Supplementary Material

Sustainable nitrogen-doped carbon electrodes for high-performance

supercapacitors and Li-ion capacitors

Yulong Zheng,^a Huanlei Wang,^{*a} Shijiao Sun,^b Gaofei Lu,^a Haolin Liu,^a Minghua Huang,^a Jing Shi,^a Wei Liu,^a and Haiyan Li^{*a}

^a School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China

^b College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China

* Corresponding authors.

E-mail address: huanleiwang@ouc.edu.cn (H. Wang); lihy@ouc.edu.cn (H. Li)

sample	N-6	N-5	N-Q	N-X	O-I	O-II	O-III
GSC					10.11	71.03	18.86
NGSC	29.1	14.8	34.81	21.3	16.05	55.14	28.81

Table S1. Relative surface concentrations (at.%) of nitrogen and oxygen moieties obtained by fitting the N 1s and O 1s core level XPS spectra

Figure S1. High-resolution XPS C1s spectra of (a) GSC and (b) NGSC samples.

Figure S2. Dynamic contact angle measurement for the GSC and NGSC in EMIM- BF_4 and $LiPF_6$ electrolytes.

Figure S3. Electrochemical performance of ginger straw carbon as electrode for supercapacitors: (a) CV curves of GSC tested at various scan rates. CV curves of (b) NGSC and (c) GSC tested at 5 mV s⁻¹. Charge–discharge curves of (d) GSC and (f) NGSC at different current densities. (f) The IR-drop at different current densities.

Figure S4. (a) The nitrogen adsorption-desorption isotherms of NGSC-700, NGSC and NGSC-900 and the inset is the related pore size distributions. (b) The specific capacitance as a function of current densities of NGSC-700, NGSC and NGSC-900 for ionic liquid-based supercapacitors.

Figure S5. (a) The nitrogen adsorption-desorption isotherms of NGSC-2, NGSC and NGSC-6, and the inset is the related pore size distributions. (b) The specific capacitance as a function of current densities of NGSC-2, NGSC and NGSC-6 for ionic liquid-based supercapacitors.

Figure S6. (a) Relative proportion of nitrogen and oxygen moieties on NGSC and NGSC-H. (b) The nitrogen adsorption-desorption isotherms of NGSC and NGSC-H, and the inset is their pore size distributions. (c) The specific capacitance as a function of current densities of NGSC and NGSC-H for ionic liquid-based supercapacitors.

Figure S7. (a) Nyquist plots, and (b) the cycling performance at 10 A g⁻¹ of GSC and NGSC electrodes.

Figure S8. The electrochemical performance of ginger straw derived carbon as anode in half-cells: CV curves of (a) NGSC and (b) GSC tested at various scan rates. The capacitive contribution of (c) NGSC and (d) GSC at a scan rate of 1 mV s^{-1} .

Figure S9. The electrochemical properties of NGSC as cathode in half-cells: (a) CV curves tested at different scan rates. (b) Galvanostatic charge-discharge curves at different current densities. (c) Cycling performance evaluated at 2 A g^{-1} .

Figure S10. (a) Typical CV curves of lithium ion capacitors with different cathode to anode mass ratios measured at 20 mV s⁻¹. (b) Diagram of the operation potential range of anode and cathode for the NGSC//NGSC lithium ion capacitor configuration.

Hybrid System (anode//cathode)	Voltage window	Energy & Power	Capacity retention	Ref.
PHPNC//TiC	0-4.5	101.5 Wh kg ⁻¹ at 450 W kg ⁻¹	82% after 5000	1
		23.4 Wh kg ⁻¹ at 67500 W kg ⁻¹	cycles at 2 A g ⁻¹	
ZMO-G//NCN	1-4	202.8 Wh kg ⁻¹ at 180 W kg ⁻¹	77.8% after 3000 cycles at 5 A g ⁻¹	2
		98 Wh kg ⁻¹ at 21000 W kg ⁻¹		
MFC//3DaC	0-4	157 Wh kg ⁻¹ at 200 W kg ⁻¹	86.5% after 6000 cycles at 2 A g ⁻¹	3
		58 Wh kg ⁻¹ at 20000 W kg ⁻¹		
MCMB//SFAC	2-4	83 Wh kg ⁻¹ at 128 W kg ⁻¹	92% after 1000 cycles at 0.5 A g^{-1}	4
		47 Wh kg ⁻¹ at 5718 W kg ⁻¹		
CTAB-Sn@Ti ₃ C ₂ //AC	1-4	105.5 Wh kg ⁻¹ at 495 W kg ⁻¹	71.1% after 4000 cycles at 2 A g^{-1}	5
		45.3 Wh kg ⁻¹ at 10800 W kg ⁻¹		
NOFC//PSNC	0-4	111 Wh kg ⁻¹ at 67 W kg ⁻¹	90% after 5000 cycles at 6.4 A g^{-1}	6
		38 Wh kg ⁻¹ at14550 W kg ⁻¹		
Li3VO4//AC	1-4	136.4 Wh kg ⁻¹ at 532 W kg ⁻¹	87% after 1500 cycles at 2 A g^{-1}	7
		24.4 Wh kg ⁻¹ at 11020 W kg ⁻¹		
Si/C//AC	2-4.5	257 Wh kg ⁻¹ at 867 W kg ⁻¹	79.2% after 15000 cycles at 1.6 A g ⁻¹	8
		147 Wh kg ⁻¹ at 29893 W kg ⁻¹		
SCN-A//SCN-A	0-4	112 Wh kg ⁻¹ at 67 W kg ⁻¹	82% after 3000 cycles at 5 A g^{-1}	9
		45 Wh kg ⁻¹ at 12000 W kg ⁻¹		
VO-CF//AC	2-4.3	112 Wh kg ⁻¹ at 23 W kg ⁻¹	67% after 10000 cycles at 1.5 A g ⁻¹	10
		23.4 Wh kg ⁻¹ at ~8000 W kg ⁻¹		
BiVO ₄ //PRGO	0-4	152 Wh kg ⁻¹ at 384 W kg ⁻¹	81% after 6000	11
		42 Wh kg ⁻¹ at 3861 W kg ⁻¹	cycles at 0.9 A g ⁻¹	
Ti ₃ C ₂ T _x /CNT//AC	1-4	67 Wh kg ⁻¹ at 258 W kg ⁻¹	81.3% after 5000 cycles at 2 A g^{-1}	12
		19 Wh kg ⁻¹ at 5797 W kg ⁻¹		

Table S2. Comparison of published electrochemical properties of Li-ion capacitors with this work

Si/Cu fabric//AC	1.5-4.2	210 Wh kg ⁻¹ at 193 W kg ⁻¹	90% after 30000	13
		43 Wh kg ⁻¹ at 99000 W kg ⁻¹	cycles at 10 A g ⁻¹	
Co-CS//AC	2-4.3	108 Wh kg ⁻¹ at 200 W kg ⁻¹	81% after 10000	14
		30 Wh kg ⁻¹ at ~8000 W kg ⁻¹	cycles at 1.5 A g ⁻¹	
Si/FG/C//CPAC	2-4.5	159 Wh kg ⁻¹ at 945 W kg ⁻¹	80% after 8000 cycles at 1 A g^{-1}	15
		99 Wh kg ⁻¹ at 31235 W kg ⁻¹		
SiG//AC	1-4	162 Wh kg ⁻¹ at 250 W kg ⁻¹	95% after 1300 cycles at 1 A g ⁻¹	16
		60 Wh kg ⁻¹ at 11300 W kg ⁻¹		
NGSC// NGSC	0-4.5	214.6 Wh kg ⁻¹ at 373.5 W kg ⁻¹	82.7% after 10000	This work
		63.6 Wh kg ⁻¹ at 65400 W kg ⁻¹	cycles at 50 A g ⁻¹	

References

- H. Wang, Y. Zhang, H. Ang, Y. Zhang, H. T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan and Q. Yan, *Adv. Funct. Mater.*, 2016, 26, 3082-3093.
- S. Li, J. Chen, M. Cui, G. Cai, J. Wang, P. Cui, X. Gong and P. S. Lee, *Small*, 2017, 13, 1602893.
- W. S. V. Lee, E. Peng, M. Li, X. Huang and J. M. Xue, *Nano Energy*, 2016, 27, 202-212.
- Z. Yang, H. Guo, X. Li, Z. Wang, Z. Yan and Y. Wang, *J. Power Sources*, 2016, 329, 339-346.
- J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y. Gan and X. Tao, *ACS Nano*, 2017, 11, 2459-2469.
- J. Ding, Z. Li, K. Cui, S. Boyer, D. Karpuzov and D. Mitlin, *Nano Energy*, 2016, 23, 129-137.
- L. Shen, H. Lv, S. Chen, P. Kopold, P. A. van Aken, X. Wu, J. Maier and Y. Yu, *Adv. Mater.*, 2017, 29.
- B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang and M. Cai, *Adv. Energy Mater.*, 2016, 6, 1600802.
- H. Wang, D. Mitlin, J. Ding, Z. Li and K. Cui, J. Mater. Chem. A, 2016, 4, 5149-5158.
- 10. S. Jayaraman, G. Singh, S. Madhavi and V. Aravindan, Carbon, 2018, 134, 9-14.
- D. P. Dubal, K. Jayaramulu, R. Zboril, R. A. Fischer and P. Gomez-Romero, J. Mater. Chem. A, 2018, 6, 6096-6106.
- P. Yu, G. Cao, S. Yi, X. Zhang, C. Li, X. Sun, K. Wang and Y. Ma, *Nanoscale*, 2018, 10, 5906-5913.
- 13. C.-M. Lai, T.-L. Kao and H.-Y. Tuan, J. Power Sources, 2018, **379**, 261-269.
- S. Jayaraman, S. Madhavi and V. Aravindan, J. Mater. Chem. A, 2018, 6, 3242-3248.

- Q. Lu, B. Lu, M. Chen, X. Wang, T. Xing, M. Liu and X. Wang, *J. Power Sources*, 2018, **398**, 128-136.
- C. Li, X. Zhang, K. Wang, X. Sun and Y. Ma, J. Power Sources, 2019, 414, 293-301.