Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Vapor-Fed Electrolysis of Water Using Earth-Abundant Catalysts in Nafion or in Bipolar Nafion/ Poly(benzimidazolium) Membranes: Supporting Information

Authors: Patrick K. Giesbrecht;^{1,2} Astrid M. Müller;^{3,4} Carlos G. Read;⁵ Steven Holdcroft;⁶ Nathan S. Lewis;⁵ Michael S. Freund^{1,2}

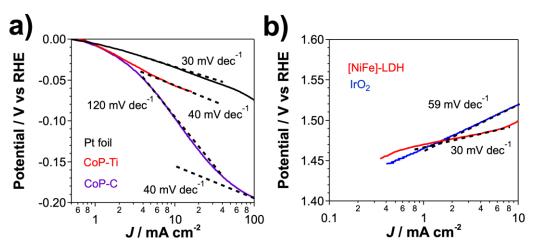

Affiliations: ¹Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States; ²Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada; ³Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States; ⁴Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States; ⁵Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States; ⁶Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Table of Contents

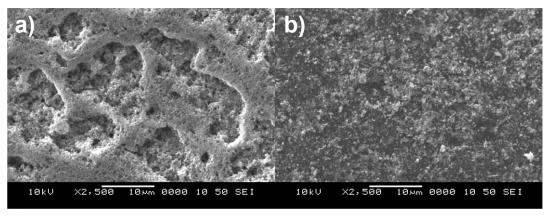

1.	Catalyst Films and Solution-Phase HER/OERS3
	Figure S1. Tafel plots of a) HER catalyst films in 0.50 M H ₂ SO ₄ (aq); and b) OER catalyst films in 1.0 M KOH(aq). Dashed lines represent predicted Tafel slopes for an HER/OER electrocatalyst under operation with $n\alpha$ =0.5, 1, 2 (120, 59 and 30 mV dec ⁻¹). ^{1,2} S.
	Figure S2 . Scanning-electron micrographs of a) Pt/C and b) IrO_x Nafion-based films on C-paper prior to MEA incorporation. Catalyst loadings of 3 mg cm ⁻² S.
	Table S1. Overpotentials for the Cathode and Anode Catalysts Determined in this Work
2.	TP-WS Capabilities of MEAs in this work.
	Figure S3. Comparison of the TP-WS performance in a two-electrode configuration under humid- $N_2(g)$ flow at room temperature of a commercially available Pt/IrRuO _x sample (black trace) with that of an in-house Pt/IrO _x MEA used in this work (red trace). a) Steady-state polarization data and b) constant-current electrolysis at 10 mA cm ⁻² . Catalyst loadings were 3 mg cm ⁻² .
	Figure S4. a) Constant-current electrolysis (10 mA cm $^{-2}$) data for CoP-Ti IrO $_x$ MEAs performing TP-WS under humid-N $_2$ (g) flow at room temperature in the absence (blue trace) and presence (grey trace) of a Nafion overcoat. b) Steady-state polarization and c) constant-current electrolysis (10 mA cm $^{-2}$) data for CoP-C IrO $_x$ MEAs performing TP-WS under humid-N $_2$ (g) flow at room temperature with and without C black (cb) incorporated into the CoP side or a Nafion overcoat. Nafion-based Pt/C IrO $_x$ MEA (red squares) shown for comparison. CoP loading of 2 mg cm $^{-2}$ for C-paper-based cathodes. IrO $_x$ loading of 3 mg cm $^{-2}$ on C-paper for the anode.
	Figure S5 . a) Steady-state polarization and b) constant-current electrolysis (10 mA cm ⁻²) data for [NiFe]-LDB samples performing TP-WS under humid- $N_2(g)$ flow at room temperature with a HMT-PMBI overlayer (light blue, brown traces) and a HMT-PMBI backlayer (dark blue trace). A Nafion-based Pt/C IrO _x MEA (red) is shown for comparison. [NiFe]-LDH loading of 0.6 mg cm ⁻² on the anode; Pt/C loading of 3 mg cm ⁻² on C-paper for the cathode
	Figure S6 . a) Steady-state polarization and b) constant-current electrolysis (10 mA cm ⁻²) data for [NiFe]-LDR samples performing TP-WS under humid- $N_2(g)$ flow at room temperature with HMT-PMBI-Br (gold) or HMT-PMBI-OH (brown) as the ionomer binder. Nafion-based Pt/C IrO _x MEA (red) shown for comparison. [NiFe]-LDH loading of 0.6 mg cm ⁻² on the anode; Pt/C loading of 3 mg cm ⁻² on C-paper for the cathode
	LDH louding of 0.0 mg cm " on the anode; Pt/C louding of 5 mg cm " on C-paper for the Cathode

Figure S7 . a-c) Steady-state polarization and d-e) constant-current electrolysis (10 mA cm ⁻²) data for multiple samples of a,d) Nafion-based Pt IrO _x and CoP-Ti IrO _x MEAs, b) Pt IrO _x BPM-based MEAs, c,e) Pt [NiFe] BPM-based MEAs performing TP-WS under humid-N ₂ (g) flow at room temperature. CoP loading of 2.5 mg cm ⁻² on Ti-paper or C-paper for the cathode; IrO _x loading of 3 mg cm ⁻² on C-paper for the anode; [NiFe]-LDH loading of 0.6 mg cm ⁻² on C-paper for the
cathode
Figure S9. Bode Plots for representative MEAs at the operating voltage V_{10mAcm}^{-2} for TP-WS in this work: a) Pt IrO _x Nafion-based MEA; b) Pt IrO _x BPM-based MEAs (Pt IrO _x -10 light blue; Pt IrO _x -30 dark blue); c) CoP-Ti IrO _x MEA; d) Pt [NiFe]-30 (gold) and Pt [NiFe]-100 (brown) BPM-based MEAs; e) CoP-C IrO _x MEA before (purple) and after (blue) constant-current electrolysis at 10 mA cm ⁻²
Figure S10. Equivalent circuit model fits to EIS spectra at the operating voltage V_{10mAcm}^{-2} for representative MEAs in this workS
Table S2. Series, polarization, mass-transport and activation overvoltages determined from EIS data at V_{10m} cm ⁻² for representative MEAs studied in this workS
Table S3. Values of the operating voltage $V_{10 mA cm^{-2}}$ and the drift in the operating voltage during constant-current electrolysis at 10 mA cm ⁻² for individual MEAs studied in this work
Table S4. EIS equivalent circuit model values for representative MEAs in this work. Uncorrected for surface area of MEA
Determination of the mass-transport overvoltage at 10 mA cm ⁻² S1
Determination of the longevity of co-ion current at 10 mA cm ⁻² in BPM-based MEAsS1
Calculation of current contribution through carbonate removalS1
ReferencesS1

1. Catalyst Films and Solution-Phase HER/OER.

Figure S1. Tafel plots of a) HER catalyst films in 0.50 M H₂SO₄(aq); and b) OER catalyst films in 1.0 M KOH(aq). Dashed lines in a) represent predicted Tafel slopes for an HER electrocatalyst under operation (120, 40 and 30 mV dec⁻¹). Dashed lines in b) represent predicted Tafel slopes for an OER electrocatalyst under operation with $n(1-\alpha) = 1$, 2 (Tafel slopes of 59 and 30 mV dec⁻¹).^{1,2}

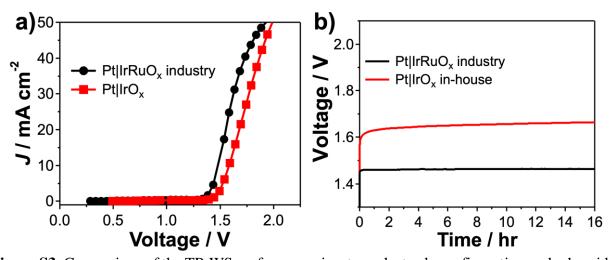
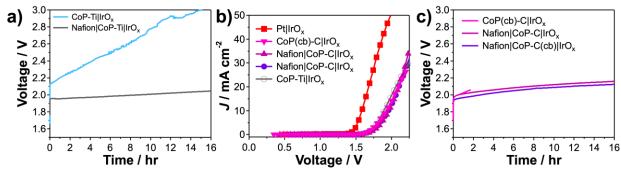
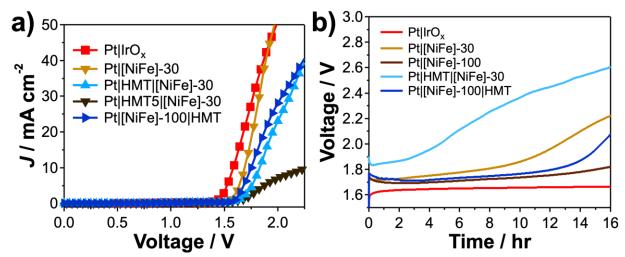
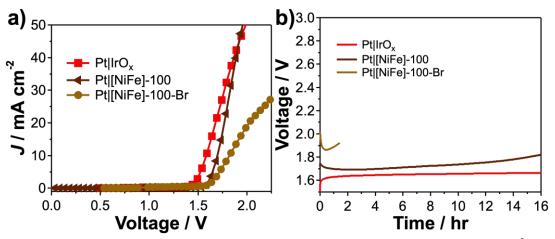

Figure S2. Scanning-electron micrographs of a) Pt/C and b) IrO_x Nafion-based films on C-paper prior to MEA incorporation. Catalyst loadings of 3 mg cm⁻².

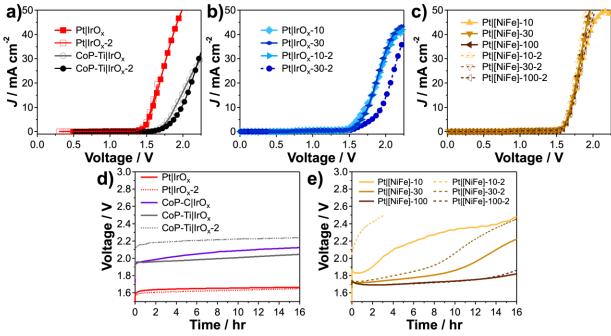
Table S1. Overpotentials, Tafel slope, and exchange current densities for the cathode and anode catalysts determined in this work.

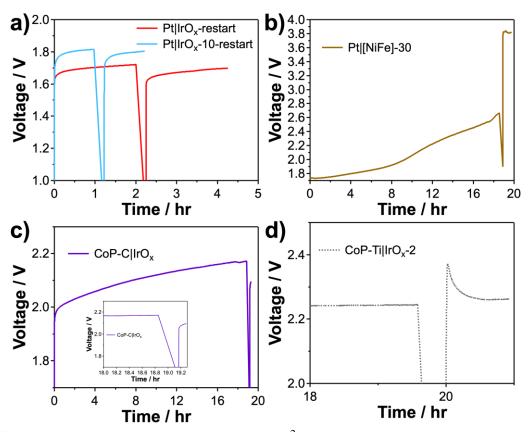

Catalyst	Loading (mg cm ⁻²)	$\frac{\eta_{-10 \text{ mA cm}^{-2}}}{(\text{HER, V})^a}$	η 10 mA cm ⁻² (OER, V) ^b	Tafel Slope (mV dec ⁻¹) ^c	J ₀ (mA cm ⁻²)
Pt foil	-	-0.045	-	29	0.9
CoP-Ti ^d	2.5	-0.062	-	49	0.1
CoP-C ^e	2	-0.068	-	132; 44	_g
$IrO_x^{\ f}$	2	-	0.300	55	5x10 ⁻⁵
[NiFe]-LDH ^f	0.4	-	0.286	25; 63	2x10 ⁻¹¹

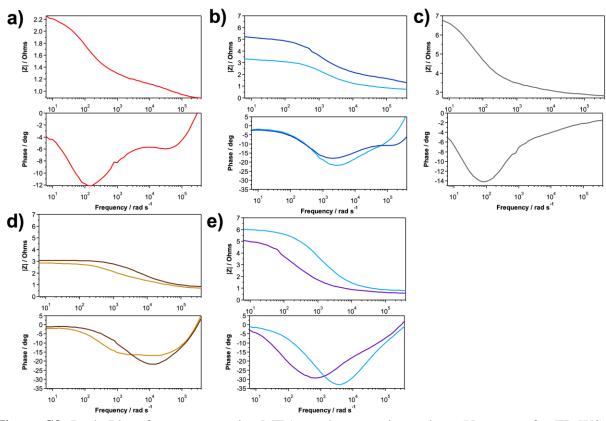
^aHER in 0.50 M H₂SO₄(aq). ^bOER in 1.0 M KOH(aq). ^cTafel slope reported at low and high overpotentials if potential-dependent. ^dCoP deposited on Ti paper. ^eCoP deposited on C-paper. ^fDropcast film on glassy-carbon-disk electrode. ^gPotential-dependent Tafel slope prevented accurate determination of the exchange current density.


2. TP-WS Capabilities of MEAs in this work.


Figure S3. Comparison of the TP-WS performance in a two-electrode configuration under humid- $N_2(g)$ flow at room temperature of a commercially available $Pt|IrRuO_x$ sample (black trace) with that of an in-house $Pt|IrO_x$ MEA used in this work (red trace). a) Steady-state polarization data and b) constant-current electrolysis at 10 mA cm⁻². Catalyst loadings were 3 mg cm⁻².


Figure S4. a) Constant-current electrolysis (10 mA cm⁻²) data for CoP-Ti|IrO_x MEAs performing TP-WS under humid- $N_2(g)$ flow at room temperature in the absence (blue trace) and presence (grey trace) of a Nafion overcoat. b) Steady-state polarization and c) constant-current electrolysis (10 mA cm⁻²) data for CoP-C|IrO_x MEAs performing TP-WS under humid- $N_2(g)$ flow at room temperature with and without C black (cb) incorporated into the CoP side or a Nafion overcoat. Nafion-based Pt/C|IrO_x MEA (red squares) shown for comparison. CoP loading of 2 mg cm⁻² for C-paper-based cathodes. IrO_x loading of 3 mg cm⁻² on C-paper for the anode.


Figure S5. a) Steady-state polarization and b) constant-current electrolysis (10 mA cm $^{-2}$) data for [NiFe]-LDH samples performing TP-WS under humid-N₂(g) flow at room temperature with a HMT-PMBI overlayer (light blue, brown traces) and a HMT-PMBI backlayer (dark blue trace). A Nafion-based Pt/C|IrO_x MEA (red) is shown for comparison. [NiFe]-LDH loading of 0.6 mg cm $^{-2}$ on the anode; Pt/C loading of 3 mg cm $^{-2}$ on C-paper for the cathode.


Figure S6. a) Steady-state polarization and b) constant-current electrolysis (10 mA cm⁻²) data for [NiFe]-LDH samples performing TP-WS under humid- $N_2(g)$ flow at room temperature with HMT-PMBI-Br (gold) or HMT-PMBI-OH (brown) as the ionomer binder. Nafion-based Pt/C|IrO_x MEA (red) shown for comparison. [NiFe]-LDH loading of 0.6 mg cm⁻² on the anode; Pt/C loading of 3 mg cm⁻² on C-paper for the cathode.

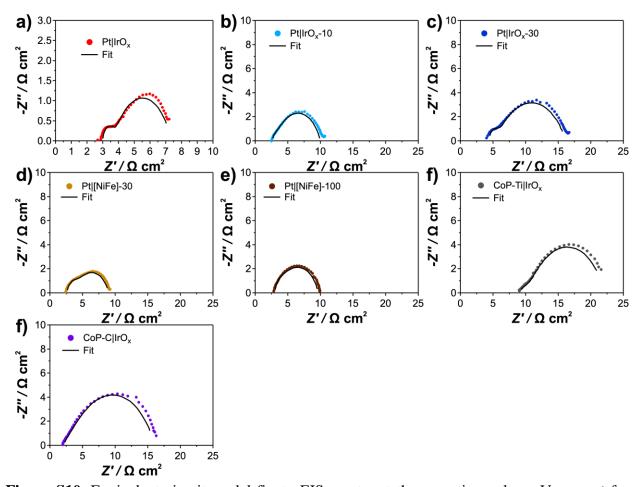

Figure S7. a-c) Steady-state polarization and d-e) constant-current electrolysis (10 mA cm⁻²) data for multiple samples of a,d) Nafion-based Pt|IrO_x and CoP-Ti|IrO_x MEAs, b) Pt|IrO_x BPM-based MEAs, c,e) Pt|[NiFe] BPM-based MEAs performing TP-WS under humid-N₂(g) flow at room temperature. CoP loading of 2.5 mg cm⁻² on Ti-paper or C-paper for the cathode; IrO_x loading of 3 mg cm⁻² on C-paper for the anode; [NiFe]-LDH loading of 0.6 mg cm⁻² on C-paper for the anode; Pt/C loading of 3 mg cm⁻² on C-paper for the cathode.

Figure S8. Constant-current electrolysis (10 mA cm⁻²) data for a) Nafion-based (red) and BPM-based (blue) Pt|IrO_x MEAs; b) Pt|[NiFe] BPM-based MEA; c) CoP-C|IrO_x Nafion-based MEA; and d) CoP-Ti|IrO_x Nafion-based MEA before and after rehydration of the MEA under open-circuit voltage conditions. CoP loading of 2.5 mg cm⁻² on Ti-paper or C-paper for the cathode; IrO_x loading of 3 mg cm⁻² on C-paper for the anode; [NiFe]-LDH loading of 0.6 mg cm⁻² on C-paper for the cathode.

Figure S9. Bode Plots for representative MEAs at the operating voltage $V_{10\,mA\,cm^{-2}}$ for TP-WS in this work: a) Pt|IrO_x Nafion-based MEA; b) Pt|IrO_x BPM-based MEAs (Pt|IrO_x-10 light blue; Pt|IrO_x-30 dark blue); c) CoP-Ti|IrO_x MEA; d) Pt|[NiFe]-30 (gold) and Pt|[NiFe]-100 (brown) BPM-based MEAs; e) CoP-C|IrO_x MEA before (purple) and after (blue) constant-current electrolysis at 10 mA cm⁻².

Figure S10. Equivalent circuit model fits to EIS spectra at the operating voltage $V_{\rm 10~mA~cm^{-2}}$ for representative MEAs in this work.

Table S2. Series, polarization, mass-transport and activation overvoltages determined from EIS data at $V_{10 \text{ mA cm}^{-2}}$ for representative MEAs studied in this work.

MEA	$\Delta V_{iR}(V)^{a}$	$\Delta V_{polarization}(V)^b$	$\Delta V_{mxt}(V)^{c}$	$\Delta V_{act}(V)^d$
$Pt IrO_x$	0.03	0.05	0.005	0.38
Pt IrO _x -10	0.02	0.08	0.009	0.56
Pt IrO _x -30	0.04	0.12	0.010	0.54
CoP-Ti IrO _x	0.09	0.13	0.012	0.60
CoP-C IrO _x	0.02	0.14	0.010	0.75
CoP-C IrO _x after	0.02	0.17	-	-
Pt [NiFe]-30	0.02	0.07	0.005	0.48
Pt [NiFe]-30 after	0.02	0.32	-	-
Pt [NiFe]-100	0.02	0.08	0.005	0.50
Pt [NiFe]-100 after	0.02	0.28	-	-

^aDetermined from the Z' high-frequency intercept in Nyquist plot of the EIS spectra of the MEA at $V_{10~mA~cm^{-2}}$. ^bWidth of the Nyquist plot of the EIS spectra of the MEA at $V_{10~mA~cm^{-2}}$. ^cDetermined

from application of Equation S1 to steady-state polarization data. $^{\rm d}$ Determined from Equation 1 in the manuscript.

Table S3. Values of the operating voltage $V_{10 \text{ mA cm}^2}$ and the drift in the operating voltage during

constant-current electrolysis at 10 mA cm⁻² for individual MEAs studied in this work.

MEA	V _{10 mA cm} -2(V) ^a	$\Delta V_{drift} (V)^{b}$	Rate (mV hr ⁻¹)	
Pt IrRuO _x	1.45	0	0	
Pt IrO _x	1.60	0.05	2.8	
Pt IrO _x -2	1.59	0.05	2.8	
Pt IrO _x -10	1.72	0.06	3.3	
Pt IrO _x -30	1.75	0.03	1.7	
CoP-Ti IrO _x	1.90	0.10	5.5	
CoP-Ti IrO _x -2	2.01	0.09	5.0	
CoP-C IrO _x	1.95	0.19	10.6	
Pt-Ti IrO _x	1.70	0.19	10.6	
Pt [NiFe]-10	1.72	0.78	43.3	
Pt [NiFe]-10-2	1.74	0.76	190	
Pt [NiFe]-30	1.71	0.50	27.8	
Pt [NiFe]-30-2	1.75	0.70	38.9	
Pt [NiFe]-100	1.70	0.15	8.3	
Pt [NiFe]-100-2	1.70	0.17	9.4	
Pt HMT [NiFe]-30	1.83	0.76	42.2	
Pt [NiFe]-100 HMT	1.75	0.32	17.8	

^aOperating voltage at 10 mA cm⁻² as determined from steady-state polarization data. ^bDrift in V₁₀ mA cm⁻² during constant-current electrolysis at 10 mA cm⁻².

Table S4. EIS equivalent circuit model values for representative MEAs in this work. Uncorrected for surface area of MEA.

MEA	$\mathbf{R}_{s}\left(\Omega\right)$	Rcath	Q _{cath} ^a	фсаth	R _{an} (Ω)	Q _{an} ^a	ф _{ап}
		(Ω)		-			-
Pt IrO _x	0.8944	0.23592	0.0004818	0.88111	1.222	0.03866601	0.66835
Pt IrO _x -10*	0.81403	0.23592	0.0004818	0.88111	2.212	0.0002194	0.75934
Pt IrO _x -30	1.286	0.44631	2.4302E-05	0.98216	3.482	0.00245811	0.6883
CoP-Ti	2.741	3.528	0.01490799	0.76528	0.84837	0.02601	0.45651
CoP-C	0.57244	3.831	0.00631101	0.75567	7 0.82432	0.02221401	0.52097
initial							
CoP-C	0.79924	4.463	0.00140571	0.74212	0.82432	0.02221401	0.52097
after**	0.79924	4.403	0.00140371		0.82432	0.02221401	
Pt [NiFe]-30	0.77181	0.4936	0.0002114	0.90747	1.635	0.00380631	0.7388
Pt [NiFe]100	0.89998	0.28377	0.00013037	0.99547	1.936	0.00092538	0.77069

^aQ unit is Ω^{-1} s^{ϕ}.

^{*}Values of R_{cath}, Q_{cath}, and ϕ_{cath} were fixed to values obtained from Pt|IrO_x.

^{**}Values of R_{an} , Q_{an} , and ϕ_{an} were kept fixed to values obtained from CoP-C initial.

Determination of the mass-transport overvoltage at 10 mA cm⁻².

The overvoltage associated with mass transport for TP-WS under flow can be determined by

$$\Delta V_{mxt} = \frac{RT}{nF} \left(1 + \frac{1}{\alpha} \right) \ln \left(\frac{J_{\text{lim}}}{J_{\text{lim}} - J} \right) \quad (S1)$$

Where R is the ideal gas constant, T temperature, n = 2, F Faraday's constant, charge-transfer coefficient $\alpha = 0.5$, J_{lim} the limiting current density determined from steady-state polarization data, and J the current density of interest (10 mA cm⁻²).

Determination of the longevity of co-ion current at 10 mA cm⁻² in BPM-based MEAs.

$$A_{geometric} = 3 \ cm^2; \ L_{nafion} = 0.0183 \ cm; \ L_{cath} = 0.001 \ cm; \ L_{anode} = L_{HMT\text{-}PMBI} = 0.001 \ cm; \ [M^-]_{Nafion} = 1.5 \ M; \ [A^-]_{HMT\text{-}PMBI} = 1.5 \ M$$

Total co-ion current density time at 10 mA cm⁻²:

 $T_{\text{total}} = (n_{\text{M}} + n_{\text{A}}) * F/(0.03A)$

 $T_{\text{total}} = (3 \text{ cm}^2)*(0.0015 \text{ mol/cm}^3)*(0.0183 \text{ cm}+0.002 \text{ cm})*(96485 \text{ C/mol})/(0.03\text{A})$

 $T_{total} = 290 \text{ s}$

Calculation of current contribution through carbonate removal.

From Ref ³:

 $C_{CO2} = 5$ ppm (via GC-MS, constant value for ca. 50 h, flow rate of 0.1 L/min)

 $V_{CO2} = 5 \text{ ppm } (0.1 \text{ L/min})(3000 \text{ min}) = 1.5 \text{ mL}$

T = 323 K

 $N_{CO2} = PV/RT = (1 \text{ atm})(0.0015 \text{ L})/[(0.08206 \text{ atm*L/K*mol})(323K)] = 5.6x10^{-5} \text{ mol}$

Current: $I = ZNF/t = 2*(5.6x10^{-5} \text{ mol}) (96485 \text{ C/mol})/(1.8x10^{5} \text{ s}) = 6.1x10^{-5} \text{ A}$

 $Area = 5 \text{ cm}^2$; $J = 300 \text{ mA/cm}^2$

 $%Current(Carbonate\ removal) = 100*6.1x10^{-5}A/(5*0.3\ A) = 0.004\%$

This Work: (Assume 5 ppm CO₂ being constantly generated)

Flow rate of 0.2 L/min; $V_{CO2} = 5 \text{ ppm } (0.2 \text{ L/min})(960 \text{ min}) = 0.96 \text{ mL}$

T = 298 K

 $N_{CO2} = (1 \text{ atm})(0.00096 \text{ L})/[(0.08206 \text{ atm*L/K*mol})(298K)] = 3.9x10^{-5} \text{ mol}$

Current: $(Z = 4 \text{ for this process}) I = 4*(3.9x10^{-5} \text{ mol})(96485 \text{ C/mol})/57600 \text{ s} = 0.26 \text{ mA}$

 $%Current(Carbonate\ removal) = 100 * 0.26\ mA/[(1.6\ cm^2)(10\ mA/cm^2)] = 1.7\%$

References

- (1) Bockris, J. O. Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. *J. Chem. Phys.* **1956**, *24* (4), 817–827. https://doi.org/10.1063/1.1742616.
- (2) Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. *Sci. Rep.* **2015**, *5*, 1–21. https://doi.org/10.1038/srep13801.
- (3) Watanabe, S.; Fukuta, K.; Yanagi, H. Determination of Carbonate Ion in MEA during Alkaline Membrane Fuel Cell (AMFC) Operation. *ECS Trans.* **2010**, *33* (1), 1837–1845.