Supplementary information

Evaluation of fluorine and Sulfonic acid co-functionalized graphene oxide membranes under hydrogen proton exchange membrane fuel cell conditions

Robin Sandström^a, Alagappan Annamalai^a, Nicolas Boulanger^a, Joakim Ekspong^a, Alexandr Talyzin^a, Inge Mühlbacher^b, Thomas Wågberg^{a,*}

^aDepartment of Physics, Umeå University, Umeå 90187, Sweden

^bPolymer Competence Center Leoben GmbH PCCL, Leoben 8700, Austria

Pre-oxidation of flake graphite powder

Natural flake graphite (Sigma Aldrich, +100 mesh, Lot# MKBS2224V) was first pre-oxidized by mixing 3 g graphite powder together with 2.5 g Potassium persulfate ($K_2S_2O_8$) and 2.5 g Phosphorous pentoxide (P_4O_{10}) were dispersed in 24 ml concentrated Sulfuric acid (97-98%, H_2SO_4). The mixture was maintained at 80 °C in an oil bath for 4 h under stirring, followed by washing through filtering with copious amounts of distilled water (H_2O_{DI} until a neutral pH was achieved. After completely drying the product in vacuum at 80 °C overnight, the pre-oxidized graphite was then used for synthesis of HGO, TGO* and F-TGO.

Synthesis of HGO

To synthesize HGO, 3 g the pre-oxidized graphite was dispersed in 120 ml H₂SO₄ with 1.5 g Sodium nitrate (NaNO₃) followed by a slow addition of 9 g of Potassium permanganate (KMnO₄) via a funnel over the course of approximately 30 min under vigorous stirring in an ice bath. The reaction mixture was kept in the ice bath for 2 h after which the temperature was raised to 35 °C and maintained for an additional 2 h. Now, 120 ml of (H₂O)_{DI} was carefully added upon which a strong exotherm was observed. After maintaining the mixture at a temperature of 98 °C for 15 min, an additional 300 ml H₂O was added followed by 18 ml Hydrogen peroxide (H₂O₂). Thereafter the mixture was washed according to the same procedure as all other samples described in the manuscript.

Nafion (N211) pre-treatment

All Nafion 211 membranes (N211) were pretreated before use. The treatment consisted of subsequent heating of the as-received membranes at 80 °C for 1 h each in $(H_2O)_{DI}$, 3 % H_2O_2 , $(H_2O)_{DI}$, 0.5 M H_2SO_4 and finally $(H_2O)_{DI}$. The membranes were then stored in $(H_2O)_{DI}$ until usage.

Supporting characterization details

Raman spectra were acquired by a Renishaw InVia Raman spectrometer with a laser excitation wavelength of 514 nm. Scanning electron microscopy imaging was performed with a Zeiss Merlin field emission SEM at 4 kV accelerating voltage and a current of 100 pA. Transmission electron microscopy was performed using a Jeol 1230 microscope (80 kV). Zeta potential measurements were performed with a LitesizerTM 500 (Anton Paar) by first diluting 200 µl of the 0.5 mg ml⁻¹ dispersions in 10 g of 1 mM KNO₃ solution where pH was adjusted with either 0.05 M KNO₃ or 0.05 M KOH. Data points considered obvious outliers (particularly those having high standard deviations) were removed followed by a polynomial fit to the second order for trend-comparison purposes. TGO* could not be measured due to too large standard deviation at all pH.

Ion-exchange capacity (IEC) measurements were performed on the F-TGO and SF-TGO samples by first equilibrating the membranes in 1 M NaCl solution for 48 h. Thereafter a solution of 0.01 M NaOH was slowly added until neutralized. The IEC (in mmol/g), was then calculated according to:

$$IEC = \frac{Consumed NaOH solution * NaOH concentration}{Membrane weight} \quad . \tag{S1}$$

Fig. S1. Images depicting respective dispersions (0.5 mg m Γ^1) and resulting membranes. TGO and TGO* looked identical (visually).

Fig. S2. Pieces of membranes stored for three (3) days in neutral water. HGO and TGO slowly visibly dispersed while F-TGO and SF-TGO remained stable. TGO* had identical behavior as TGO.

Table S1. Average thicknesses as measured by a digital micrometer tool at various locations on the membrane. The variation for all membranes was about $+/-2 \mu m$.

HGO	TGO	TGO*	F-TGO	SF-TGO
9 µm	9 µm	7 µm	9 µm	8 µm

Table S2. 20 Positions of the C(002) reflections. The position when membranes are soaked in $(H_2O)_{DI}$ are shown in parenthesis.

HGO	TGO	TGO*	F-TGO	SF-TGO
10.9 (6.0)	10.9 (6.1)	11.2 (5.5)	10.3 (6.0)	10.8 (6.1)

Fig. S3. Estimation of the bend radius of dry 1 cm wide strips of TGO (top) and F-TGO (bottom) by first encapsulating them with thin paper (baking paper) while slowly reducing the radius with a tweezer until breakage could be observed. For TGO, breakage was first observed at a bend radius of ~0.9 mm whereas F-TGO could be completely folded with the tweezer without breakage as shown in the image of the unfolded strip. Thus, the flexibility and consequently the "handleability" was clearly improved as a result of fluorination.

Fig. S4. TEM images comparing a TGO* and TGO flake. TGO* typically showed regions with perforated flakes such as in the presented image, possibly indicating that TGO* was over oxidized.

Table S3. Summary of X-ray photoelectron spectroscopy data including atomic percentages given by the C 1s, F 1s and S 2p core-level regions.

	Binding Energy [eV]	HGO [at. %]	TGO* [at. %]	TGO [at. %]	F-TGO [at. %]	SF-TGO [at. %]	Likely attributed species
C 1s	283,8	2,99	3,39	6,54	3,24	4,69	Unidentified
C 1s	285,0	21,76	16,35	15,54	15,90	16,84	С-СН, С=С
C 1s	287,0	37,64	35,44	37,11	40,34	39,67	C-OH, epoxides
C 1s	288,4	3,51	3,93	4,82	3,97	3,99	C=0
C 1s	289,1	2,56	4,05	2,04	3,51	1,28	carboxyl
F 1s	686,5	-	-	-	0,53	0,41	Semi-ionic F, HF
S 2p _{3/2}	168,2	0,17	0,22	0,16	0,13	0,55	SO ₃
S 2p _{3/2}	169,5	0,15	0,09	0,28	0,09	-	Protonated (SO ₃ H or H ₂ SO ₄)
C/O ratio	-	2.2	1.7	2.0	2.1	2.1	-

Fig. S5. Raman spectra (fitted with a four-peak model) showing near-identical D/G ratio (~0.9) for all samples. The methods sensitivity was not adequate to see an increased disorder in TGO* despite the lower C/O ratio as measured by XPS.

Fig. S6. Zeta potential measurements of respective dispersion. Outliers are removed and the trend shown are of a second order polynomial best-fit. TGO* could not be measured.

Fig. S7. MEA fabrication steps prior to recording the polarization curves in Fig. 6. First, the anode GDE was placed on the anodic flow field (current collector) and fixated with a teflonized fiberglass gasket (I-III). Second, The GO membrane was fixated with a thin silicon rubber gasket (IV-V). The N211 membrane could then be easily placed and fixated with an additional teflonized fiberglass gasket (VI-VII) and finally assembled together with the cathode GDE + flow fields (VIII-IX).

Fig. S8. Current vs. time curves (constant potential) corresponding to the four events (a) on which the polarization curves in Fig. 6 was recorded.

Fig. S9. Temporal evolution of the open circuit potential prior to respective deactivation shown in Fig. 6 and Fig. S8. Stable OCP of a single N211 membrane was measured to 0.957 V (green line).

Fig. S10. SEM images of as-synthesized and used membranes after fuel cell operation (Scale bar: 2 μ m). Images were acquired with an in chamber secondary electron detector. Charging effects in particularly SF-TGO caused imaging at higher resolution to be problematic, but rendered images clear enough for detection of severe disruptions to the laminar framework.

Fig. S11. SEM images of as-synthesized and used membranes after fuel cell operation (Scale bar: 1 μ m). Images were acquired with an in lens secondary electron detector. Charging effects in particularly SF-TGO caused imaging at higher resolution to be problematic, but rendered images clear enough for detection of severe disruptions to the laminar framework.