20A degassing unit and a FRC-10A fraction collector (all Shimadzu). The following solvents were used: H₂O + 0.1 % HCOOH (A), MeCN + 0.1 % HCOOH (B). All high-resolution mass spectra (HRMS-ESI) were recorded by the mass spectrometry service at the University of Zürich on a Finnigan MAT95 mass spectrometer or (for EI) on a DFS double-focusing (BE geometry) magnetic sector mass spectrometer (ThermoFisher Scientific, Bremen, Germany). Mass spectra were measured with electron ionization (EI) at 70 eV, solid probe inlet, a source temperature of 200°C, an acceleration voltage of 5 kV, and a resolution of 10'000. The instrument was scanned between e.g. m/z 300 and 350 at scan rate of 100-200 s / decade in the electric scan mode. Perfluorokerosene (PFK, Fluorochem, Derbyshire, UK) served for calibration or were analyzed with an Acquity UPLC (Waters, Milford, USA) connected to an Acquity et detector and a maXis QToF high-resolution mass- spectrometer (Bruker Daltonics, Bremen, Germany). Separation was performed with an Acquity BEH C18 HPLC column (1.7 µm particle size, 2 x 100 mm, Waters) kept at 30 °C. The mobile phase was consisting of A: H₂O 0.1% HCOOH and B: CH₃CN + 0.1% HCOOH. A linear gradient was run from 5 to 98% B within 5 min followed by flushing with 98% B for 1 min at 400 µl min⁻¹ flow rate. UV spectra were recorded between 200 and 600 nm at 1.2 nm resolution and 20 points s⁻¹. The mass spectrometer was operated in the positive (negative) electrospray ionization mode at 4'000 V (-4'000 V) capillary voltage, -500 V (500 V) endplate offset, with a N₂ nebulizer pressure of 1.6 bar and dry gas flow of 8l min⁻¹ at 200°C. Spectra were

acquired in the mass range from m/z 50 to 2'000 at 20'000 resolution (full width at half maximum) and 1.5 Hz rate. The mass analyzer was calibrated prior to analysis between m/z 158 and 1450 using a 2 mM solution of sodium formate at a resolution of 20'000 and a mass accuracy below 2 ppm. UV-Vis spectra were recorded on a Shimadzu UV-1800 spectrometer. Melting points (M.p.) were determined using a Büchi B-545 apparatus in open capillaries and are uncorrected. Specific optical rotation was measured on a JASCO P-2000 Polarimeter, measured at the indicated temperature. UV-Vis spectra were recorded on a Shimadzu UV-1800 spectrophotometer with a spectral width of 200 to 800 nm. Fluorescence measurements were carried out on a Perkin Elmer Luminescence Spectrometer LS 50 B with an excitation wavelength corresponding to the absorption maximum in the UV-Vis spectrum and a spectral width from 300 to 800 nm. X-ray diffraction data were recorded using a Rigaku Oxford Diffraction SuperNova area-detector diffractometer. The impact sensitivity tests were carried out according to STANAG 4489¹modified instruction² using a BAM (Bundesanstalt für Materialforschung) drophammer.³ The friction sensitivity tests were carried out according to STANAG 4487⁴ modified instruction⁵ using the BAM friction tester. The classification of the tested compounds results from the "UN Recommendations on the Transport of Dangerous Goods".⁶ Sensitivity towards electrical discharge was tested using the Electric Spark Tester ESD2010 EN.⁷ Differential thermal analysis (DTA) measurements to determine the decomposition temperatures of compound S1 – S5, 2 and 3 were performed at a heating rate of 5 °C min⁻¹ with an OZM Research DTA 552-Ex instrument. Gel electrophoresis was conducted using Mini-PROTEAN TGX Stain-Free[™] precast gels purchased from Bio-Rad at 100 V.

Synthetic Procedures

Caution! Several compounds presented herein have a very high nitrogen content and thus might potentially have energetic properties. Thus, caution is of need when handling the compounds, however, in our hands, none of the presented compounds proved to have any dangerous properties and all compounds were safe to handle in large scale. Additionally, the safety evaluation of compounds S1 - S5, 2 and 3 towards impact, friction and electrostatics showed no energetic properties.

Hydrazinecarbohydrazonhydrazide (S1)^[8]

$$\begin{array}{c} \underset{(quant.)}{\overset{\oplus}{H_3N}}^{CI} \overset{NH}{\underset{NH_2}{\overset{H_2}{\longrightarrow}}} & \underset{(quant.)}{\overset{N_2H_4 \cdot H_2O}{\underset{H_2N}{\overset{H_2N}{\underset{H_2N_2}{\overset{N}{\underset{H_2N}{\overset{N}{\underset{H_2N_2}{\overset{N}{\underset{H_2N_2}{\overset{N}{\underset{H_2N}{\underset{H_2N}{\overset{N}{\underset{H_2N_2}{\overset{N}{\underset{H_2N}{\overset{N}{\underset{H_2N}{\overset{N}{\underset{H_2N}{\overset{N}{\underset{H_2N}{\underset{H_2N}{\overset{N}{\underset{H_2N}{\overset{N}{\underset{H_2N}{\underset{H_2N}{\overset{N}{\underset{H_2N}{\underset{H_N}{\underset{H_2N}{H_{H_2N}{\underset{H_N}{H_{H_2N}{H_{H_{H_{H_{H}}{H_{H_{H_{H}}{H_{H_{H}$$

Guanidine hydrochloride (25.0 g, 262 mmol, 1.00 equiv) was suspended in 1,4-dioxane (130 mL). Hydrazine monohydrate (43.3 mL, 891 mmol, 3.40 equiv) was added and a clear solution formed. The mixture was heated to reflux for 2 h and during this time the product precipitated as a white solid. Then, the suspension was filtered and the filter cake was rinsed with 1,4-dioxane (100 mL). The solid was dried under high vacuum affording compound **S1** (27.3 g, 262 mmol, quant.) as a colorless solid.

¹³**C-NMR** (D₂O, 101 MHz): δ = 159.5 ppm.

The obtained analytical data are consistent with the values reported in the literature.^[8]

Sensitivity Tests: BAM impact: > 40 J; BAM friction: >360 N; ESD: > 1.5 J (at grain size <100 μm).

Figure 1. DTA Anaylsis of hydrazinecarbohydrazonhydrazide (S1).

Dihydrotetrazine S2^[8]

Compound **S1** (16.3 g, 157 mmol, 1.00 equiv) was suspended in water (130 mL) and acetylacetone (32.2 mL, 314 mmol, 2.00 equiv) was added dropwise over 15 min. The mixture was stirred for 18 h at 70 °C. The yellow suspension was then filtered and the filter cake was rinsed with cold water (100 mL). The residue was dried under high vacuum to afford dihydrotetrazine **S2** (22.0 g, 81.0 mmol, 52%) as a yellow solid.

¹**H-NMR** (CDCl₃, 400 MHz): δ = 8.05 (br s, 2H), 5.97 (s, 2H), 2.49 (s, 6H), 2.22 (s, 6H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[8]

Sensitivity Tests: BAM impact: > 40 J; BAM friction: >360 N; ESD: > 1.5 J (at grain size <100 μm).

Tetrazine S3^[8]

Dihydrotetrazine **S2** (29.5 g, 108 mmol, 1.00 equiv) was suspended in CH_2Cl_2 (125 mL) and cooled to 0 °C. A solution of NaNO₂ (22.6 g, 324 mmol, 3.00 equiv) in water (250 mL) was added dropwise over 5 min. Then acetic acid (15.4 mL, 270 mmol, 2.50 equiv) was added dropwise. The mixture was stirred for 3.5 h, turning bright red over time (*caution: evolution of nitrous gases!*). After completion of the reaction, the layers were separated and the aqueous layer was extracted with CH_2Cl_2 (5 x 200 mL). The combined organic layers were washed with an aqueous potassium carbonate solution (5% wt/wt; 200 mL), dried over sodium sulfate, filtered and concentrated. The obtained bright red solid was dried under high vacuum to afford tetrazine **S3** (27.5 g, 102 mmol, 94%).

¹**H-NMR** (CDCl₃, 400 MHz): *δ* = 6.19 (s, 2H), 2.71 (s, 6H), 2.39 (s, 6H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[8]

Sensitivity Tests: BAM impact: > 40 J; BAM friction: >360 N; ESD: > 1.5 J (at grain size <100 µm).

Tetrazine S4^[9]

Tetrazine **S3** (24.7 g, 91.4 mmol, 1.00 equiv) was dissolved in MeCN (230 mL) and hydrazine monohydrate (4.44 mL, 91.4 mmol, 1.00 equiv) was added dropwise. Immediate formation of a red solid could be observed and after 40 min, the suspension was filtered. The filter cake was washed with toluene (100 mL) and the residue was dried under high vacuum to afford tetrazine **S4** (13.9 g, 67.4 mmol, 74%) as a bright red solid.

¹**H-NMR** (DMSO-*d*6, 400 MHz): δ = 9.78 (s, 1H), 6.19 (s, 1H), 4.68 (s, 2H), 2.38 (s, 3H), 2.22 (s, 3H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[9]

Sensitivity Tests: BAM impact: > 40 J; BAM friction: >360 N; ESD: > 1.5 J (at grain size <100 μ m).

Tetrazine S5^[9]

Activated manganese dioxide (35.2 g, 404 mmol, 6.00 equiv) was suspended in THF (270 mL) and the mixture was cooled to 0 °C. Compound **S4** (13.9 g, 67.4 mmol, 1.00 equiv) was added in portions over 15 min. The mixture was stirred for 30 min at 0 °C and was then filtered through a pad of celite. The filter cake was rinsed with CH_2Cl_2 (100 mL) and the solvent was removed under reduced pressure. The obtained solid was filtered through a short silica column eluting with CH_2Cl_2 and the solvent was removed under reduced pressure to afford tetrazine **S5** (5.40 g, 30.7 mmol, 47%) as a red solid.

¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.19 (s, 1H), 6.21 (s, 1H), 2.74 (s, 3H), 2.39 (s, 3H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[9]

Sensitivity Tests: BAM impact: > 40 J; BAM friction: >360 N; ESD: > 1.5 J (at grain size <100 μm).

Tetrazine 3^[9]

Tetrazine **S5** (5.41 g, 30.7 mmol, 1.00 equiv) was added to MeCN (150 mL) and hydrazine monohydrate (1.64 mL, 33.8 mmol, 1.10 equiv) was added dropwise. The mixture was heated to reflux for 20 min, before the solvent was removed under reduced pressure. The residue was washed with diethyl ether (200 mL) and dried under high vacuum to afford tetrazine **3** (2.85 g, 25.4 mmol, 83%) as a red solid.

¹**H-NMR** (DMSO-*d*6, 400 MHz): *δ* = 9.75 (s, 1H), 9.55 (br s, 1H), 4.59 (br s, 2H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[9]

Sensitivity Tests: BAM impact: > 40 J; BAM friction: >360 N; ESD: > 1.5 J (at grain size <100 µm).

Figure 2. DTA Anaylsis of 3-hydrazinotetrazine (3).

3-Bromotetrazine (2)

Tetrazine **3** (1.38 g, 12.3 mmol, 1.00 equiv) was added to MeCN (23 mL) and cooled to 0 °C. Dibromoisocyanuric acid (5.51 g, 18.5 mmol, 1.50 equiv) was added in portions over 10 min. Then, the bright orange suspension was allowed to warm to 25 °C and stirred for 1 h. The suspension was filtered through a pad of celite covered with silica gel and the filter cake was rinsed with CH_2Cl_2 until the filtrate became colorless. The solvent was removed under a stream of nitrogen (*caution: product is volatile!*). The crude product was then purified via flash column chromatography on silica gel (CH_2Cl_2) to afford 3-bromotetrazine (**2**) (854 mg, 5.30 mmol, 43%) as a bright orange, crystalline solid.

R_f (CH₂Cl₂) = 0.7 (orange spot); **melting point** = 70 – 72 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.34 (s, 1H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 164.2, 158.0 ppm; **IR** (neat): \tilde{v} = 3081 (w), 1228 (s), 1208 (vs), 882 (vs) cm⁻¹; **elemental analysis**: calculated for C₂HN₄Br: C = 14.92, H = 0.63, N = 34.81; found: C = 14.72, H = 0.64, N = 34.32.

Sensitivity Tests: BAM impact: > 40 J; BAM friction: >360 N; ESD: > 1.08 J (at grain size <100 µm).

Temperature [°C]

Figure 1. DTA Anaylsis of 3-bromotetrazine (2).

Synthesis of Amino Acid Precursors

Boc-Trp-OMe (S6)^[10]

Tryptophan methyl ester hydrochloride (1.00 g, 3.93 mmol, 1.00 equiv) was dissolved in CH_2Cl_2 (15 mL) and NEt_3 (2.79 mL, 19.7 mmol, 5.00 equiv) was added, followed by Boc_2O (1.26 mL, 5.90 mmol, 1.50 equiv). The mixture was stirred for 3 h and then the reaction mixture was concentrated. The crude material was purified via flash column chromatography on silica gel (30% EtOAc in pentane) to afford Boc-Trp-OMe (**S6**) (309 mg, 0.971 mmol, 25%) as a white solid.

¹**H-NMR** (CDCl₃, 400 MHz): δ = 8.10 (br s, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.19 (t, *J* = 8.1 Hz, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 7.00 (s, 1H), 5.08 (d, *J* = 8.3 Hz, 1H), 4.66 (d, *J* = 8.5 Hz, 1H), 3.68 (s, 3H), 3.29 (dd, *J* = 5.8, 2.8 Hz, 1H), 1.43 (s, 9H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[10]

Boc-Lys(Cbz)-OMe (S7)^[11]

Boc-Lys(Cbz)-OH (768 mg, 2.02 mmol, 1.00 equiv) was dissolved in DMF (10.1 mL). K_2CO_3 (568 mg, 4.24 mmol, 2.10 equiv) was added followed by MeI (0.28 mL, 4.44 mmol, 2.20 equiv). The mixture was heated to 80 °C and was stirred for 16 h. Then, water (100 mL) and EtOAc (100 mL) were added and the mixture was stirred until two clear layers were formed. The layers were separated and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (2 x 50 mL), dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography on silica gel (40% EtOAc in pentane) to afford Boc-Lys(Cbz)-OMe (**S7**) (666 mg, 1.69 mmol, 84%) as a colorless oil.

¹**H-NMR** (CDCl₃, 400 MHz): δ = 7.38–7.29 (m, 5H), 5.09–5.05 (m, 3H), 4.78 (br s, 1H), 4.32–4.26 (m, 1H), 3.73 (s, 3H), 3.19 (q, *J* = 6.6 Hz, 2H), 1.86–1.75 (m, 1H), 1.69–1.59 (m, 1H), 1.54–1.49 (m, 2H), 1.43 (s, 9H), 1.40–1.34 (m, 2H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[11]

Boc-Lys-OMe (S8)^[12]

Boc-Lys(Cbz)-OMe (**S7**) (667 mg, 1.69 mmol, 1.00 equiv) was dissolved in MeOH (16.9 mL) and Pd/C (10% Pd; 66.7 mg, 10 wt%) was added. The system was purged with hydrogen gas and the suspension was then stirred for 30 min. The reaction mixture was filtered through a pad of celite and the filter cake was rinsed with EtOAc (20 mL). The solvent was removed to afford Boc-Lys-OMe (**S8**) (439 mg, 1.69 mmol, quant.) as a clear, colorless oil. The material was used in the next step without purification.

 $[\alpha]_{D}^{20} = -20.43$ (c = 1.11, MeOH); ¹H-NMR (CDCl₃, 400 MHz): $\delta = 5.02$ (d, J = 8.4 Hz, 1H), 4.33–4.26 (m, 1H), 3.74 (s, 3H), 2.69 (t, J = 6.7 Hz, 2H), 1.84–1.77 (m, 1H); 1.68–1.59 (m, 1H), 1.48–1.35 (m, 15H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[12]

Fmoc-Cys-OtBu (S9)[13]

(Fmoc-Cys-OtBu)₂ (100 mg, 0.125 mmol, 1.00 equiv) was dissolved in CH_2Cl_2 (2 mL) and dithiothreitol (28.9 mg, 0.188 mmol, 1.50 equiv) was added followed by freshly distilled triethylamine (over CaH_2) (26.4 µL, 0.188 mmol, 1.50 equiv). The mixture was stirred for 1 h, and was then diluted with CH_2Cl_2 (50 mL). The layers were separated and the aqueous layer was washed with saturated aqueous sodium bicarbonate solution (2 x 100 mL) and water (2 x 100 mL). The organic layer was dried over sodium sulfate, filtered and concentrated to afford Fmoc-Cys-OtBu (**S9**) (80.0 mg, 0.20 mmol, 80%) as a colorless oil. The crude product was used in the next step without further purification.

¹**H-NMR** (CDCl₃, 400 MHz): δ = 7.77 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 5.68 (d, *J* = 7.3 Hz, 1H), 4.55–4.54 (m, 1H), 4.42 (t, *J* = 7.0 Hz, 2H), 4.24 (t, *J* = 7.0 Hz, 1H), 2.99 (dt, *J* = 9.3, 3.5 Hz, 2H), 1.50 (s, 9H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[13]

Fmoc-Tyr-OtBu (S10)[14]

Fmoc-Tyr-OH (1.00 g, 2.48 mmol, 1.00 equiv) was dissolved in a mixture of CH_2Cl_2/THF (4:1 v/v; 10 mL) and cooled to 0 °C. *Tert*-butyl trichloroacetimidate (1.33 mL, 7.44 mmol, 3.00 equiv) was added dropwise. The mixture was allowed to warm to 25 °C and was then heated to 60 °C. After 16 h, CH_2Cl_2 (100 mL) was added and the organic layer was washed with aqueous sodium bicarbonate solution (2.5 wt% in water; 2 x 100 mL). The organic layer was dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography (20 – 30% EtOAc in pentane) to afford Fmoc-Tyr-OtBu (**S10**) (1.11 g, 2.42 mmol, 97%) as a sticky, colorless solid.

 $[\alpha]_{D}^{20}$ = +12.66 (c = 0.885, CHCl₃); ¹H-NMR (MeOH- d_4 , 400 MHz): δ = 7.79 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.32–7.28 (m, 2H), 7.04 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 8.4 Hz, 2H), 4.35–4.23 (m, 3H), 4.18 (t, J = 7.1 Hz, 1H), 2.98 (dd, J = 13.9, 6.1 Hz, 1H), 2.83 (dd, J = 13.9, 8.8 Hz, 1H), 1.41 (s, 9H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[14]

H₂N-Lys(Cbz)-OtBu (S11)^[15]

 H_2N -Lys(Cbz)-OH (4.29 g, 15.3 mmol, 1.00 equiv) was added to *tert*-butyl acetate (53 mL). Perchloric acid (70% in water; 2 mL) was added and the mixture was stirred for 16 h. Then, the mixture was extracted with water (100 mL) and aqueous HCI (0.5 M; 150 mL). The combined aqueous layers were basified with aqueous K₂CO₃ solution (10 wt%) to a pH of 9. The aqueous layer was extracted with CH₂Cl₂ (4 x 100 mL) and the combined organic layers were dried over sodium sulfate, filtered and concentrated to afford H₂N-Lys(Cbz)-OtBu (**S11**) (3.26 g, 9.69 mmol, 63%) as a colorless oil. The crude product was used in the next step without purification.

Fmoc-Lys(Cbz)-OtBu (S12)

 H_2N -Lys(Cbz)-OtBu (**S11**) (4.17 g, 12.4 mmol, 1.00 equiv) was dissolved in DMF (41 mL) and Fmoc-OSu (4.60 g, 13.6 mmol, 1.10 equiv) was added followed by freshly distilled triethylamine (over CaH₂) (1.74 mL, 1.25 mmol, 1.00 equiv). The mixture was stirred for 1 h, before the mixture was diluted with CH_2Cl_2 (100 mL) and water (100 mL). The layers were separated and the organic layer was washed with water (6 x 100 mL). The organic layer was dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography (30% EtOAc in pentane) to afford Fmoc-Lys(Cbz)-OtBu (**S12**) (3.87 g, 6.93 mmol, 56%) as a colorless oil.

R_f (40% EtOAc in pentane) = 0.37 (KMnO₄, UV); $[\alpha]_{D}^{20} = -10.68$ (c = 2.43, MeOH); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 7.77 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.33–7.29 (m, 7H), 5.37 (d, *J* = 8.3 Hz, 1H), 5.15–5.04 (m, 2H), 4.81 (br s, 1H), 4.40 (d, *J* = 7.4 Hz, 2H), 4.28–4.20 (m, 2H), 3.23–3.16 (m, 2H), 1.88–1.79 (m, 1H), 1.72–1.62 (m, 1H), 1.59–1.52 (m, 2H), 1.47–1.30 (m, 11H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 171.7, 156.6, 156.1, 144.1, 143.9, 141.4, 136.7, 128.6, 128.2, 127.8, 127.2, 125.2, 120.1, 82.3, 67.1, 66.7, 54.2, 47.3, 40.8, 32.6, 29.6, 28.2, 22.3 ppm; **IR** (neat): \tilde{v} = 3336 (w), 2929 (w), 1699 (vs), 1520 (s), 1451 (m), 1245 (vs), 1153 (vs), 738 (vs) cm⁻¹; **HRMS** (ESI) for C₃₃H₃₉N₂O₆⁺ [M+H]⁺: calculated: 559.2803; found: 559.2805.

Fmoc-Lys-OtBu (S13)

Fmoc-Lys(Cbz)-OtBu (**S12**) (693 mg, 1.24 mmol, 1.00 equiv) was dissolved in MeOH (7 mL) and Pd/C (10% Pd; 69 mg, 10 wt%) was added. The system was purged with hydrogen for 5 min and was then stirred for further 30 min. After 30 min, the mixture was filtered through a pad of celite and the filter cake was rinsed with CH_2Cl_2 (50 mL) and the solvent was removed via a stream of nitrogen to afford Fmoc-Lys-OtBu (**S13**) (526 mg, 1.24 mmol, quant.) as a colorless oil. The product proved to be very unstable and was used directly after synthesis to avoid degradation.

Substrate Scope

Table S1. Screening the nucleophilic aromatic substitution using phenol.

a) collidine = 2,4,6-trimethylpyridine; b) reverse addition of 3-bromotetrazine (2).

General Procedure for the Functionalization of Hydroxy Groups (GP1)

The respective alcohol (0.171 mmol 1.10 equiv) was dissolved in THF (0.75 mL) and 2,4,6-trimethylpyridine (20.6 μ L, 0.155 mmol, 1.00 equiv) was added. 3-Bromotetrazine (**2**) (25.0 mg, 0.155 mmol, 1.00 equiv) was dissolved in THF (0.75 mL) and the resulting solution was added dropwise to the alcohol. After completion of the reaction, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel.

3-Phenoxy-s-tetrazine (4)

Compound **4** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (50% CH₂Cl₂ in pentane) to afford tetrazine **4** (18.0 mg, 103 µmol, 66%) as a red solid.

R_f (50% CH₂Cl₂ in pentane) = 0.26 (pink spot, UV); **melting point** = 111 − 113 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.16 (s, 1H), 7.53–7.48 (m, 2H), 7.38–7.34 (m, 1H), 7.31–7.28 (m, 2H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 169.1, 156.8, 151.8, 130.4, 127.0, 121.1 ppm; **IR** (neat): \tilde{v} = 1589 (w), 1493 (m), 1443 (vs), 1364 (vs), 1202 (m), 1117 (m), 767 (s) cm⁻¹; **HRMS** (EI) for C₈H₆N₄O⁺: calculated: 174.0542; found: 174.0533.

3-(3-Methoxyphenoxy)-s-tetrazine (5)

Compound **5** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (50% CH₂Cl₂ in pentane) to afford tetrazine **5** (23.4 mg, 115 µmol, 74%) as a red solid.

R_f (40% Et₂O in pentane) = 0.50 (pink spot, UV); **melting point** = 73 – 75°C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.16 (s, 1H), 7.39 (t, *J* = 8.2 Hz, 1H), 6.89 (m, 2H), 6.83 (t, *J* = 2.3 Hz, 1H), 3.83 (s, 3H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 169.1, 161.3, 156.8, 152.7, 130.8, 113.1, 112.7, 107.2, 55.7 ppm; **IR** (neat): $\tilde{\nu}$ = 1590 (w), 1620 (w), 1432 (vs), 1357 (vs), 1147 (s), 1109 (s), 1039 (m), 931 (m) cm⁻¹; **HRMS** (ESI) for C₉H₈N₄O₂Na⁺ [M+Na]⁺: calculated: 227.0539; found: 227.0539.

3-(naphthalen-1-yloxy)-s-tetrazine (S14)

Compound **S14** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (20% Et_2O in pentane) to afford tetrazine **S14** (25.0 mg, 111 µmol, 72%) as a pink solid.

R_f (40% Et₂O in pentane) = 0.48 (pink spot, UV); **melting point** = 128 − 129 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.17 (s, 1H); 7.96 − 7.87 (m, 3H), 7.59 − 7.49 (m, 3H), 7.43 (d, *J* = 7.6 Hz, 1H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 169.5, 156.8, 147.7, 135.1, 128.4, 127.2, 127.1, 127.0, 126.3, 125.6, 120.9, 117.4 ppm; **IR** (neat): \tilde{v} = 1600 (w), 1430 (s), 1354 (vs), 1227 (w), 1070 (m), 771 (s) cm⁻¹; **HRMS** (EI) for C₁₂H₈N₄O⁺: calculated: 224.0698; found: 224.0693.

3-(2-Chlorophenoxy)-s-tetrazine (6)

Compound **6** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (10% Et_2O in pentane) to afford tetrazine **6** (27.5 mg, 132 µmol, 85%) as a red solid.

R_f (10% Et₂O in pentane) = 0.19 (pink spot, UV); **melting point** = 57 − 58 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.18 (s, 1H), 7.54 (dd, J = 7.9, 1.6 Hz, 1H), 7.44–7.31 (m, 3H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 168.4, 157.1, 147.8, 131.2, 128.7, 128.2, 126.8, 123.2 ppm; **IR** (neat): \tilde{v} = 1475 (m), 1431 (vs), 1352 (vs), 1218 (m), 1120 (m), 1060 (s), 931 (m), 762 cm⁻¹ (s); **HRMS** (EI) for C₈H₅N₄OCl⁺: calculated: 208.0152; found: 208.0142.

3-(2-Bromophenoxy)-s-tetrazine (S15)

Compound **S15** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (20% Et_2O in pentane) to afford tetrazine **S15** (28.0 mg, 111 µmol, 72%) as a red solid.

R_f (20% Et₂O in pentane) = 0.25 (pink spot, UV); **melting point** = 73 – 74 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ =10.19 (s, 1H), 7.72 (dd, J = 8.0, 1.5 Hz, 1H), 7.46 (ddd, J = 8.1, 7.4, 1.6 Hz, 1H), 7.35 (dd, J = 8.1, 1.6 Hz, 1H), 7.29–7.25 (m, 1H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 168.4, 157.1, 149.1, 134.2, 129.4, 128.5, 123.3, 115.9 ppm; **IR** (neat): \tilde{v} = 1470 (w), 1431 (vs), 1353 (vs), 1215 (m), 1046 (w), 932 (m) cm⁻¹; **HRMS** (EI) for C₈H₅N₄OBr⁺: calculated: 251.9647; found: 251.9641.

4-((s-Tetrazin-3-yl)oxy)benzaldehyde (S16)

Compound **S16** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (70% CH₂Cl₂ in pentane) to afford tetrazine **S16** (9.4 mg, 46.0 µmol, 30%) as a pink solid.

S16

R_f (70% CH₂Cl₂ in pentane) = 0.29 (pink spot, UV); **melting point** = 99 – 100 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.23 (s, 1H), 10.06 (s, 1H), 8.07–8.03 (m, 2H), 7.50–7.47 (m, 2H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 190.7, 168.7, 157.2, 156.1, 134.9, 132.0, 121.9 ppm; **IR** (neat): \tilde{v} = 1696 (vs), 1600 (w), 1455 (m), 1438 (s), 1355 (vs), 1217 (m), 907 (s), 731 (s) cm⁻¹; **HRMS** (EI) for C₉H₆N₄O₂⁺: calculated: 202.0491; found: 202.0484.

Ethyl 4-((s-tetrazin-3-yl)oxy)benzoate (S17)

Compound **S17** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (70% CH_2Cl_2 in pentane) to afford tetrazine **S17** (20.0 mg, 81.0 µmol, 52%) as a pink solid.

R_f (100% CH₂Cl₂) = 0.27 (pink spot, UV); **melting point** = 89 – 91 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.20 (s, 1H), 8.21 (d, *J* = 8.9 Hz, 2H), 7.38 (d, *J* = 8.9 Hz, 2H), 4.40 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 168.8, 165.6, 157.1, 155.1, 132.0, 129.3, 121.1, 61.5, 14.5 ppm; **IR** (neat): $\tilde{\nu}$ = 1714 (s), 1604 (m), 1437 (s), 1356 (vs), 1275 (vs), 1208 (m), 1115 (s), 932 (m) cm⁻¹; **HRMS** (ESI) for C₁₁H₁₀N₄O₃Na⁺ [M+Na]⁺: calculated: 269.0645; found: 269.0642.

3-(2,6-Dimethylphenoxy)-s-tetrazine (S18)

Compound **S18** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (40 - 50% CH₂Cl₂ in pentane) to afford tetrazine **S18** (12.4 mg, 61.0 µmol, 39%) as a red solid.

R_f (50% CH₂Cl₂ in pentane) = 0.33 (pink spot, UV); **melting point** = 62 − 64 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.14 (s, 1H), 7.16 (m, 3H), 2.16 (s, 6H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 168.2, 156.9, 149.1, 130.0, 129.4, 127.0, 16.5 ppm; **IR** (neat): \tilde{v} = 1434 (vs), 1356 (vs), 1170 (m), 1088 (m), 928 (m) cm⁻¹; **HRMS** (EI) for C₁₀H₁₀N₄O⁺: calculated: 202.0855; found: 202.0849.

7-((S-tetrazin-3-yl)oxy)-4-methyl-2H-chromen-2-one (S19)

Compound **S19** was synthesized according to **GP1**. After 20 min, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (100% CH₂Cl₂) to afford tetrazine **S19** (9.5 mg, 37.0 µmol, 24%) as a pink solid.

R_f (100% CH₂Cl₂) = 0.1 (pink spot, UV); **melting point** = 188 – 189 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.22 (s, 1H), 7.75 (d, *J* = 8.7 Hz, 1H), 7.32 (d, *J* = 2.4 Hz, 1H) 7.26 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.33 (m, 1H), 2.48 ppm (d, *J* = 1.2 Hz, 3H); ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 168.8, 160.2, 157.3, 154.7, 153.8, 151.8, 126.4, 118.9, 117.4, 115.3, 110.2, 18.9 ppm; **IR** (neat): \hat{v} = 3087 (m), 1737 (s), 1618 (s), 1435 (vs), 1357 (vs), 1260 (m), 1112 (m), 845 (m) cm⁻¹; **HRMS** (ESI) for C₁₂H₈N₄O₃Na⁺ [M+Na]⁺: calculated: 279.0489; found: 279.0485.

3-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)-s-tetrazine (7)

Compound **7** was synthesized according to **GP1**. After 48 h, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (30% Et₂O in pentane) to afford tetrazine **7** (24.5 mg, 82.0 µmol, 53%) as a pink solid.

R_f (30% Et₂O in pentane) = 0.39 (pink spot, UV); **melting point** = 131 − 133 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.16 (s, 1H), 7.96 (d, *J* = 8.6 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 1.36 (s, 12H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 169.0, 156.9, 154.2, 137.1, 120.3, 84.2, 25.0 ppm (carbon attached to the boron could not be observed); **IR** (neat): \tilde{v} = 1603 (m), 1437 (s), 1354 (vs), 1202 (w), 1088 (m), 1019 (w), 857 (w) cm⁻¹; **HRMS** (EI) for C₁₄H₁₇N₄O₃B⁺: calculated: 300.1394; found: 300.1382.

3-(Benzyloxy)-s-tetrazine (S20)

Compound **S20** was synthesized according to **GP1**. After 3 h, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (30% Et₂O in pentane) to afford tetrazine **S20** (9.0 mg, 48.0μ mol, 31%) as a red solid.

R_f (30% Et₂O in pentane) = 0.55 (pink spot); **melting point** = 84 − 85 °C ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.06 (s, 1H), 7.56−7.55 (m, 2H), 7.44−7.36 (m, 3H), 5.72 (s, 2H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 167.9, 156.2, 134.3, 129.2, 128.9, 71.3 ppm; **IR** (neat): $\tilde{\nu}$ = 1500 (w), 1470 (vs), 1452 (vs), 1353 (vs), 1346 (vs), 1193 (m), 970 (vs), 936 (s), 764 (vs) cm⁻¹; **HRMS** (ESI) for C₉H₈N₄ONa⁺ [M+Na]⁺: calculated: 211.0590; found: 211.0590.

3-(Prop-2-yn-1-yloxy)-s-tetrazine (8)

Compound **8** was synthesized according to **GP1**. After 4 h, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (30% Et₂O in pentane) to afford tetrazine **8** (8.0 mg, 59.0 µmol, 38%) as a red oil.

R_f (30% Et₂O in pentane) = 0.35 (pink spot); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.13 (s, 1H), 5.31 (s, 2H), 2.61 (s, 1H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 167.3, 156.6, 77.1, 76.2, 57.1 ppm; **IR** (neat): \tilde{v} = 3284 (m), 1469 (vs), 1335 (vs), 996 (s), 939 (s) cm⁻¹; **HRMS** (EI) for C₅H₄N₄O⁺: calculated: 136.0385; found: 136.0377.

3-(Furan-2-ylmethoxy)-s-tetrazine (S21)

Compound **S21** was synthesized according to **GP1**. After 24 h, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (20% Et_2O in pentane) to afford tetrazine **S21** (7.0 mg, 39.0 µmol, 25%) as a red oil.

R_f (20% Et₂O in pentane) = 0.39 (pink spot); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.08 (s, 1H), 7.48 (dd, *J* = 1.9, 0.8 Hz, 1H), 6.63 (d, *J* = 0.7 Hz, 1H), 6.41 (dd, *J* = 3.3, 1.9 Hz, 1H), 5.69 (s, 2H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 167.7, 156.3, 147.7, 144.2, 112.7, 110.9, 62.9 ppm; **IR** (neat): \tilde{v} = 1468 (vs), 1337 (vs), 1192 (m), 1919 (m), 752 (m) cm⁻¹; **HRMS** (EI) for C₇H₆N₄O₂⁺: calculated: 178.0491; found: 178.0481.

Boc-Tyr(Tet)-OMe (23)

Compound **23** was synthesized according to **GP1**. After 4 h, the solvent was removed under a stream of nitrogen and the crude material was purified via flash column chromatography on silica gel (10% Et_2O in pentane) to afford tetrazine **23** (42.0 mg, 112 µmol, 72%) as a pink solid.

R_f (10% Et₂O in pentane) = 0.47 (pink spot, UV); **melting point** = 120 °C; $[\alpha]_D^{20}$ = +46.18 (c = 0.775, CHCl₃); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.18 (s, 1H), 7.31–7.24 (m, 4H), 5.06 (d, *J* = 8.3 Hz, 1H), 4.65 (q, *J* = 6.8 Hz, 1H), 3.77 (s, 3H), 3.21 (dd, *J* = 13.9, 5.8 Hz, 1H), 3.13 (dd, *J* = 13.9, 6.4 Hz, 1H), 1.46 (s, 9H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 172.2,

169.0, 156.9, 155.2, 150.8, 135.1, 131.2, 121.1, 80.3, 54.5, 52.5, 38.0, 28.4 ppm; **IR** (neat): $\tilde{\nu} = 3358$ (br w), 2979 (br w), 1742 (m), 1710 (vs), 1507 (m), 1437 (vs), 1359 (vs), 1202 (m), 1165 (s), 732 (m) cm⁻¹; **HRMS** (ESI) for C₁₇H₂₁N₅O₅Na⁺ [M+Na]^{*}: calculated: 398.1435; found: 398.1436.

Fmoc-Tyr(Tet)-OtBu (24)

Fmoc-Tyr-OtBu (**S10**) (78.4 mg, 0.171 mmol, 1.10 equiv) was dissolved in THF (0.75 mL) and 2,4,6-trimethylpyridine (20.6 μ L, 0.155 mmol, 1.00 equiv) was added. To this solution, a solution of 3-bromotetrazine (**2**) in THF (0.75 mL) was added dropwise. The mixture was stirred for 24 h. Then, the mixture was diluted with diethyl ether (50 mL) and washed with water (50 mL). The layers were separated and the organic layer was washed with aqueous sodium hydroxide solution (1 M; 50 mL). The organic layer was dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography (2% Et₂O in CH₂Cl₂) to afford tetrazine **24** (37 mg, 69.0 µmol, 45%) as a pink oil.

R_f (2% Et₂O in CH₂Cl₂) = 0.27 (pink spot, UV); $[\alpha]_D^{20}$ = +22.35 (c = 0.73, CHCl₃); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.14 (s, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.58 (dd, *J* = 7.5, 1.5 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.33–7.26 (m, 4H), 7.21 (d, *J* = 8.3 Hz, 2H), 5.36 (d, *J* = 8.0 Hz, 1H), 4.58 (q, *J* = 6.6 Hz, 1H), 4.47 (dd, *J* = 10.6, 7.1 Hz, 1H), 4.37 (dd, *J* = 10.6, 6.9 Hz, 1H), 4.22 (t, *J* = 6.9 Hz, 1H), 3.15 (d, *J* = 6.1 Hz, 2H), 1.43 (s, 9H) ppm; ¹³C-NMR (CDCl₃, 101 MHz): δ = 170.4, 168.9, 156.7, 155.5, 150.6, 143.9, 143.8, 141.3, 145.0, 131.2, 127.7, 127.1, 125.1, 125.0, 120.9, 120.0, 120.0, 82.8, 66.9, 55.1, 47.2, 38.0, 28.0 ppm; **IR** (neat): \tilde{v} = 3343 (br w), 1712 (vs), 1506 (m), 1436 (vs), 1358 (vs), 1202 (m), 1152 (s), 737 (vs) cm⁻¹; HRMS (ESI) for C₃₀H₂₉N₅O₅Na⁺ [M+Na]⁺: calculated: 562.2061; found: 562.2066.

Boc-Ser(Tet)-OMe (29)

Boc-Ser(Tet)-OMe **29** was synthesized according to **GP1**. After 24 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (30% EtOAc in pentane) to afford tetrazine **29** (22.0 mg, 73.0 µmol, 47%) as a red oil.

R_f (30% EtOAc in pentane) = 0.27 (pink spot, UV); $[\alpha]_{D}^{20}$ = +6.73 (c = 0.275, MeOH); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.09 (s, 1H), 5.53 (d, *J* = 8.3 Hz, 1H), 5.05–4.95 (m, 2H), 4.86, 4.84 (m, 1H), 3.81 (s, 3H), 1.44 (s, 9H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 169.7, 167.8, 156.5, 155.3, 80.8, 69.5, 53.2, 52.9, 28.4 ppm; **IR** (neat): \tilde{v} = 3358 (br w), 2978 (w), 1749 (m), 1712 (vs), 1479 (vs), 1447 (s), 1349 (vs), 1164 (vs), 1056 (m), 1018 (w), 940 (w) cm⁻¹; **HRMS** (ESI) for C₁₁H₁₇N₅O₅Na⁺ [M+Na]⁺: calculated: 322.1122; found: 322.1119.

Fidaxomicin (16.4 mg, 15.5 µmol, 1.00 equiv) was dissolved in MeCN (0.5 mL) and 2,4,6-trimethylpyridine (4.13 µL, 31 µmol, 2.00 equiv) was added. Then, 3-bromotetrazine (**2**) (12.5 mg, 77.5 µmol, 5.00 equiv), dissolved in MeCN (0.5 mL), was added dropwise. After 16 h, additional 3-bromotetrazine (**2**) (12.5 mg, 77.5 µmol, 5.00 equiv) and 2,4,6-trimethylpyridine (4.13 µL, 31 µmol, 2.00 equiv) were added. After a total of 24 h, the reaction was complete and the solvent was removed via a stream of nitrogen. The crude product was purified via flash column chromatography (5% MeOH in CH_2Cl_2) to afford di-tet-fidaxomicin (**33**) (11.3 mg, 9.00 µmol, 58%) as a pink oil.

R_t (5% MeOH in CH₂Cl₂) = 0.28 (pink spot, UV); $[\alpha]_D^{20} = -20.32$ (c = 0.505, MeOH); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.44 (s, 1H), 10.40 (s, 1H), 7.22 (d, *J* = 11.4 Hz, 1H), 6.60–6.53 (m, 1H), 5.94 (ddd, *J* = 14.6, 9.4, 4.8 Hz, 1H), 5.83 (s, 1H), 5.56 (t, *J* = 8.3 Hz, 1H), 5.15 (d, *J* = 10.5 Hz, 1H), 5.01 (d, *J* = 10.2 Hz, 1H), 4.93 (t, *J* = 9.6 Hz, 1H), 4.72–4.68 (m, 2H), 4.59 (d, *J* = 11.5 Hz, 1H), 4.54 (s, 1H), 4.40 (d, *J* = 11.5 Hz, 1H), 4.24–4.23 (m, 1H), 4.02 (t, *J* = 6.4 Hz, 1H), 3.93 (d, *J* = 3.3 Hz, 1H), 3.75–3.70 (m, 2H), 3.50 (s, 3H), 3.44–3.41 (m, 2H), 3.06–2.97 (m, 2H), 2.76–2.67 (m, 3H), 2.59 (p, *J* = 7.0 Hz, 1H), 2.52–2.38 (m, 3H), 2.04–1.96 (m, 1H), 1,81 (s, 3H), 1.76 (s, 3H), 1.66 (s, 3H), 1.32–1.28 (m, 5H), 1.19–1.12 (m, 18H), 0.88 (t, *J* = 7.4 Hz, 1H) ppm; ¹³C-NMR (CDCl₃, 126 MHz): δ = 178.4, 169.5, 169.1, 168.9, 165.1, 159.5, 159.1, 147.8, 146.2, 145.6, 143.7, 142.0, 137.1, 137.0, 136.4, 134.6, 129.5, 128.8, 128.5, 126.9, 125.6, 124.6, 122.0, 102.1, 97.2, 94.3, 82.4, 78.6, 78.2, 75.9, 74.5, 73.5, 73.2, 72.5, 71.1, 70.5, 68.3, 63.9, 62.2, 42.5, 37.3, 35.4, 28.7, 28.3, 26.9, 26.4, 20.2, 19.5, 19.1, 18.7, 18.2, 17.5, 15.4, 14.3, 13.9, 11.3 ppm; **IR** (neat): $\hat{\nu}$ = 3474 (br m), 2976 (m), 2934 (m), 1737 (s), 1339 (vs), 1072 (s), 1032 (m), 928 (w), 795 (w) cm⁻¹; **HRMS** (ESI) for C₅₆H₇₄N₈O₁₈Cl₂Na⁺ [M+Na]⁺: calculated: 1239.4390; found: 1239.4389.

Tet-Dexamethasone (34)

Dexamethasone (73.0 mg, 0.186 mmol, 1.20 equiv) was dissolved in THF (0.75 mL) and collidine was added (41.3 μ L, 0.310 mmol, 2.00 equiv). Then, 3-bromotetrazine (**2**) (25.0 mg, 0.155 mmol, 1.00 equiv), in THF (0.75 mL) was added dropwise. After 48 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (5% MeOH in CH₂Cl₂) to afford tetrazine **34** (38.0 mg, 80.0 μ mol, 52%) as a pink oil.

R_f (5% MeOH in CH₂Cl₂) = 0.42 (pink spot, UV); $[\alpha]_D^{20} = +154$ (c = 1.245, MeOH); ¹⁹**F-NMR** (CDCl₃, 376 Hz): δ = -165.93 ppm; ¹**H-NMR** (CDCl₃, 500 MHz): δ = 10.04 (s, 1H), 7.25 (d, *J* = 10.1 Hz, 1H), 6.36 (dd, *J* = 10.1, 1.9 Hz, 1H), 6.11 (d, *J* = 1.7 Hz, 1H), 5.67 (d, *J* = 17.6 Hz, 1H), 5.54 (d, *J* = 17.6 Hz, 1H), 4.42 (d, *J* = 9.7 Hz, 1H), 3.12–3.04 (m, 1H), 2.65–2.59 (m, 1H), 2.49–2.35 (m, 3H), 2.23 (br s, 1H), 2.20–2.14 (m, 1H), 1.93 (br s, 1H), 1.86–1.73 (m, 3H), 1.59–1.51 (m, 4H), 1.27–1.22 (m, 2H), 1.06 (s, 3H), 0.98 (d, *J* = 7.3 Hz, 3H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 203.9, 186.9, 167.6, 166.5, 156.2, 152.5, 129.9, 125.2, 101.1 (d, *J* = 176 Hz), 91.5, 72.7, 72.3 (d, *J* = 38.8 Hz), 49.0, 48.5 (d, *J* = 22.7 Hz), 44.3, 36.9, 36.7, 34.3 (d, *J* = 19.5 Hz), 32.3, 31.2, 27.5, 23.0, 16.7, 14.8 ppm; **IR** (neat): \tilde{v} = 3440 (br m), 1944 (m), 1728 (m), 1662 (vs), 1616 (m), 1470 (s), 1377 (m), 1035 (m), 890 (m), 732 (s) cm⁻¹; **HRMS** (ESI) for C₂₄H₃₀N₄O₅F⁺ [M+H]⁺: calculated: 473.2195; found: 473.2200.

Figure 4. Fluorescence emission spectra of phenoxytetrazines 4, 5, S15, S17, 23 (15 μ M in MeOH).

Figure 5. Fluorescence emission spectra of ether functionalized tetrazines S20, 29, 34 (15 µM in MeOH).

General Procedure for the Functionalization of Sulfides (GP2)

The respective thiol (0.171 mmol, 1.10 equiv) was dissolved in THF (0.75 mL) and 2,4,6-trimethylpyridine (20.6 μ L, 0.155 mmol, 1.00 equiv) was added. Then, 3-bromotetrazine (**2**) (25.0 mg, 0.155 mmol, 1.00 equiv), dissolved in THF (0.75 mL), was added to the previously obtained solution over 10 min. After the reaction was complete, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel.

3-(Phenylthio)-s-tetrazine (S22)

Thioether **S22** was synthesized according to **GP2**. After 20 min, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (15% Et_2O in pentane) to afford tetrazine **S22** (10.0 mg, 53.0 μ mol, 34%) as a red oil.

R_f (20% Et₂O in pentane) = 0.43 (red spot, UV); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 9.97 (s, 1H), 7.70–7.67 (m, 2H), 7.55–7.47 (m, 3H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 179.3, 156.2, 135.7, 130.8, 130.1, 125.3 ppm; **IR** (neat): \tilde{v} = 1476 (s), 1442 (s), 1393 (s), 1215 (vs), 1023 (m), 884 (s), 746 (s) cm⁻¹; **HRMS** (EI) for C₈H₆N₄S⁺: calculated: 190.0313; found: 190.0305.

Boc-Cys(Tet)-OMe (25)

Thioether **25** was synthesized according to **GP2**. After 1 h 20 min, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (40% Et₂O in pentane) to afford tetrazine **25** (45.0 mg, 143 µmol, 92%) as a red oil.

R_f (40% Et₂O in pentane) = 0.24 (pink spot, UV); $[\alpha]_D^{20}$ = +48.56 (c = 0.815, CHCl₃); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.00 (s, 1H), 5.37 (d, *J* = 8.1 Hz, 1H), 4.79 (q, *J* = 5.6 Hz, 1H), 3.97 (dd, *J* = 14.0, 5.0 Hz, 1H), 3.78 (s, 3H), 3.70 (dd, *J* = 14.2 Hz, 6.5 Hz, 1H), 1.42 (s, 9H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 177.8, 170.8, 156.2, 155.1, 80.7, 53.1, 52.6, 32.9, 28.4 ppm; **IR** (neat): $\tilde{\nu}$ = 3364 (br, m), 2978 (w), 1744 (m), 1710 (vs), 1510 (m), 1367 (m), 1217 (vs), 1161 (vs), 1054 (w), 888 (w) cm⁻¹; **HRMS** (ESI) for C₁₁H₁₇N₅O₄SNa⁺ [M+Na]⁺: calculated: 338.0893; found: 338.0889.

Fmoc-Cys(Tet)-OtBu (26)

Thioether **26** was synthesized according to **GP2**. After 3 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (40% Et_2O in pentane) to afford tetrazine **26** (61.0 mg, 127 μ mol, 82%) as a red oil.

R_f (40% Et₂O in pentane) = 0.23 (pink spot, UV); $[α]_D^{20}$ = +20.24 (c = 1.885, CHCl₃); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 9.90 (s, 1H), 7.77 (d, *J* = 7.7 Hz, 2H), 7.59–7.51 (m, 2H), 7.41–7.38 (m, 2H), 7.31–7.27 (m, 2H), 5.68 (d, *J* = 7.5 Hz, 1H), 4.76 (q, *J* = 6.1 Hz, 1H), 4.43–4.33 (m, 2H), 4.20 (t, *J* = 7.2 Hz, 1H), 4.09 (dd, *J* = 14.1, 4.6 Hz, 1H), 3.71 (dd, *J* = 14.1, 6.2 Hz, 1H), 1.50 (s, 9H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 177.7, 168.7, 156.0, 155.6, 143.7, 141.3, 127.7, 127.1, 125.0, 120.0, 83.8, 67.3, 53.7, 47.1, 32.4, 28.0 ppm; **IR** (neat): \tilde{v} = 1707 (s), 1512 (m), 1450 (w), 1342 (m), 1218 (vs), 1152 (s),

1051 (m), 889 (w), 759 (m), 738 (vs) cm⁻¹; **HRMS** (ESI) for $C_{24}H_{25}N_5O_4SNa^+$ [M+Na]⁺: calculated: 502.1519; found: 338.0889.

Table S2. Screening the nucleophilic aromatic substitution using indole.

$ \begin{array}{c} Br \\ N \\ N \\ $						
Entry	Base	Equiv base	Solvent	t [h]	Yield [%]	
1	Et₃N	1.5	MeCN	1	traces	
2	Et₃N	1.5	CH_2CI_2	2	traces	
3	Et₃N	1.5	THF	2	decomp.	
4	Et₃N	1.5	MeCN	3	traces	
5	DBU	1.2	MeCN	1	38	
6	DBU	1.2	MeCN	0.5	41	
7 ^a	DBU	1.0	MeCN	0.5	51	
8	2,6- lutidine	1.2	MeCN	4	decomp.	
9 ^{a,b}	DBU	1.0	MeCN	0.5	55	

a) reverse addition of 3-bromotetrazine; b) 25 mg scale.

General Procedure for the Functionalization of Nitrogen-Heterocycles (GP3)

The respective *N*-heterocycle (0.186 mmol, 1.20 equiv) was dissolved in MeCN (0.75 mL) and DBU (23.1 μ L, 0.155 mmol, 1.00 equiv) was added. Then, 3-bromotetrazine (**2**) (25.0 mg, 0.155 mmol, 1.00 equiv) was dissolved in MeCN (0.75 mL) and the resulting solution was added dropwise over 10 min to the previously obtained solution. After completion of the reaction, the mixture was filtered through a pad of celite and the filter cake was rinsed with CH₂Cl₂ (50 mL). The solution was concentrated and the resulting crude product was purified via flash column chromatography.

1-(S-tetrazin-3-yl)-1H-indole (9)

Indole **9** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2Cl_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography on silica gel (4% EtOAc in pentane) to afford tetrazine **9** (16.7 mg, 85.0 µmol, 55%) as a red solid.

R_f (4% EtOAc in pentane) = 0.32 (red spot, UV, CAM); **melting point** = 103 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.08 (s, 1H), 8.70 (dd, *J* = 8.3, 0.9 Hz, 1H), 8.33 (dd, *J* = 3.8, 0.4 Hz, 1H), 7.67 (ddd, *J* = 7.7, 1.4, 0.8 Hz, 1H), 7.44–7.40 (m, 1H), 7.36–7.32 (m, 1H), 6.88 (dd, *J* = 3.8, 0.8 Hz, 1H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 161.1, 156.2, 135.1, 131.7, 125.2,

124.3, 124.1, 121.6, 116.8, 111.0 ppm; **IR** (neat): $\tilde{v} = 1500$ (vs), 1484 (vs), 1355 (w), 1213 (m), 1092 (m), 749 (m) cm⁻¹; **HRMS** (EI) for C₁₀H₇N₅⁺: calculated: 197.0701; found: 197.0696.

5-Chloro-1-(s-tetrazin-3-yl)-1H-indole (10)

Indole **10** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2Cl_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (4% EtOAc in pentane) to afford tetrazine **10** (22.8 mg, 98.0 µmol, 63%) as a red solid.

R_f (4% EtOAc in pentane) = 0.20 (red spot, UV, CAM); **melting point** = 157 − 158 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.12 (s, 1H), 8.63 (dt, *J* = 8.9, 0.7 Hz, 1H), 8.38 (dd, *J* = 3.8, 0.5 Hz, 1H), 7.64 (dd, *J* = 2.1, 0.6 Hz, 1H), 7.39 (ddd, *J* = 8.9, 2.1, 0.5 Hz, 1H), 6.83 (dd, *J* = 3.8, 0.8 Hz, 1H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 160.9, 156.4, 133.3, 132.9, 129.8, 125.6, 125.3, 121.2, 117.7, 110.2 ppm; **IR** (neat): \tilde{v} = 1495 (vs), 1478 (vs), 1335 (w), 1205 (m), 963 (w), 931 (w) cm⁻¹; **HRMS** (EI) for C₁₀H₆N₅Cl⁺: calculated: 231.0312; found: 231.0311.

5-lodo-1-(s-tetrazin-3-yl)-1H-indole (S23)

Indole **S23** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2CI_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (20% Et₂O in pentane) to afford tetrazine **S23** (13.6 mg, 42.0 µmol, 27%) as an orange solid.

R_f (20% Et₂O in pentane) = 0.43 (red spot, UV, CAM); **melting point** = 178 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.12 (s, 1H), 8.48 (d, *J* = 8.8 Hz, 1H), 8.32 (d, *J* = 3.8 Hz, 1H), 8.00 (d, *J* = 1.8 Hz, 1H), 7.69 (dd, *J* = 8.8, 1.8 Hz, 1H), 6.81 (d, *J* = 3.7 Hz, 1H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 160.8, 156.2, 134.1, 133.8, 133.6, 130.3, 125.0, 118.4, 109.7, 88.2 ppm; **IR** (neat): \tilde{v} = 1494 (vs), 1477 (vs), 1329 (m), 1202 (m), 1091 (m), 963 (w), 930 (w), 808 (m) cm⁻¹; **HRMS** (EI) for C₁₀H₆N₅I⁺: calculated: 322.9668; found: 322.9663.

1-(S-tetrazin-3-yl)-1H-indole-6-carbonitrile (11)

Indole **11** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2Cl_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (20% EtOAc in pentane) to afford tetrazine **11** (20.0 mg, 90.0 µmol, 58%) as a red solid.

R_f (20% EtOAc in pentane) = 0.30 (red spot, UV, CAM); **melting point** = 202 − 203 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.21 (s, 1H), 9.11 (s, 1H), 8.56 (d, *J* = 3.8 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.60 (dd, *J* = 8.1, 1.4 Hz, 1H), 6.98 (d, *J* = 3.7 Hz, 1H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 160.8, 156.7, 134.8, 133.9, 127.5, 127.0, 122.3, 121.1, 119.6, 110.5, 108.1 ppm; **IR** (neat): \tilde{v} = 2224 (m), 1524 (w), 1475 (vs), 1466 (vs), 1360 (s), 1261 (m), 1213 (m), 1080 (m), 930 (m) cm⁻¹; **HRMS** (EI) for C₁₁H₆N₆⁺: calculated: 222.0654; found: 222.0653.

5-Methoxy-1-(s-tetrazin-3-yl)-1H-indole (S24)

Indole **S24** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2CI_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (40% CH_2CI_2 in pentane) to afford tetrazine **S24** (17.0 mg, 75.0 µmol, 48%) as red solid.

R_f (40% CH₂Cl₂ in pentane) = 0.50 (red spot, UV, CAM); **melting point** = 143 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.07 (s, 1H), 8.30 (d, *J* = 8.5 Hz, 1H), 8.23 (d, *J* = 3.8 Hz, 1H), 7.34 (t, *J* = 8.2 Hz, 1H), 7.00 (d, *J* = 3.8 Hz, 1H), 6.78 (d, *J* = 8.1 Hz, 1H), 3.98 (s, 3H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 161.1, 156.1, 153.3, 136.2, 126.1, 122.7, 121.9, 109.7, 108.0, 104.5, 55.6 ppm; **IR** (neat): $\tilde{\nu}$ = 1589 (m), 1468 (vs), 1358 (s), 1287 (s), 1265 (s), 1060 (s), 980 (m), 746 (vs) cm⁻¹; **HRMS** (EI) for C₁₁H₉N₅O⁺: calculated: 227.0807; found: 227.0800.

2-Methyl-1-(s-tetrazin-3-yl)-1H-indole (S25)

Indole **S25** was synthesized according to **GP3**. After 2 h, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2Cl_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (30 – 50% CH_2Cl_2 in pentane) to afford tetrazine **S25** (8.4 mg, 40.0 µmol, 26%) as a red oil.

R_f (40% CH₂Cl₂ in pentane) = 0.20 (red spot, UV, CAM); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.13 (s, 1H), 8.40–8.38 (m, 1H), 7.56–7.53 (m, 1H), 7.33–7.28 (m, 2H), 6.59 (m, 1H), 2.79 (s, 3H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 162.5, 155.7, 137.3, 136.4, 130.3, 123.8, 123.7, 120.1, 114.7, 110.4, 17.1 ppm; **IR** (neat): $\tilde{\nu}$ = 1601 (w), 1572 (w), 1457 (vs), 1403 (w), 1214 (m), 1129 (m), 932 (w) cm⁻¹; **HRMS** (EI) for C₁₁H₉N₅⁺: calculated: 211.0850; found: 211.0858.

2-Phenyl-1-(s-tetrazin-3-yl)-1H-indole (S26)

Indole **S26** was synthesized according to **GP3**. After 2 h, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2Cl_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (40% CH_2Cl_2 in pentane) to afford tetrazine **S26** (8.4 mg, 31.0 µmol, 20%) as a red oil.

R_f (30% CH₂Cl₂ in pentane) = 0.09 (red spot, UV, CAM); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.07 (s, 1H), 8.31 (ddd, *J* = 7.4, 1.9, 0.7 Hz, 1H), 7.72–7.69 (m, 1H), 7.41–7.34 (m, 5H), 7.28–7.26 (m, 2H), 6.95 (d, *J* = 0.8 Hz, 1H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 162.7, 155.9, 140.3, 137.6, 132.8, 130.3, 128.7, 128.4, 128.2, 125.0, 124.1, 121.3, 113.5, 111.6 ppm; **IR** (neat): $\tilde{\nu}$ = 1454 (vs), 1446 (vs), 1394 (m), 1345 (s), 1220 (m), 1173 (m), 913 (m), 745 (s) cm⁻¹; **HRMS** (EI) for C₁₆H₁₁N₅⁺: calculated: 273.1014; found: 273.1014.

1-(S-tetrazin-3-yl)-1H-indole-5-carbaldehyde (S27)

Indole **S27** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2CI_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (30% EtOAc in pentane) to afford tetrazine **S27** (5.0 mg, 22.0 µmol, 14%) as a red solid.

R_f (30% EtOAc in pentane) = 0.44 (red spot, UV, CAM); **melting point** = 202 − 203 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.20 (s, 1H), 10.13 (s, 1H), 8.90 (d, *J* = 8.7 Hz, 1H), 8.49 (d, *J* = 3.8 Hz, 1H), 8.22 (s, 1H), 7.99 (dd, *J* = 8.7, 1.6 Hz, 1H), 7.04 (d, *J* = 3.9 Hz, 1H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 192.0, 161.2, 156.7, 138.4, 132.8, 132.0, 126.2, 126.2, 124.5, 117.2, 111.3 ppm; **IR** (neat): \tilde{v} = 1691 (vs), 1609 (w), 1478 (vs), 1335 (m), 1218 (w), 1077 (w), 918 (w) cm⁻¹; **HRMS** (EI) for C₁₁H₇N₅O⁺: calculated: 225.0651; found: 225.0644.

7-Methyl-1-(s-tetrazin-3-yl)-1H-indole (S28)

Indole **S28** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2CI_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (40% CH_2CI_2 in pentane) to afford tetrazine **S28** (9.0 mg, 43.0 µmol, 28%) as a red oil.

R_f (40% CH₂Cl₂ in pentane) = 0.26 (red spot, UV, CAM); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.12 (s, 1H), 7.99 (d, *J* = 3.7 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.29–7.19 (m, 2H), 6.91 (d, *J* = 3.70 (s, 1H), 2.41 (s, 3H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 161.5, 156.2, 134.5, 132.3, 128.7, 128.0, 124.8, 124.0, 119.3, 110.9, 22.6 ppm; **IR** (neat): \tilde{v} = 1457 (vs), 1352 (m), 1232 (w), 1071 (w), 786 (m) cm⁻¹; **HRMS** (EI) for C₁₁H₉N₅⁺: calculated: 211.0858; found: 211.0850.

Boc-Trp(Tet)-OMe (21)

Indole **21** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2Cl_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (20% EtOAc in pentane) to afford tetrazine **21** (26.5 mg, 66.0 µmol, 43%) as a red solid.

R_f (20% EtOAc in pentane) = 0.18 (red spot, UV, CAM); **melting point** = 123 – 124 °C; $[\alpha]_D^{20}$ = +72.30 (c = 0.47, CHCl₃); ¹H-NMR (CDCl₃, 400 MHz): δ = 10.06 (s, 1H), 8.70 (d, *J* = 8.3 Hz, 1H), 8.15 (s, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 5.21 (d, *J* = 8.0 Hz, 1H), 4.73 (q, *J* = 6.3 Hz, 1H), 3.73 (s, 3H), 3.42–3.27 (m, 2H), 1.44 (s, 9H) ppm; ¹³C-NMR (CDCl₃, 126 MHz): δ = 172.3, 160.8, 156.0, 155.2, 135.2, 131.9, 125.6, 124.0, 122.3, 119.6, 119.2, 116.9, 80.3, 53.8, 52.7, 28.5, 28.2 ppm; **IR** (neat): \tilde{v} = 3355 (br m), 2879 (w), 1735 (m), 1685 (s), 1492 (s), 1470 (vs), 1366 (m), 1250 (m), 1163 (s), 1100 (s), 746 (s) cm⁻¹; **HRMS** (ESI) for C₁₉H₂₂N₆O₄Na⁺ [M+Na]⁺: calculated: 421.1595; found: 421.1591.

9-(S-tetrazin-3-yl)-9H-carbazole (12)

Carbazole **12** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2CI_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (30% CH_2CI_2 in pentane) to afford tetrazine **12** (32.0 mg, 129 µmol, 83%) as a red solid.

R_f (30% Et₂O in pentane) = 0.56 (red spot, UV, CAM); **melting point** = 179 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.12 (s, 1H), 8.85 (d, *J* = 8.5 Hz, 2H), 8.08 (dd, *J* = 7.6, 1.4 Hz, 2H), 7.54 (dd, *J* = 8.5, 7.3 Hz, 2H), 7.45 (td, *J* = 7.5, 1.0 Hz, 2H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 163.0, 155.3, 138.1, 127.6, 127.1, 124.4, 120.0, 117.3 ppm; **IR** (neat): \tilde{v} = 1495 (s), 1460 (vs), 1337 (m), 1212 (m), 750 (s) cm⁻¹; **HRMS** (EI) for C₁₄H₉N₅⁺: calculated: 247.0858; found: 247.0850.

1-(S-tetrazin-3-yl)-1H-benzo[d]imidazole (S29)

Imidazole **S29** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2CI_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (40% EtOAc in pentane) to afford tetrazine **S29** (23.0 mg, 116 µmol, 75%) as a red solid.

R_f (40% EtOAc in pentane) = 0.40 (red spot, UV, CAM); **melting point** = 166 – 167 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.28 (s, 1H), 9.19 (s, 1H), 8.55–8.53 (m, 1H), 7.91–7.89 (m, 1H), 7.52–7.44 (m, 2H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 160.4, 157.7, 145.1, 140.2, 130.9, 126.1, 125.5, 121.3, 115.8 ppm; **IR** (neat): \tilde{v} = 1608 (w), 1470 (vs), 1296 (s), 1246 (m), 1207 (s), 1097 (m), 737 (m) cm⁻¹; **HRMS** (EI) for C₉H₆N₆⁺: calculated: 198.0654; found: 198.0645.

3-(1H-pyrrol-1-yl)-s-tetrazine (S30)

R_f (5% Et₂O in pentane) = 0.31 (orange spot); **melting point** = 113 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.10 (s, 1H), 7.92–7.90 (m, 2H), 6.52–6.51 (m, 2H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 159.6, 157.3, 119.1, 115.0 ppm; **IR** (neat): \tilde{v} = 3147 (vs), 1519 (vs), 1378 (m), 1257 (w), 1070 (m), 932 (s), 744 (vs) cm⁻¹; **HRMS** (EI) for C₆H₅N₅⁺: calculated: 147.0545; found: 147.0537.

S29

3-(2-methyl-1H-imidazol-1-yl)-s-tetrazine (S31)

Imidazole **S31** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2CI_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (50% EtOAc in pentane) to afford tetrazine **S31** (4.0 mg, 25.0 µmol, 16%) as a red oil.

R_f (50% EtOAc in pentane) = 0.20 (red spot, UV, CAM); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.26 (s, 1H), 8.05 (d, *J* = 1.8 Hz, 1H), 7.14 (d, *J* = 1.8 Hz, 1H), 2.92 (s, 3H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 160.5, 157.5, 147.4, 130.2, 117.8, 18.4 ppm; **IR** (neat): \tilde{v} = 1553 (w), 1509 (w), 1458 (vs), 1285 (s), 1137 (m), 981 (w), 926 (w) cm⁻¹; **HRMS** (EI) for C₆H₆N₆⁺: calculated: 162.0654; found: 162.0651.

Boc-His(Tet)-OMe (22)

Histidine **22** was synthesized according to **GP3**. After 30 min, the reaction mixture was filtered through a pad of celite covered with silica gel and the filter pad was rinsed with CH_2CI_2 (50 mL). The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (50% EtOAc in pentane) to afford tetrazine **22** (15.0 mg, 43.0 µmol, 28%) as a red oil.

R_f (50% EtOAc in pentane) = 0.26 (red spot, UV, CAM); $[α]_p^{20} = +35.94$ (c = 1.16, CHCl₃); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.10 (s, 1H), 8.65 (s, 1H), 7.76 (s, 1H), 5.64 (d, *J* = 8.3 Hz, 1H), 4.63–4.58 (m, 1H), 3.69 (s, 3H), 3.13–3.08 (m, 2H), 1.38 (s, 9H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 172.2, 158.5, 158.3, 155.4, 141.4, 135.6, 113.3, 79.9, 53.0, 52.4, 30.5, 28.3 ppm; **IR** (neat): \tilde{v} = 2977 (w), 1743 (m), 1708 (vs), 1479 (vs), 1366 (m), 1308 (m), 1164 (s), 1061 (m), 919 (w) cm⁻¹; **HRMS** (ESI) for C₁₄H₂₀N₇O₄⁺ [M+H]⁺: calculated: 350.1571; found: 350.1576.

General Procedure for the Functionalization of Amines (GP4)

The amine (0.310 mmol, 2.00 equiv) was dissolved in THF (0.75 mL) and 3-bromotetrazine (2) (25.0 mg, 0.155 mmol, 1.00 equiv), dissolved in THF (0.75 mL), was added dropwise over 10 min to the previously obtained solution. The solvent was removed via a stream of nitrogen and the crude material was purified via flash column chromatography.

N-(2-(1H-indol-3-yl)ethyl)-s-tetrazin-3-amine (13)

Tetrazine **13** was synthesized according to **GP4**. After 30 min, the reaction mixture was filtered through a pad of celite and the filter cake was rinsed with EtOAc (50 mL). The solvent was removed and the crude product was purified via flash column chromatography (50% EtOAc in pentane) to afford tetrazine **13** (32 mg, 134 µmol, 86%) as an orange solid.

R_f (50% EtOAc in pentane) = 0.48 (orange spot, UV); **melting point** = 183 °C; ¹**H-NMR** (DMSO-*d*6, 400 MHz): δ = 10.83 (br s, 1H), 9.72 (s, 1H), 8.70 (t, *J* = 5.9 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.21 (d, *J* = 2.3 Hz, 1H),

7.06 (dd, J = 8.1, 6.9 Hz, 1H), 6.98 (dd, J = 7.9, 7.0 Hz, 1H), 3.70 (q, J = 6.5 Hz, 2H), 3.03 (t, J = 7.5 Hz, 2H) ppm; ¹³**C**-NMR (DMSO-*d6*, 101 MHz): $\delta = 162.6, 152.6, 136.2, 127.2, 122.9, 120.9, 118.3, 118.2, 111.4, 111.3, 41.1, 24.3 ppm; IR (neat): <math>\tilde{v} = 3251$ (br m), 1591 (s), 1505 (m), 1338 (m), 1100 (m), 1075 (m), 960 (s), 743 (vs) cm⁻¹; HRMS (EI) for $C_{12}H_{12}N_6^+$: calculated: 240.1123; found: 240.1113.

N-(2-(6-methoxy-1H-indol-3-yl)ethyl)-s-tetrazin-3-amine (14)

Tetrazine **14** was synthesized according to **GP4**. After 30 min, the reaction mixture was filtered through a pad of celite and the filter cake was rinsed with EtOAc (50 mL). The solvent was removed and the crude product was purified via flash column chromatography (50% EtOAc in pentane) to afford tetrazine **14** (32.0 mg, 118 µmol, 76%) as a brown solid.

R_f (50% EtOAc in pentane) = 0.52 (orange spot, UV); **melting point** = 167 °C; ¹**H-NMR** (DMSO-*d6*, 400 MHz): δ = 10.62 (br s, 1H), 9.72 (s, 1H), 8.68 (t, *J* = 5.9 Hz, 1H), 7.43 (d, *J* = 8.6 Hz, 1H), 7.05 (d, *J* = 2.2 Hz, 1H), 6.83 (d, *J* = 2.2 Hz, 1H), 6.66 (dd, *J* = 8.6, 2.3 Hz, 1H), 3.75 (s, 3H), 3.69 (q, *J* = 6.6 Hz, 2H), 2.98 (t, *J* = 7.5 Hz, 2H) ppm; ¹³**C-NMR** (DMSO-*d6*, 101 MHz): δ = 162.6, 155.5, 153.6, 136.9, 121.6, 121.4, 118.8, 111.3, 108.5, 94.5, 55.1, 41.1, 24.4 ppm; **IR** (neat): \tilde{v} = 3230 (br m), 1632 (m), 1589 (vs), 1501 (m), 1456 (m), 1257 (m), 1160 (vs), 967 (vs) cm⁻¹; **HRMS** (EI) for C₁₃H₁₄N₆O⁺: calculated: 270.1229; found: 270.1220.

4-(2-((S-tetrazin-3-yl)amino)ethyl)phenol (15)

Tetrazine **15** was synthesized according to **GP4**. After 30 min, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (5% MeOH in CH_2CI_2) to afford tetrazine **15** (23.2 mg, 107 µmol, 69%) as an orange solid.

R_f (5% MeOH in CH₂Cl₂) = 0.65 (orange spot, UV); **melting point** = 209 − 210 °C; ¹**H-NMR** (DMSO-*d*6, 400 MHz): δ = 9.71 (s, 1H), 9.17 (s, 1H), 8.63 (t, *J* = 5.8 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.68 (d, *J* = 8.4 Hz, 2H), 3.59 (q, *J* = 6.4 Hz, 2H), 2.79 (t, *J* = 7.7 Hz, 2H) ppm; ¹³**C-NMR** (DMSO-*d*6, 101 MHz): δ = 200.3, 193.4, 190.3, 167.2, 166.6, 152.8, 79.7, 71.1 ppm; **IR** (neat): \tilde{v} = 3097 (br s), 1614 (w), 1593 (vs), 1514 (vs), 1455 (s), 1345 (m9; 1230 (m), 1211 (m), 1071 (w), 833 (s) cm⁻¹; **HRMS** (EI) for C₁₀H₁₁N₅O⁺: calculated: 217.0964; found: 217.0960.

N-cyclopropyl-s-tetrazin-3-amine (S32)

R_f (60% Et₂O in pentane) = 0.43 (orange spot, UV); **melting point** = 98 – 99 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 9.70 (s, 1H), 6.27 (br s, 1H), 2.97–2.91 (m, 1H), 1.00–0.95 (m, 2H), 0.71–0.67 (m, 2H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 164.2, 153.9, 23.8, 7.7 ppm; **IR** (neat): \tilde{v} = 3242 (s), 3099 (m), 1574 (vs), 1494 (vs), 1381 (m), 1121 (s), 1029 (w), 957 (s), 944 (s) cm⁻¹; **HRMS** (EI) for C₅H₇N₅⁺: calculated: 137.0701; found: 137.0694.

O-benzyl-N-(s-tetrazin-3-yl)hydroxylamine (S33)

Tetrazine **S33** was synthesized according to **GP4**. After 30 min, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (30% - 40% Et₂O in pentane) to afford tetrazine **S33** (18.2 mg, 90.0 µmol, 58%) as a red solid.

R_f (30% Et₂O in pentane) = 0.27 (red spot, UV); **melting point** = 87 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 9.88 (s, 1H), 8.35 (br s, 1H), 7.50–7.48 (m, 2H), 7.43–7.37 (m, 3H), 5.13 (s, 2H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 166.1, 155.9, 135.1, 129.5, 129.1, 128.8, 78.9 ppm; **IR** (neat): \tilde{v} = 3153 (br m), 2945 (m), 2875 (m), 1550 (s), 1498 (vs), 1465 (s), 1383 (m), 1133 (s), 955 (vs), 868 (s) cm⁻¹; **HRMS** (EI) for C₉H₉N₅O⁺: calculated: 203.0807; found: 203.0798.

N-(4-methoxybenzyl)-s-tetrazin-3-amine (S34)

Tetrazine **S34** was synthesized according to **GP4**. After 2 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (CH_2CI_2) to afford tetrazine **S34** (32.0 mg, 147 µmol, 95%) as an orange solid.

R_f (20% EtOAc in pentane) = 0.28 (orange spot, UV); **melting point** = 132 – 134 °C; ¹**H-NMR** (DMSO-*d6*, 400 MHz): δ = 9.75 (s, 1H), 9.08 (t, *J* = 6.2 Hz, 1H), 7.31 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 4.57 (d, *J* = 6.3 Hz, 2H), 3.72 (s, 3H) ppm; ¹³**C-NMR** (DMSO-*d6*, 101 MHz): δ = 200.2, 196.0, 190.5, 167.8, 166.4, 151.4, 92.7, 80.6 ppm; **IR** (neat): \tilde{v} = 3079 (w), 1580 (vs), 1512 (vs), 1442 (m), 1248 (vs), 1227 (s), 957 (vs), 817 (s) cm⁻¹; **HRMS** (EI) for C₁₀H₁₁N₅O⁺: calculated: 217.0964; found: 217.0953.

N-phenyl-s-tetrazin-3-amine (16)

R_f (CH₂Cl₂) = 0.29 (red spot, UV); **melting point** = 199 – 202°C; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 10.84 (br s, 1H), 9.96 (s, 1H), 7.74 (d, *J* = 7.8 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 162.1, 153.7, 138.0, 128.9, 123.5, 120.1 ppm; **IR** (neat): $\tilde{\nu}$ = 3274 (m), 3113 (w), 1612 (s), 1575 (vs), 1508 (vs), 1449 (w), 1121 (w), 946 (m) cm⁻¹; **HRMS** (ESI) for C₈H₇N₅Na⁺ [M+Na]⁺: calculated: 196.0594; found: 196.0594.

N-(4-fluorophenyl)-s-tetrazin-3-amine (17)

Tetrazine **17** was synthesized according to **GP4**. After 30 min, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (25% EtOAc in pentane) to afford tetrazine **17** (17.0 mg, 89.0 µmol, 57%) as a red, crystalline solid.

R_f (20% EtOAc in pentane) = 0.37 (red spot, UV); **melting point** = 271 – 273 °C; ¹⁹**F-NMR** (DMSO-*d*₆, 376 MHz): δ = -119.07 ppm; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 10.85 (s, 1H), 9.96 (s, 1H), 7.75–7.72 (m, 2H), 7.24 (t, *J* = 8.9 Hz, 2H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 162.0, 159.5 (d, *J* = 240 Hz), 153.7, 134.4 (d, *J* = 2.6 Hz), 122.4 (d, *J* = 7.8 Hz), 115.6 ppm (d, *J* = 22.4 Hz); **IR** (neat): \tilde{v} = 3244 (w), 3082 (m), 2922 (m), 1621 (m), 1571 (s), 1510 (vs), 1418 (m), 1251 (s), 1121 (m), 957 (m), 830 (s) cm⁻¹; **HRMS** (EI) for C₈H₆N₅F⁺: calculated: 191.0607; found: 191.0602.

(4-((S-tetrazin-3-yl)amino)phenyl)(phenyl)methanone (S35)

Tetrazine **S35** was synthesized according to **GP4**. After 24 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (25% EtOAc in pentane) to afford tetrazine **S35** (10.0 mg, 36.0 µmol, 23%) as an orange solid.

R_f (20% EtOAc in pentane) = 0.22 (red spot, UV); **melting point** = 196 − 198 °C; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 11.30 (s, 1H), 10.08 (s, 1H), 7.96 (d, *J* = 8.9 Hz, 2H), 7.84 (d, *J* = 8.9 Hz, 2H), 7.75 (d, *J* = 7.2 Hz, 2H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 2H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 194.5, 162.2, 154.1, 142.5, 137.5, 132.3, 131.2, 129.4, 128.5, 118.9 ppm; **IR** (neat): \tilde{v} = 3267 (w), 1652 (vs), 1603 (s), 1558 (m), 1501 (s), 1319 (s), 1278 (vs) 1116 (vs), 1055 (vs), 938 (vs), 797 (s) cm⁻¹; **HRMS** (EI) for C₁₅H₁₁N₅ONa⁺: calculated: 300.0856; found: 300.0853.

N-(4-bromophenyl)-s-tetrazin-3-amine (18)

Tetrazine **18** was synthesized according to **GP4**. After 30 min, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (25% EtOAc in pentane) to afford tetrazine **18** (29.0 mg, 115 μ mol, 74%) as a red solid.

R_f (20% EtOAc in pentane) = 0.48 (red spot, UV); **melting point** = 214 – 216°C; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 10.98 (br s, 1H), 10.00 (s, 1H), 7.73 (d, *J* = 8.9 Hz, 2H), 7.59 (d, *J* = 8.9 Hz, 2H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 162.0, 153.8, 137.5, 131.7, 121.8, 115.1 ppm; **IR** (neat): \tilde{v} = 3256 (w), 3106 (w), 1620 (m), 1586 (vs), 1523 (vs), 1447 (s), 1358 (m), 1242 (vs), 958 (vs), 835 (vs) cm⁻¹; **HRMS** (EI) for C₈H₆N₅Br⁺: calculated: 250.9807; found: 250.9801.

4-((S-tetrazin-3-yl)amino)phenol (19)

Tetrazine **19** was synthesized according to **GP4**. After 1 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (25% EtOAc in pentane) to afford tetrazine **19** (11.0 mg, 58.0 µmol, 37%) as a red-brown solid.

R_f (20% EtOAc in pentane) = 0.11 (red spot, UV); **melting point** = 271 – 273 °C; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 10.51 (br s), 9.85 (s, 1H), 9.34 (s, 1H), 7.47 (d, *J* = 8.8 Hz, 2H), 6.79 (d, *J* = 8.9 Hz, 2H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 161.9, 154.0, 153.3, 129.1, 122.5, 115.3 ppm; **IR** (neat): $\tilde{\nu}$ = 3256 (w), 3106 (w), 1620 (m), 1586 (vs), 1523 (vs), 1447 (s), 1358 (w), 1242 (vs), 1179 (m), 958 (vs), 835 (vs) cm⁻¹; **HRMS** (EI) for C₈H₇N₅O⁺: calculated: 189.0651; found: 189.0642.

N-(3,4-dimethylphenyl)-s-tetrazin-3-amine (S36)

Tetrazine **S36** was synthesized according to **GP4**. After 2 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (10% EtOAc in pentane) to afford tetrazine **S36** (21.0 mg, 104 μ mol, 67%) as a red solid.

R_f (20% EtOAc in pentane) = 0.64 (red spot, UV); **melting point** = 157 − 158 °C; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 10.67 (br s, 1H), 9.91 (s, 1H), 7.48 (d, *J* = 2.3 Hz, 1H), 7.46 (dd, *J* = 8.1, 2.4 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 2.23 (s, 3H), 2.20 (s, 3H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 162.0, 153.4, 136.5, 135.6, 131.5, 129.7, 121.4, 117.8, 19.7, 18.8 ppm; **IR** (neat): \tilde{v} = 3272 (w), 3109 (w), 2921 (w), 1618 (m), 1606 (s), 1563 (s), 1494 (vs), 1457 (s), 1112 (m), 1051 (m), 943 (s), 885 (w) cm⁻¹; **HRMS** (EI) for C₁₀H₁₁N₅⁺: calculated: 201.1014; found: 201.1005.

N-(4-butylphenyl)-s-tetrazin-3-amine (20)

Tetrazine **20** was synthesized according to **GP4**. After 2 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (40% EtOAc in pentane) to afford tetrazine **20** (22.0 mg, 96.0 µmol, 62%) as a red solid.

R_f (20% EtOAc in pentane) = 0.76 (red spot, UV); **melting point** = 174 – 177 °C; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 10.74 (br s, 1H), 9.92 (s, 1H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 8.5 Hz, 2H), 2.56 (t, *J* = 7.6 Hz, 2H), 1.58–1.51 (m, 2H), 1.35–1.26 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 162.0, 153.5, 137.7, 135.6, 128.6, 120.2, 34.2, 33.2, 21.7, 13.8 ppm; **IR** (neat): \tilde{v} = 3245 (w), 1077 (m), 1923 (m), 1612 (s), 1557 (s), 1502 (vs), 1463 (vs), 1393 (m), 1237 (w), 1116 (s) 961 (s), 842 (vs) cm⁻¹; **HRMS** (EI) for C₁₂H₁₅N₅⁺: calculated: 229.1327; found: 229.1322.

N-(benzo[d][1,3]dioxol-5-yl)-s-tetrazin-3-amine (S37)

Tetrazine **S37** was synthesized according to **GP4**. After 20 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (40% EtOAc in pentane) to afford tetrazine **S37** (17.0 mg, 78.0 µmol, 50%) as a red solid.

R_f (20% EtOAc in pentane) = 0.37 (red spot, UV); **melting point** = 231 − 234 °C; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 10.69 (br s, 1H), 9.91 (s, 1H), 7.32 (d, *J* = 2.2 Hz, 1H), 7.15 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.03 (s, 2H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 162.0, 153.5, 147.3, 143.5, 132.0, 113.6, 108.2, 102.6, 101.2 ppm; **IR** (neat): \tilde{v} = 1638 (w), 1580 (vs), 1502 (vs), 1455 (vs), 1261 (m), 1194 (m), 1034 (s), 924 (vs), 807 (s), 787 (s) cm⁻¹; **HRMS** (EI) for C₉H₇N₅O₂⁺: calculated: 217.0600; found: 217.0591.

N-(4-ethynylphenyl)-s-tetrazin-3-amine (S38)

Tetrazine **S38** was synthesized according to **GP4**. After 2 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography on silica gel (10% EtOAc in pentane) to afford tetrazine **S38** (5.0 mg, 25.0 µmol, 16%) as a red solid.

R_f (20% EtOAc in pentane) = 0.44 (red spot, UV); **melting point** = 179 – 183 °C; ¹**H-NMR** (DMSO-*d*₆, 400 MHz): δ = 11.06 (br s, 1H), 10.02 (s, 1H), 7.79 (d, *J* = 8.7 Hz, 2H), 7.52 (d, *J* = 8.7 Hz, 2H), 4.12 (s, 1H) ppm; ¹³**C-NMR** (DMSO-*d*₆, 101 MHz): δ = 162.0, 153.9, 138.8, 132.5, 119.6, 116.1, 83.5, 80.1 ppm; **IR** (neat): $\tilde{\nu}$ = 3271 (m), 2922 (m), 1604 (vs), 1552 (m), 1496 (vs), 1464 (w), 838 (vs) cm⁻¹; **HRMS** (EI) for C₁₀H₇N₅⁺: calculated: 197.0701; found: 197.0692.

Boc-Lys(Tet)-OMe (27)

Tetrazine **27** was synthesized according to **GP4**. After 2 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (40% EtOAc in pentane) to afford tetrazine **27** (45.0 mg, 132 µmol, 85%) as a red oil.

R_f (40% EtOAc in pentane) = 0.29 (orange spot, UV); $[α]_D^{20} = -12.54$ (c = 0.865, MeOH); ¹**H-NMR** (CDCI₃, 400 MHz): $\delta = 9.63$ (s, 1H), 5.99 (br s, 1H), 5.07 (br s, 1H), 4.32 (br s, 1H), 3.74 (s, 3H), 3.64–3.58 (m, 2H), 1.85–1.62 (m, 6H), 1.44 (s, 9H) ppm; ¹³**C-NMR** (CDCI₃, 101 MHz): $\delta = 173.3$, 163.1, 155.6, 153.4, 80.2, 53.2, 52.5, 41.1, 32.8, 28.5, 28.5, 22.7 ppm; **IR** (neat): $\tilde{v} = 3319$ (br m), 2934 (m), 1741 (m), 1697 (vs), 1568 (vs), 1505 (s), 1455 (w), 1366 (s), 1163 (vs), 955 (m) cm⁻¹; **HRMS** (ESI) for C₁₄H₂₄N₆O₄Na⁺ [M+Na]⁺: calculated: 363.1751; found: 363.1744.

Fmoc-Lys(Tet)-OtBu (28)

Tetrazine **28** was synthesized according to **GP4**. After 2 h, the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (40% EtOAc in pentane) to afford tetrazine **28** (43.0 mg, 85.0 µmol, 55%) as a red oil.

R_f (40% EtOAc in pentane) = 0.62 (orange spot, UV); $[\alpha]_{D}^{20}$ = -11.65 (c = 0.52, MeOH); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 9.62 (s, 1H), 7.77 (d, *J* = 7.5 Hz, 2H), 7.62–7.60 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.33–7.29 (m, 2H), 6.00 (br s, 1H), 5.39 (d, *J* = 8.3 Hz, 1H), 4.47–4.37 (m, 2H), 4.32–4.27 (m, 1H), 4.23 (t, *J* = 7.0 Hz, 1H), 3.64–3.54 (m, 2H), 1.89–1.52 (m, 6H), 1.47 (s, 9H) ppm; ¹³**C-NMR** (CDCl₃, 126 MHz): δ = 171.6, 163.2, 156.2, 153.5, 144.0, 144.0, 141.5, 127.8, 127.2, 125.3, 125.2, 120.1, 82.5, 67.2, 54.0, 47.3, 41.1, 32.9, 28.5, 28.2, 22.5 ppm; **IR** (neat): \tilde{v} = 3308 (br m), 2935 (m), 1714 (vs), 1568 (vs), 1450 (m), 1368 (w), 1078 (m); 1154 (vs), 956 (m), 739 (vs) cm⁻¹; **HRMS** (ESI) for C₂₇H₃₃N₆O₄Na⁺ [M+H]⁺: calculated: 505.2558; found: 505.2564.

Deprotection of Fmoc protected amino acid tert-butyl esters

General Procedure for the Deprotection tert-Butyl Protected Amino Acids

The respective amino acid *tert*-butyl ester was dissolved in CH_2CI_2 and TFA (5:1 v/v) was added dropwise. The mixture was stirred for 16 h, then water (50 mL) and CH_2CI_2 (50 mL) were added and the layers were separated. The aqueous layer was extracted with CH_2CI_2 (50 mL) and the combined organic layers were dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography on silica gel to afford the free acid.

Fmoc-Cys(Tet)-OH (30)

Fmoc-Cys(Tet)-OtBu (**26**) (41.9 mg, 87.4 µmol, 1.00 equiv) was dissolved in CH_2Cl_2 (5 mL) and TFA (1 mL) was added dropwise. The mixture was stirred for 16 h, then water (50 mL) and CH_2Cl_2 (50 mL) were added and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (50 mL) and the combined organic layers were dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography on silica gel (5 – 10% MeOH in CH_2Cl_2) to afford thiol **30** (26.6 mg, 64.0 µmol, 73%) as a slightly pink solid.

R_f (10% MeOH in CH₂Cl₂) = 0.13 (pink spot, UV); **melting point** = 209 °C (decomp.); $[\alpha]_{D}^{20} = -8.63$ (c = 1.215, MeOH); ¹**H-NMR** (MeOH-*d*₄, 400 MHz): δ = 10.02 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.0 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 2H), 4.48 (dd, *J* = 8.3, 4.3 Hz, 1H), 4.39 (dd, *J* = 10.5, 6.9 Hz, 1H), 4.28 (dd, *J* = 10.5, 6.9 Hz, 1H), 4.20–4.13 (m, 2H), 3.55 (dd, *J* = 13.9, 8.2 Hz, 1H) ppm; ¹³**C-NMR** (MeOH-*d*₄, 101 MHz): δ = 179.4, 158.5, 157.3, 145.2, 142.5, 128.7, 128.1, 128.1, 126.1, 126.1, 120.9, 68.0, 55.9, 33.6 ppm; **IR** (neat): \tilde{v} = 3374 (br vs), 2475 (w), 1686 (s), 1590 (vs), 1450 (s), 1405 (vs), 1220 (vs), 1035 (w), 890 (w) cm⁻¹; **HRMS** (ESI) for C₂₀H₁₇N₅O₄S⁻ [M-H]⁻: calculated: 422.0928; found: 422.0928.

Fmoc-Tyr-OH (31)

Fmoc-Tyr(Tet)-OtBu (24) (23.0 mg, 42.6 μ mol, 1.00 equiv) was dissolved in CH₂Cl₂ (2.5 mL) and TFA (0.5 mL) was added dropwise. The mixture was stirred for 16 h, then water (50 mL) and CH₂Cl₂ (50 mL) were added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (50 mL) and the combined organic layers were dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography on silica gel (10% MeOH in CH₂Cl₂) to afford ether **31** (10.2 mg, 21.0 μ mol, 49%) as a slightly pink solid.

R_f (10% MeOH in CH₂Cl₂) = 0.4 (pink spot, UV); melting point = 223 – 225 °C; $[\alpha]_{D}^{20}$ = +9.79 (c = 0.39, MeOH); ¹H-NMR (MeOH-*d*₄, 400 MHz): δ = 10.23 (s, 1H), 7.80 (d, *J* = 7.5 Hz, 2H), 7.64 (d, *J* = 7.5 Hz, 2H), 7.41–7.22 (m, 8H), 4.42 (dd, *J* = 10.5, 6.8 Hz, 1H), 4.36 (dd, *J* = 8.5, 4.7 Hz, 1H), 4.27 (dd, *J* = 10.4, 6.8 Hz, 1H), 4.19 (t, *J* = 6.6 Hz, 1H), 3.30 (dd, *J* = 13.8, 8.6 Hz, 1H), 3.04 (dd, *J* = 13.8, 8.6 Hz, 1H) ppm; ¹³C-NMR (MeOH-*d*₄, 126 MHz): δ = 170.4, 158.3, 158.0, 152.1, 145.3, 145.2, 142.6, 137.8, 132.1, 128.8, 128.1, 126.2, 126.1, 121.9, 120.9, 67.8, 57.9, 38.2 ppm; IR (neat): \tilde{v} = 3387 (br s), 2479 (w), 1692 (m), 1580 (m), 1507 (w), 1437 (vs), 1360 (vs), 1200 (w), 1053 (w), 933 (w), 741 (m) cm⁻¹; HRMS (ESI) for C₂₆H₂₁N₅O₅Na⁺ [M+Na]⁺: calculated: 506.1435; found: 506.1434.

Fmoc-Lys(Tet)-OH (32)

Fmoc-Lys(Tet)-OtBu (**28**) (40.0 mg, 79.3 µmol, 1.00 equiv) was dissolved in CH_2Cl_2 (4 mL) and TFA (0.8 mL) was added dropwise. The mixture was stirred for 16 h, then water (50 mL) and CH_2Cl_2 (50 mL) were added and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (50 mL) and the combined organic layers were dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography on silica gel (10% MeOH in CH_2Cl_2) to afford ether **32** (31.0 mg, 69.0 µmol, 87%) as an orange oil.

R_f (10% MeOH in CH₂Cl₂) = 0.2 (orange spot, UV); $[\alpha]_D^{20} = +0.43$ (c = 1.265, MeOH); ¹**H-NMR** (MeOH-*d*₄, 400 MHz): δ = 9.53 (s, 1H), 7.79 (d, *J* = 7.5 Hz, 2H), 7.65 (dd, *J* = 7.4, 5.4 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 4.41–4.30 (m, 2H), 4.20 (t, *J* = 6.7 Hz, 1H), 4.08 (dd, *J* = 9.0, 4.7 Hz, 1H), 3.52–3.45 (m, 2H), 1.94–1.28 (m, 6H) ppm; ¹³**C-NMR** (MeOH-*d*₄, 101 MHz): δ = 164.5, 158.7, 153.6, 145.3, 145.2, 142.6, 128.8, 128.1, 126.2, 126.2, 120.9, 67.8, 56.1, 41.6, 32.7, 29.4, 24.3 ppm; **IR** (neat): \tilde{v} = 3362 (br s), 2481 (br s), 2076 (m), 1686 (w), 1554 (m), 1358 (w), 1115 (s), 970 (vs) cm⁻¹; **HRMS** (ESI) for C₂₃H₂₄N₆O₄Na⁺ [M+Na]⁺: calculated: 471.1751; found: 471.1753.

Synthesis of Chemical Probes

Disulfide S39^[16]

3-Nitro-2-pyridinesulfenyl chloride (379 mg, 1.99 mmol, 1.40 equiv) was dissolved in CH_2Cl_2 (10 mL) and cooled to 0 °C. Then, 2-mercaptoethanol (0.10 mL, 1.42 mmol, 1.00 equiv) in CH_2Cl_2 (2 mL) was added dropwise over 15 min. The reaction was allowed to warm to 25 °C and was stirred for 17 h. Then, the solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (5% MeOH in CH_2Cl_2) to afford the disulfide **S39** (251 mg, 1.08 mmol, 76%) as a yellow oil.

¹H-NMR (CDCl₃, 400 MHz): δ = 8.79 (d, *J* = 4.5 Hz, 1H), 8.49 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.39 (dd, *J* = 8.2, 4.6 Hz, 1H), 3.66 (t, *J* = 5.2 Hz, 2H), 2.97 (*J* = 5.2 Hz, 2H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[16]

Disulfide 38

Disulfide **S39** (146 mg, 0.628 mmol, 1.10 equiv) was dissolved in THF (1.5 mL) and collidine (76.0 μ L, 0.571 mmol, 1.00 equiv) was added. Then, 3-bromotetrazine (**2**) (91.9 mg, 0.571 mmol, 1.00 equiv) in THF (1.5 mL) was added dropwise. The mixture was stirred for 20 h, then the solvent was removed via a stream of nitrogen and the crude product was purified via flash column chromatography (2% diethyl ether in CH₂Cl₂) to afford disulfide **38** (49.0 mg, 0.157 mmol, 28%) as a red oil.

R_f (1% diethyl ether in CH₂Cl₂) = 0.58 (pink spot, UV); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.07 (s, 1H), 8.83 (dd, *J* = 4.7, 1.5 Hz, 1H), 8.54 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.39 (dd, *J* = 8.1, 4.5 Hz, 1H), 4.98 (t, *J* = 6.6 Hz, 2H), 3.41 (t, *J* = 6.6 Hz, 2H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 167.8, 156.9, 156.3, 153.8, 143.0, 134.0, 121.2, 67.8, 36.3 ppm; **IR** (neat): \tilde{v} = 1559 (m), 1581 (s), 1514 (s), 1478 (vs), 1342 (vs)1259 (w), 1055 (w), 856 (w), 745 (w) cm⁻¹; **HRMS** (ESI) for C₉H₉N₆O₃S₂⁺ [M+H]⁺: calculated: 313.0172; found: 313.0171.

Thioether S40

2-(Methylthio)ethanol (15.0 μ L, 0.171 mmol, 1.10 equiv) was dissolved in THF (0.75 mL) and collidine was added. Then, 3-bromotetrazine (**2**) (25 mg, 0.155 mmol, 1.00 equiv) in THF (0.75 mL) was added dropwise. The mixture was stirred for 20 h and then the solvent was removed via a stream of nitrogen. The crude product was purified via flash column chromatography (40% diethyl ether in pentane) to afford thioether **S40** (4.00 mg, 23.0 μ mol, 15%) as a pink oil.

R_f (40% diethyl ether in pentane) = 0.4 (pink spot); ¹**H-NMR** (CDCl₃, 400 MHz): δ = 10.07 (s, 1H), 4.86 (t, *J* = 6.9 Hz, 2H), 3.03 (t, *J* = 6.9 Hz, 2H), 2.25 (s, 3H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 167.9, 156.3, 68.6, 32.4, 16.2 ppm; **IR** (neat): \tilde{v} = 2920 (w), 1479 (vs), 1449 (s), 1345 (vs), 1054 (w), 941 (m) cm⁻¹; **HRMS** (EI) for C₅H₈N₄OS⁺: calculated: 172.0419; found: 172.0410.

Disulfide S41^[17]

2-Aminoethanethiol hydrochloride (100 mg, 0.88 mmol, 1.00 equiv) was dissolved in formic acid (9 mL) and 3-nitro-2pyridinesulfenyl chloride (168 mg, 0.88 mmol, 1.00 equiv) was added in one portion and the mixture was stirred for 3.5 d. Then, diethyl ether (50 mL) was added and the precipitate was filtered off and dried under vacuum to afford thioether **S41** (80.0 mg, 0.288 mmol, 33%) as a yellow solid.

¹**H-NMR** (D₂O, 400 MHz): δ = 8.86 (dd, *J* = 4.7, 1.6 Hz, 1H), 8.71 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.60 (dd, *J* = 8.3, 4.7 Hz, 1H), 3.30 (t, *J* = 6.1 Hz, 2H), 3.17 (t, *J* = 6.1 Hz, 2H) ppm.

The obtained analytical data are consistent with the values reported in the literature.^[17]

Disulfide 39

Disulfide **S41** (47.9 mg, 0.179 mmol, 1.00 equiv) was dissolved in water (1.5 mL) and collidine was added followed by 3bromotetrazine (**2**) (28.8 mg, 0.179 mmol, 1.00 equiv) in MeCN (0.75 mL). The mixture was stirred for 1.5 h and then water (20 mL) and CH_2CI_2 (20 mL) were added. The layers were separated and the aqueous layer was extracted with CH_2CI_2 (2 x 50 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. The crude product was purified via flash column chromatography ($CH_2CI_2 - 2\%$ MeOH in CH_2CI_2) to afford disulfide **39** (40.4 mg, 0.13 mmol, 73%) as a red solid.

R_f (2% MeOH in CH₂Cl₂) = 0.43 (pink spot); **melting point** = 145 − 148 °C; ¹**H-NMR** (CDCl₃, 400 MHz): δ = 9.65 (s, 1H), 9.12 (dd, *J* = 4.6, 1.6 Hz, 1H), 8.57 (dd, *J* = 8.2, 1.6 Hz, 1H), 8.01 (br s, 1H), 7.47 (dd, *J* = 8.2, 4.6 Hz, 1H), 3.88 (m, 2H), 3.26−3.23 (m, 2H) ppm; ¹³**C-NMR** (CDCl₃, 101 MHz): δ = 163.0, 157.6, 154.0, 153.6, 143.2, 134.3, 121.6, 39.2, 39.1 ppm; **IR** (neat): \tilde{v} = 3261 (w), 1578 (vs), 1557 (vs), 1514 (s), 1396 (m), 1341 (s), 1120 (w), 1066 (w), 954 (w), 744 (m) cm⁻¹; **HRMS** (ESI) for C₉H₁₀N₇O₂S₂⁺ [M+H]⁺: calculated: 312.0332; found: 312.0329.

Figure 6. Spectroscopic Data for compounds 38 and 39.

Control Experiments using L-Glutathione

HPLC trace of reaction mixture at pH = 5.15 with 10% acetonitrile

HPLC trace of reaction mixture at pH = 4.15 with 10% DMSO

38

HRMS (ESI) for C₁₄H₂₀N₇O₇S₂⁻[M-H]⁻: calculated: 462.0871; found: 462.0871.

HRMS/HRMS of labelled L-glutathione

Table S3. MS/MS fragments.

BSA (50 mg, 0.75 μ mol, 1.00 equiv) was dissolved in ammonium acetate buffer (0.11 M, pH = 5.15) (49.5 mL). Then, disulfide **38** (1.18 mg, 3.77 μ mol, 5.00 equiv), dissolved in MeCN (0.5 mL) was added dropwise and the mixture was stirred for 2 h. After 2 h, full conversion to the monofunctionalized BSA derivative **S41** was observed by ESI-MS of a sample taken from the reaction mixture.

Deconvoluted ESI-MS Spectra of S41.

An aliquot (5 mL) of the above solution was removed and treated with Sulfo-Cy5-TCO triethylamine salt (0.44 mg, 0.375 μ mol, 5.00 equiv). After 3 h, the reaction was complete and analysis with ESI-MS showed full conversion to the desired product **41**. To determine the yield, a gel electrophoresis was run on an aliquot (7.5 μ L) of the reaction mixture.

Deconvoluted ESI-MS Spectra of 41.

Figure 7. A) Stain free gel analysis of BSA and the BSA-Tet-Cy5 conjugate; B) In-gel fluorescence measurement of respective gel.

Whole Cell Labelling

Whole cell labeling of MCF7 cells without TCEP activation

Untreated microscope glass coverslips were placed in the wells of a six-well plate and cells were seeded at a density of 200000 cells/well in suitable medium (2 mL, Minimum essential medium eagle + 10% FBS + 1% pen/strep + 0.01 mg/mL human recombinant insulin). The six-well plate was placed in the incubator (37 °C, 90% RH, 5% CO₂) and cells were allowed to attach for 21 h. After incubation, the old medium was removed and MEM (1 mL) spiked with 20% of a 4% solution of paraformaldehyde was added to the cells for 2 min before aspirating. Subsequently, samples were fixed by treatment with a 4% solution of paraformaldehyde (1 mL) for 15 min, followed by rinsing with PBS (1 x 1 mL). Staining of the cell nuclei was performed by incubation of the fixed cells with DAPI (c = 2.0 µg/mL in H₂O) at 25 °C for 15 min in the dark followed by washing with H₂O (2 x 1 mL). Further the cells were stained either with **38** (c = 10 µg/mL in H₂O) or **S40** (c = 10 µg/mL) at 25 °C for 30 min in the dark followed by rinsing with H₂O (2 x 1 mL). In order to probe dye accumulation by unspecific non-covalent binding to the probes, cells were incubated with 6-aminofluorescein (20 µg/mL in H₂O) at 25 °C for 30 min. After washing twice with H₂O (2 x 1 mL), the coverslips were removed from the six-well plates, mounted with *Prolong Diamond Antifade Mountant* and air dried in the dark before imaging.

Figure 8. Confocal microscopy images (Leica SP8 inverse FALCON) of MCF7 cells stained with DAPI and Cy5 and incubated with 6-aminofluorescein. DAPI channel: Excitation: 405 nm, laser power: 2%, gain: 22% / 22% (probe/control); Cy5 channel: Excitation: 640 nm, laser power: 1%, gain: 21% / 21% (probe/control); 6-aminofluorescein: Excitation: 490 nm, laser power: 2%, gain: 100% / 100% (probe/control).

Whole cell labeling of MCF7 cells with TCEP activation

Untreated microscope glass coverslips were placed in the wells of a six-well plate and cells were seeded at a density of 200000 cells/well in suitable medium (2 mL, Minimum essential medium eagle + 10% FBS + 1% pen/strep + 0.01 mg/mL human recombinant insulin). The six-well plate was then placed in the incubator (37 °C, 90% RH, 5% CO₂) and cells were allowed to attach for 21 h. After incubation, the old medium was removed and MEM (1 mL) spiked with 20% of a 4% solution of paraformaldehyde was added to the cells for 2 min before aspirating. Subsequently, samples were fixed by treatment with a 4% solution of paraformaldehyde (1 mL) for 15 min, followed by rinsing with PBS (1 x 1 mL). Staining of the cell nuclei was performed by incubation of the fixed cells with DAPI (c = 2.0 µg/mL in H₂O) at 25 °C for 15 min in the dark followed by washing with H₂O (2 x 1 mL). To activate the accessible disulfide bonds of the cells, they were incubated in a solution of TCEP (1 mL, 0.1 mM in H₂O) at 25 °C for 30 min followed by rinsing with H₂O (2 x 1 mL). Further the cells were stained either with **38** (c = 10 µg/mL in H₂O) or **S40** (c = 10 µg/mL in H₂O) at 25 °C for 30 min in the dark followed by washing with H₂O (2 x 1 mL). The cells were then incubated with a solution of Sulfo-Cy5-TCO (7.1 µg/mL in H₂O) at 25 °C for 30 min in the dark followed by washing with H₂O (2 x 1 mL). The cells were incubated with a solution of Sulfo-Cy5-TCO (7.1 µg/mL in H₂O) at 25 °C for 30 min in the dark followed by washing with H₂O (2 x 1 mL). The cells were incubated with 6-aminofluorescein (20 µg/mL in H₂O) at 25 °C for 30 min.

After washing twice with H_2O (2 x 1 mL), the coverslips were removed from the six-well plates, mounted with *Prolong Diamond Antifade Mountant* and air dried in the dark before imaging.

Figure 9. Confocal microscopy images (Leica SP8 inverse FALCON) of MCF7 cells stained with DAPI and Cy5 and incubated with 6-aminofluorescein. DAPI channel: Excitation: 405 nm, laser power: 2%, gain: 40% / 40% (probe/control); Cy5 channel: Excitation: 640 nm, laser power: 0.5%, gain: 20% / 20% (probe/control); 6-aminofluorescein: Excitation: 490 nm, laser power: 2%, gain: 100% / 500% (probe/control).

Targeting of L-glutathione in Cyanobacteria extracts

Sources, Cultivation and Isolation of Cyanobacteria.

The strain *Microcystis aeruginosa* (*M. aeruginosa*) EAWAG 127a is part of the cyanobacteria collection of the University of Zürich, previously located at EAWAG (Swiss Federal Institute of Aquatic Science and Technology). The strain was grown in a 60 L batch reactor (Z medium) with a light/dark cycle of 12:12 h and continuous airflow. Part of the culture (0.5 L) was collected, centrifuged ($4500 \times g$, 30 min) and the supernatant was discarded. To the cyanobacteria pellet, an aq. MeOH solution. (50%, 200 mL) was added, the mixture was sonicated ($3 \times 3 \min$), centrifuged ($4500 \times g$, 30 min) and filtered, and the procedure was repeated twice with an aq. MeOH solution. (80%, 200 mL). The filtrates were combined, evaporated under reduced pressure at 40° C, and freeze dried to obtain 29.5 mg of the crude extract.

Functionalization in Cyanobacteria Extract.

The functionalization of L-glutathione with the tetrazine probe **38** was performed in the presence of the *M. aeruginosa* EAWAG 127a crude extract. Stock solutions of L-glutathione (200 µg/mL) in H₂O and tetrazine probe **38** (2 mg/mL) in MeCN were prepared, and the crude extract was dissolved in MeCN:H₂O (1:1; v/v) at a concentration of 3 mg/mL. The experiment was performed by mixing the crude extract solution (100 µL), the tetrazine probe (8.1 µL) and the L-glutathione (40 µL) stock solution for 5 min at RT. Control experiments were achieved using only the crude extract solution with MeCN (8.1 µL) and H₂O (40 µL), the crude extract solution with tetrazine probe **38** (8.1 µL) solution and H₂O (40 µL), and the crude extract solution and MeCN (8.1 µL). The results were analyzed by UHPLC MS using a solvent system composed of H₂O + 0.1% HCOOH (A) and MeCN + 0.1% HCOOH (B). The gradient varied from 5 to 95 % of B in 3.5 min, from 95 to 100 % in 0.05 min, and the column was washed with 100 % B for 1.24 min. The functionalized L-glutathione with the tetrazine probe was detected 1.00 min.

Figure 10. HPLC UV chromatograms monitored over the wavelength range of 500 to 520 nm of the L-glutathione functionalization with tetrazine in the presence of a complex matrix as cyanobacteria extract (*M. aeruginosa* EAWAG 127a). From top to bottom experiments 1) with only the crude extract, 2) with the crude extract and L-glutathione, 3) with the crude extract and tetrazine probe **38**, and 4) with the crude extract, tetrazine probe **38** and L-glutathione. The peak at 1.0 min is the functionalized L-glutathione.

Figure 11. HPLC MS chromatograms in SIM mode (464 Da) of the L-glutathione functionalization with tetrazine in the presence of a complex matrix as cyanobacteria extract (*M. aeruginosa* EAWAG 127a). From top to bottom experiments 1) with only the crude extract, 2) with the crude extract and L-glutathione, 3) with the crude extract and tetrazine probe **38**, and 4) with the crude extract, tetrazine probe **38** and L-glutathione. The peak at 1.00 min is the functionalized L-glutathione.

Competition Experiments Between Amino Acids

To establish a reactivity profile of 3-bromotetrazine (2) towards amino acids, competition experiments between amino acids were conducted

The two different amino acids (0.186 mmol, 1.20 equiv) were dissolved in the specified solvent and base (0.155 mmol, 1.00 equiv) was added. Then, 3-bromotetrazine (2) (25.0 mg, 0.155 mmol, 1.00 equiv) in specified organic solvent, was added. After completion of the reaction, the solvent was removed and the crude material was purified via flash column chromatography on silica gel.

Table S4.	Competition	experiments	between	amino	acids.
-----------	-------------	-------------	---------	-------	--------

entry	AA1	AA2	base	solvent	T [°C]	yield (Tet)AA1 [%] ^a	yield (Tet)AA2 [%] ^b
1	Boc-Ser-OMe	Boc-Trp-OMe	DBU	MeCN	25	0	15
2	Boc-Ser-OMe	Boc-Cys-OMe	collidine	THF	25	0	92
3	Boc-Trp-OMe	Boc-Cys-OMe	collidine	THF	25	0	82
4	Boc-Lys-OMe	Boc-Cys-OMe	collidine	THF	25	28	42
5	Boc-Lys-OMe	Boc-Cys-OMe	collidine	THF	0	23	62
6	Boc-Lys-OMe	Boc-Cys-OMe	collidine	THF	-20	21	63
7	Boc-Lys-OMe	Boc-Cys-OMe	_c	THF	25	17	45
8	Boc-Lys-OMe	Boc-Cys-OMe	-	NH₄OAc ^d / 10% MeCN	25	0	57
9	Boc-Lys-OMe	Boc-Cys-OMe	-	NH₄OAc ^e / 10% MeCN	25	0	76
10	Boc-Tyr-OMe	Boc-Cys-OMe	collidine	THF	25	0	98
11	Boc-His-OMe	Boc-Cys-OMe	collidine	THF	25	0	82
12	Boc-Lys-OMe	Boc-Tyr-OMe	collidine	THF	25	72	0
13	Boc-His-OMe	Boc-Tyr-OMe	collidine	THF	25	70	0
14	Boc-His-OMe	Boc-Tyr-OMe	collidine	MeCN/H ₂ O (1:1)	25	70	10

[a] isolated yield; [b] isolated yield; [c] 2 equiv of Boc-Lys-OMe were used; [d] ammonium acetate buffer (0.11 M, pH = 5.15); [e] ammonium acetate buffer (0.11 M, pH = 4.15).

Functionalization of Amino Acids in Aqueous/Organic Solvent Systems and Aqueous Buffers

		AA			Tet(AA)
	R	O Br → OMe + N N - NHBoc N N	condition	s 	O N∽N→R1↓OMe ↓N×N NHBoc
		2			
entry	AA	solvent	Base	T [°C]	yield (Tet)AA [%] ^a
1	Boc-Cys-OMe	MeCN	collidine	25	85
2	Boc-Cys-OMe	MeCN (80)/water (20)	collidine	25	72
3	Boc-Cys-OMe	MeCN (40)/water (40)	collidine	25	68
4	Boc-Cys-OMe	MeCN (50)/water (50)	collidine	25	87
5	Boc-Cys-OMe	$\rm NH_4OAc^b$	-	25	83
6	Boc-Cys-OMe	NH₄OAc ^c	-	25	81
7	Boc-Lys-OMe	MeCN	_d	25	74
8	Boc-Lys-OMe	MeCN (50)/water (50)	_d	25	43
٩	Boc-Lys-OMe	MeCN (50)/water (50)	collidine	25	54

 Table S5. Nucleophilic Aromatic Substitution in Aqueous/Organic Solvent Systems and Aqueous Buffers.

9 Boc-Lys-OMe MeCN (50)/water (50) collidine 25 54 [a] isolated yield; [b] ammonium acetate buffer (0.11 M, pH = 5.15); [c] ammonium acetate buffer (0.11 M, pH = 4.15) [d] 2 equiv of Boc-Lys-OMe were used.

Functionalization of Peptides and Proteins

Tet-Cyclosomatostatin (35)

20

Cyclo-(7-aminoheptanoyl-Phe-D-Trp-Lys-Thr(Bzl)) acetate salt (5.0 mg, 5.95 µmol, 1.00 equiv) (cyclosomatostatin) was dissolved in MeCN (5 mL) and collidine (1.58 µL, 11.9 µmol, 2.00 equiv) was added. Then 3-bromotetrazine (2) (4.79 mg, 29.8 µmol, 5.00 equiv) in MeCN (0.5 mL) was added dropwise. After 30 min, the solvent was removed and the crude product was purified via flash column chromatography (5% MeOH in CH₂Cl₂) to afford tetrazine **35** (5.00 mg, 5.83 µmol, 98%) as a red solid.

HRMS (ESI) for C₄₆H₅₇N₁₁O₆Na⁺ [M+Na]⁺: calculated: 882.4385; found: 882.4373.

4.09 325.4

4.32 391.3

4.65 391.4

3.67 321.3

2.9

HRMS/HRMS analysis of starting material product:

Table S6. MS/MS fragments.

fragment	pseudomolecular ion	calculated mass	found mass	proposed structure
а	$[C_{33}H_{45}N_6O_4]^{+}$	589.3497	589.3494	
b	$[C_{17}H_{23}N_4O_2]^*$	315.1816	315.1816	
С	$[C_{10}H_{11}N_2]^*$	159.0917	159.0916	⊕0″ HN- ⁺ H ₂ N
d	$[C_{35}H_{45}N_{10}O_4]^*$	669.3620	669.3702	

e	$C_{19}H_{23}N_8O_2^{+}$	395.1938	395.1935	
f	$C_8H_{13}N_6O^+$	209.1145	209.1145	

Leuprorelin (4.1 mg, 3.39 μ mol, 1.00 equiv) was dissolved in water (2 mL) and collidine (0.1 M in MeCN; 33.9 μ L, 3.39 μ mol, 1.00 equiv) was added. Then, 3-bromotetrazine (**2**) (2.73 mg, 17.0 μ mol, 5.00 equiv) in MeCN (2 mL) was added dropwise. After 25 min, the reaction was complete and the solution was lyophilized. The obtained slightly pink powder was purified via preparative HPLC to afford tetrazine **36** (3.0 mg, 2.33 μ mol, 69%) as a pink powder.

UHPLC-MS chromatogram of the starting material

UHPLC-MS chromatogtam of the reaction mixture

HPLC-UV chromatogram from the preperative HPLC-purification

HRMS (ESI) for $C_{61}H_{85}N_{20}O_{12}^{+}[M+H]^{+}$: calculated: 1289.6650; found: 1289.6654.

HRMS/HRMS analysis of starting material and product:

Table S7. MS/MS fragments.

fragment	pseudomolecular ion	calculated mass	found mass	proposed structure
a	[C ₃₄ H ₃₇ N ₈ O ₈] ⁺	685.2729	685.2727	
b	$\left[C_{25}H_{28}N_7O_6\right]^*$	522.2096	522.2094	
с	$[C_{22}H_{23}N_6O_4]^{+}$	435.1775	435.1774	
d	[C ₁₁ H ₁₃ N₄O ₃] ⁺	249.0982	249.0980	
e	$[C_{36}H_{37}N_{12}O_8]^+$	765.2852	765.2816	

L-Glutathione (47.6 mg, 0.155 mmol, 1.00 equiv) was dissolved in ammonium acetate buffer (0.11 M; pH = 4.15; 3 mL) and 3-bromotetrazine (2) (25.0 mg, 0.115 mmol, 1.00 equiv) in MeCN (0.3 mL) was added dropwise. The mixture was stirred for 1 h at 25 °C and then the solution was purified directly via reverse-phase flash column chromatography (water) to obtain pure tet-L-glutathione (S42) (55.0 mg, 0.142 mmol, 92%) as a red fluffy solid after lyophilizing of the aqueous solution.

¹**H-NMR** (D₂O, 400 MHz): δ = 10.18 (s, 1H), 4.94 (dd, *J* = 8.3, 4.9 Hz, 1H), 4.04 (dd, *J* = 14.6, 5.0 Hz, 1H), 3.92 (s, 2H), 3.78 (t, *J* = 6.3 Hz, 1H), 3.62 (dd, *J* = 14.6, 84 Hz, 1H), 2.50 (td, *J* = 7.1, 6.5, 2H), 2.12 (td, *J* = 7.3, 5.4 Hz, 2H) ppm; ¹³**C-NMR** (D₂O, 126 MHz): δ = 178.1, 175.8, 175.1, 174.6, 172.5, 156.7, 54.9, 53.0, 43.0, 32.2 (2 x C), 27.0 ppm; **HRMS** (ESI) for C₁₂H₁₈N₇O₆S⁺ [M+H]⁺: calculated: 388.1034; found: 388.1034.

UHPLC-MS chromatogram of L-glutathione

UHPLC-MS chromatogram of the reaction mixture

UHPLC-MS chromatogram of the purified product

Functionalization of Bovine Serum Albumin (BSA)

Ellman's Assay:^[18] To assess the amount of free sulfhydryl groups present in BSA, an Ellman's Assay was carried out. 250 µL of a 300 µM BSA solution in borate buffer was added to 2.5 mL of borate buffer (pH = 8.6). 50 µL of a 10 mM 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) solution in borate buffer was added delivering a BSA concentration of 26.8 µM and a DTNB concentration of 178 µM. The mixture was stirred for 15 min, turning yellow over time. Then, a UV-Vis spectrum was recorded and the absorption at 412 nm was measured to be 0.1351. With a coefficient of extinction of 5-mercapto-2-nitrobenzoic acid of ε = 14150 L · mol⁻¹ · cm⁻¹ the concentration of free thiol groups in the BSA studied was calculated to be 0.36 free sulfhydryl groups per BSA molecule.

This result was verified using cysteine as a standard. 250 μ L of a 300 μ M cysteine solution in borate buffer was added to 2.5 mL of borate buffer (pH = 8.6). 50 μ L of a 10 mM 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) solution in borate buffer was added delivering a BSA concentration of 26.8 μ M and a DTNB concentration of 178 μ M. The mixture was stirred for 15 min, turning yellow over time. Then, a UV-Vis spectrum was recorded and the absorption at 412 nm was measured to be 0.4125. With a coefficient of extinction of 5-mercapto-2-nitrobenzoic acid of ε = 14150 L · mol⁻¹ · cm⁻¹ the concentration of free thiol groups in cysteine was calculated to be 1.08 free sulfhydryl groups per cysteine molecule, thus verifying the results obtained previously.

One-Pot Functionalization of BSA: BSA (50.0 mg, 0.75 μ mol, 1.00 equiv) was dissolved in ammonium acetate buffer (0.11 M, pH = 4.15) (49.5 mL). Then, 3-bromotetrazine (**2**) (0.12 mg, 0.75 μ mol, 1.00 equiv), dissolved in MeCN (0.5 mL) was added dropwise and the mixture was stirred for 1 h. After 1 h, full conversion to the monofunctionalized BSA was observed by ESI-MS of a sample from the reaction mixture.

Deconvoluted ESI-MS Spectra of functionalized BSA.

Then, TCO-PEG3-Biotin (0.43 mg, 0.75 µmol, 1.00 equiv) was added. After 1 h, the reaction was complete and the sample was analyzed with ESI-MS. Full conversion to the desired mass was observed.

Deconvoluted ESI-MS Spectra of biotinolyted BSA.

Determination of the rate constant under pseudo-first order conditions

Figure 12. Determination of the second-order rate constant k between Boc-Cys(Tet)-OMe (**25**) and TCO-PEG3-Biotin under pseudo-first order conditions. Boc-Cys(Tet)-OMe (300 μ M in MeCN) was mixed with different concentrations of TCO-PEG3-Biotin (1.5 mM to 4.5 mM in MeCN) in a UV-quartz cuvette. After 10 sec reaction time, the UV/Vis measurement was started, measuring the absorbance between 570 and 470 nm. The reaction course was monitored by following the decreasing absorbance at 524 nm. The obtained values were fitted to a single exponential equation using Prism 7, thus determining k'. These obtained values were plotted against the concentrations of TCO-PEG3-Biotin and subjected to a linear fit. The rate constant k = 22.69 ± 3.553 M⁻¹s⁻¹ was obtained as the slope of the resulting linear fit.

Crystallographic Data

Table S8. Crystallographic Data for 1.

Crystallized from	CH ₂ Cl ₂
Empirical formula	C ₂ HCIN ₄
Formula weight [g mol ⁻¹]	116.52
Crystal colour, habit	orange, plate
Crystal dimensions [mm]	0.02 x 0.13 x 0.26
Temperature [K]	160(1)
Crystal system	orthorhombic
Space group	<i>Pbca</i> (#61)
Z	8
Reflections for cell determination	3146
2 heta range for cell determination [°]	14–149
a [Å]	11.2724(5)
b [Å]	6.2790(4)
c [Å]	12.5272(7)
<i>V</i> [Å ³]	886.67(9)
<i>F</i> (000)	464
D_X [g cm ⁻³]	1.746
μ(Cu <i>K</i> α) [mm ⁻¹]	6.417
Scan type	ω
$2\theta_{(max)}[^{\circ}]$	149.0
Transmission factors (min; max)	0.382; 0.858
Total reflections measured	4312
Symmetry independent reflections	904
R _{int}	0.019
Reflections with $l > 2\sigma(l)$	883
Reflections used in refinement	903
Parameters refined	68
Final $R(F)$ [$l > 2\sigma(l)$ reflections]	0.0281
$wR(F^2)$ (all data)	0.0772
Weights:	$w = [\sigma^2 (F_0^2) + (0.0494P)^2 + 0.2063P]^{-1}$ where $P = (F_0^2 + 2F_c^2)/3$
Goodness of fit	1.096
Final $\varDelta_{\sf max}/\sigma$	0.001
${\it \Delta} ho$ (max; min) [e Å $^{-3}$]	0.16; -0.34

Table S9. Crytallographic Data for 2.

Crystallized from	CH ₂ Cl ₂
Empirical formula	C_2HBrN_4
Formula weight [g mol [~]]	160.98
Crystal colour, habit	orange, plate
Crystal dimensions [mm]	0.05 x 0.08 x 0.26
Temperature [K]	160(1)
Crystal system	orthorhombic
Space group	<i>Pbca</i> (#61)
Z	8
Reflections for cell determination	2980
2θ range for cell determination [°]	6–147
a [Å]	12.7468(5)
<i>b</i> [Å]	5.60166(19)
c [Å]	12.9507(4)
V [Å]	924.72(6)
F(000)	608
$D_X [g \text{ cm}^{-3}]$	2.313
μ (Cu $K\alpha$) [mm ⁻¹]	10.963
Scan type	ω
2 $ heta_{(\max)}$ [°]	147.9
Transmission factors (min; max)	0.481; 1.000
Total reflections measured	4719
Symmetry independent reflections	926
R _{int}	0.024
Reflections with $l > 2\sigma(l)$	904
Reflections used in refinement	926
Parameters refined	65
Final $R(F)$ [$l > 2\sigma(l)$ reflections]	0.0185
$wR(F^2)$ (all data)	0.0516
Weights:	$w = [\sigma^2(F_0^2) + (0.0285P)^2 + 0.4717P]^{-1}$ where $P = (F_0^2 + 2F_c^2)/3$
Goodness of fit	1.101
Secondary extinction coefficient	0.00063(9)
Final $\Delta_{ m max}/\sigma$	0.001
Δho (max; min) [e Å ⁻³]	0.32; -0.43

`N′

Table S10. Crystallographic Date for 4.

	ů –
Crystallized from	MeCN
Empirical formula	$C_8H_6N_4O$
Formula weight [g mol ⁻¹]	174.17
Crystal colour, habit	red, tablet
Crystal dimensions [mm]	0.06 x 0.12 x 0.25
Temperature [K]	160(1)
Crystal system	monoclinic
Space group	P2 ₁ /c (#14)
Ζ	4
Reflections for cell determination	5042
2θ range for cell determination [°]	7–57
a [Å]	10.7358(3)
b [Å]	5.14454(12)
c [Å]	14.9437(4)
β [°]	105.056(3)
<i>V</i> [Å ³]	797.02(4)
F(000)	360
<i>D</i> _X [g cm ⁻³]	1.451
μ (Mo $K\alpha$) [mm ⁻¹]	0.104
Scan type	ω
2 $ heta_{(max)}$ [°]	58.5
Transmission factors (min; max)	0.866; 1.000
Total reflections measured	9349
Symmetry independent reflections	1936
R _{int}	0.017
Reflections with $l > 2\sigma(l)$	1614
Reflections used in refinement	1936
Parameters refined	119
Final $R(F)$ [$I > 2\sigma(I)$ reflections]	0.0345
$wR(F^2)$ (all data)	0.0868
Weights:	w = $[\sigma^2 (F_o^2) + (0.0344P)^2 + 0.2119P]^{-1}$ where $P = (F_o^2 + 2F_c^2)/3$
Goodness of fit	1.048
Secondary extinction coefficient	0.012(2)
Final Δ_{\max}/σ	0.001
$\Delta \rho$ (max; min) [e Å ⁻³]	0.20; -0.19
$\sigma\left(\textit{d}_{(\text{C-C})} ight)[\text{\AA}]$	0.0016 - 0.0018

Table S11. Crystallographic Data for 9.

Crystallized from	Et₂O
Empirical formula	C ₁₀ H ₇ N ₅
Formula weight [g mol ⁻¹]	197.21
Crystal colour, habit	red, tablet
Crystal dimensions [mm]	0.06 x 0.14 x 0.16
Temperature [K]	160(1)
Crystal system	orthorhombic
Space group	Fdd2 (#43)
Z	16
Reflections for cell determination	6471
2θ range for cell determination [°]	9–148
a [Å]	38.7645(3)
b [Å]	11.93147(14)
<i>c</i> [Å]	7.70847(8)
V [Å ³]	3565.30(6)
<i>F</i> (000)	1632
D_X [g cm ⁻³]	1.470
μ(Cu <i>K</i> α) [mm ⁻¹]	0.794
Scan type	ω
$2 heta_{(max)}$ [°]	148.1
Transmission factors (min; max)	0.907; 1.000
Total reflections measured	8381
Symmetry independent reflections	1702
R _{int}	0.013
Reflections with $l > 2\sigma(l)$	1689
Reflections used in refinement	1702
Parameters refined; restraints	137; 1
Final $R(F)$ [$I > 2\sigma(I)$ reflections]	0.0228
wR(F²) (all data)	0.0608
Weights:	w = $[\sigma^2 (F_0^2) + (0.0379P)^2 + 1.6158P]^{-1}$ where P = $(F_0^2 + 2F_c^2)/3$
Goodness of fit	1.072
Secondary extinction coefficient	0.00026(5)
Final $\Delta_{ m max}$ / σ	0.001
Δho (max; min) [e Å ⁻³]	0.15; -0.11
$\sigma\left(\textit{d}_{(\text{C}-\text{C})} ight)$ [Å]	0.002

Table S12. Crystallographic Data for 23.

Crystallized from	Et ₂ O
Empirical formula	$C_{17}H_{21}N_5O_5$
Formula weight [g mol ⁻¹]	375.39
Crystal colour, habit	pink, needle
Crystal dimensions [mm]	0.03 x 0.04 x 0.28
Temperature [K]	160(1)
Crystal system	monoclinic
Space group	C2 (#5)
Ζ	4
Reflections for cell determination	3168
2θ range for cell determination [°]	8–142
a [Å]	32.663(2)
b [Å]	5.1610(2)
c [Å]	11.0162(6)
β[°]	94.704(5)
V [Å ³]	1850.79(17)
<i>F</i> (000)	792
$D_X [g cm^{-3}]$	1.347
μ (Cu $K\alpha$) [mm ⁻¹]	0.849
Scan type	ω
2 <i>θ_(max)</i> [°]	146.3
Transmission factors (min; max)	0.565; 1.000
Total reflections measured	13382
Symmetry independent reflections	3606
R _{int}	0.064
Reflections with $l > 2\sigma(l)$	2965
Reflections used in refinement	3606
Parameters refined; restraints	252; 2
Final $R(F)$ [$l > 2\sigma(l)$ reflections]	0.0541
$wR(F^2)$ (all data)	0.1556
Weights:	w = $[\sigma^2 (F_0^2) + (0.0850P)^2 + 0.5336P]^{-1}$ where P = $(F_0^2 + 2F_c^2)/3$
Goodness of fit	1.039
Final Δ_{\max} / σ	0.000
Δho (max; min) [e Å ⁻³]	0.29; -0.17
$\sigma\left(\textit{d}_{(ext{C}- ext{C})} ight)$ [Å]	0.005 - 0.008

Table S13. Crystallographic Data for 39.

Crystallized from	CH ₂ Cl ₂ / MeCN
Empirical formula	$C_9H_9N_7O_2S_2$
Formula weight [g mol ⁻¹]	311.35
Crystal colour, habit	red, prism
Crystal dimensions [mm]	0.12 x 0.20 x 0.23
Temperature [K]	160(1)
Crystal system	monoclinic
Space group	C2/c (#15)
Z	8
Reflections for cell determination	10728
2θ range for cell determination [°]	6–61
a [Å]	17.7417(3)
b [Å]	6.22991(9)
c [Å]	23.2377(3)
β[°]	93.9389(13)
V [Å ³]	2562.38(7)
F(000)	1280
D_X [g cm ⁻³]	1.614
μ(Cu <i>K</i> α) [mm ⁻¹]	0.429
Scan type	ω
$2\theta_{(max)}$ [°]	60.5
Transmission factors (min; max)	0.927; 1.000
Total reflections measured	16497
Symmetry independent reflections	3564
R _{int}	0.019
Reflections with $l > 2\sigma(l)$	3204
Reflections used in refinement	3564
Parameters refined	186
Final $R(F)$ [$I > 2\sigma(I)$ reflections]	0.0266
$wR(F^2)$ (all data)	0.0704
Weights:	$w = [\sigma^2 (F_0^2) + (0.0311P)^2 + 1.7110P]^{-1}$ where $P = (F_0^2 + 2F_c^2)/3$
Goodness of fit	1.060
Secondary extinction coefficient	0.0007(2)
Final \varDelta_{max} / σ	0.001
Δho (max; min) [e Å ⁻³]	0.32; -0.22
$\sigma\left(\textit{d}_{(extsf{C}- extsf{C})} ight)$ [Å]	0.0015 - 0.0019

NMR Spectra

)0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 11 (ppm)

S61

¹H-NMR, CDCl₃, 400 MHz

¹H-NMR, CDCI₃, 400 MHz

¹H-NMR, CDCI₃, 500 MHz

¹³C-NMR, CDCI₃, 376 MHz

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 11 (ppm)

¹H-NMR, CDCl₃, 400 MHz


```
<sup>13</sup>C-NMR, CDCI<sub>3</sub>, 126 MHz
```


¹³C-NMR, CDCI₃, 126 MHz

¹H-NMR, DMSO-d6, 400 MHz

¹H-NMR, DMSO-*d*6, 400 MHz

¹⁹F-NMR, DMSO-*d6*, 376 MHz

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) ¹H-NMR, DMSO-*d6*, 400 MHz

¹³C-NMR, DMSO-d6, 101 MHz

¹³C-NMR, DMSO-d6, 101 MHz

¹H-NMR, DMSO-*d*6, 400 MHz

¹H-NMR, DMSO-*d6*, 400 MHz

¹H-NMR, CDCI₃, 400 MHz

¹H-NMR, CDCI₃, 400 MHz

¹H-NMR, CDCI₃, 400 MHz

References

1 NATO standardization agreement (STANAG) on explosives. Impact sensitivity tests. No. 4489, 1st ed., Sept. 17, 1999. 2 WIWEB-Standardarbeitsanweisung 4-5.1.02, Ermittlung der Explosionsgefährlichkeit, hier der Schlagempfindlichkeit mit dem Fallhammer, Nov. 8, 2002.

3 http://www.bam.de

4 NATO standardization agreement (STANAG) on explosive. Friction sensitivity tests. No. 4487, 1st ed., Aug. 22, 2002. 5 WIWEB-Standardarbeitsanweisung 4-5.1.03, Ermittlung der Explosionsgefährlichkeit oder der Reibeempfindlichkeit mit dem Reibeapparat, Nov. 8, 2002.

6 Impact: Insensitive > 40 J, less sensitive \geq 35 J, sensitive \geq 4 J, very sensitive \geq 3 J; friction: Insensitive > 360 N, less sensitive = 360 N, sensitive < 360 N a. > 80 N, very sensitive \leq 80 N, extreme sensitive \leq 10 N; according to the UN recommendations on the transport of dangerous goods. (+) Indicates: not safe for transport.

7 http://www.ozm.cz

8 J. Zhu, J. Hiltz, R. B. Lennox, R. Schirrmacher, Chem. Commun., 2013, 49, 10275.

9 D. E. Chavez, M. A. Hiskey, J. Heterocyclic Chem., 1998, 35, 1329.

10 M. Nappi, C. He, W. G. Whitehurst, B. G. N. Chappell, M. J. Gaunt, Angew. Chem. Int. Ed., 2018, 57, 3178.

11 W. Wan, Y. Huang, Z. Wang, W. K. Russell, P.-J. Pai, D. H. Russell, W. R. Liu, *Angew. Chem. Int. Ed.*, 2010, **49**, 3211. 12 (a) Z. A. Wang, Y. Kurra, X. Wang, Y. Zeng, Y.-J. Lee, V. Sharma, H. Lin, S. Y. Dai, W. R. Liu, *Angew. Chem. Int. Ed.*,

2017, 56, 1643; (b) J. M. Chalker, S. B. Gunnoo, O. Boutureira, S. C. Gerstberger, M. Fernandez-Gonzalez, G. J. L.

Bernardes, L. Griffin, H. Hailu, C. J. Schofield, B. G. Davies, Chem. Sci., 2011, 2, 1666.

13 Z. V. F. Wright, S. McCarthy, R. Dickman, F. E. Reyes, S. Sanchez-Martinez, A. Cryar, I. Kilford, A. Hall, A. K. Takle, M. Topf, T. Gonen, K. Thalassinos, A. B. Tabor, J. Am. Chem. Soc., 2017, 139, 13063.

14 D. Rothman, M. E. Vazquez, E. M. Vogel, B. Imperiali, J. Org. Chem., 2003, 68, 6795.

15 S.-H. Hyun, H.-K. Kim, J.-M. Kim, D. H. Thompson, J. Am. Chem. Soc., 2010, 132, 17053.

16 C. Batisse, E. Dransart, R. A. Sarkouh, L. Brulle, S.-K. Bai, S. Godefroy, L. Johannes, F. Schmidt, Eur. J. Med. Chem., 2015. 95. 482.

17 J. Schmidt, V. Garambois, L. Rocheblave, J. Martinez, A. Pèlegrin, F. Cavelier, E. Vivès, E. ChemBioChem, 2010, 11, 1083

18 P. Eyer, F. Worek, D. Kiderlen, G. Sinko, A. Stuglin, V. Simeon-Rudolf, E. Reiner, Anal. Biochem., 2003, 312, 224.