Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Hydrogen production by photocatalytic water splitting of aqueous hydrogen iodide over Pt/alkali metal tantalates

Hidehisa Hagiwara^{1*}, Ittoku Nozawa¹, Katsuaki Hayakawa¹ and Tatsumi Ishihara^{2,3}

¹Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama Gofuku 3190, Toyama, 930-8555, Japan
²International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
³Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan

*Corresponding author

Hidehisa Hagiwara Hydrogen Isotope Research Center, Organization for Promotion of Research University of Toyama Gofuku 3190, Toyama, 930-8555, Japan Tel: +81-76-445-6932 Fax: +81-76-445-6931 E-mail: hhagi@ctg.u-toyama.ac.jp

Fig. S1 Photographs of quartz cell after photocatalytic hydrogen iodide decomposition reaction. Light source: 500 W Xe lamp (full arc, 2.0 W cm⁻²); reaction time: 12 h; photocatalyst: Pt (0.2 wt%)/KTaO₃; reactor type: bacth type reactor.

Fig. S2 Schematic image of flow type reactor for photocatalytic HI decomposition in this study. Light source: 500 W Xe lamp (full arc, 2.0 W cm⁻²); reaction time: 6 h; reaction solution: 0.1 M HI aqueous solution (30 ml); Amount of photocatalyst: 50 mg; Ar flow rate: 50 ml/min.

Fig. S3 Amounts of H_2 formed from aqueous methanol solution over Pt/ATaO₃ photocatalysts. Light source: 500 W Xe lamp (full arc, 2.0 W cm⁻²); reaction time: 2 h; reaction solution: 50 vol.% aqueous methanol solution (30 ml); Amount of photocatalyst: 50 mg.

Fig. S4 XRD patterns of (a) LiTaO₃, (b) NaTaO₃, and (c) KTaO₃ before and after HI photodecomposition reaction. (d) Crystal structures of ATaO₃ (A: Li, Na, K).

Fig. S5 Calculated band structures, total density of states, partial density of states of constituent elements of (a) LiTaO₃, (b) NaTaO₃ and (c) KTaO₃.

Theoretical calculations

The electronic structures of ATaO₃ (A: Li, Na, K) was studied by theoretical calculation using DFT implemented in the DMol³ software package. The generalized gradient approximation with Perdew-Burke-Ernzerhof functional was used to describe the exchange-correlation interaction. All electrons were treated in this caluculation. The convergence criteria for energy, maximum force, and displacement were set as 1×10^{-5} Ha, 0.002 Ha/Å, and 0.005 Å, respectively. Static calculations were carried out using a Monkhorst-Pack k-point grid, $3 \times 3 \times 2$ for LiTaO₃, $3 \times 2 \times 3$ for NaTaO₃ and $4 \times 4 \times 4$ for KTaO₃.

Fig. S6 XPS spectra of Pt cocatalysts on (a) KTaO₃, (b) NaTaO₃, and (c) LiTaO₃ after photocatalytic HI decomposition

Fig. S7 SEM images of (a)(b) Pt/KTaO₃, (c)(d) Pt/NaTaO₃, (e)(f) Pt/LiTaO₃ before and after photocatalytic reaction.