Electronic Supplementary Information for

Shape-stabilized phase change materials supported by eggplants-derived porous carbon for efficient solar-to-thermal energy conversion and storage

Yaqiong Li, Xiubing Huang*, Yang Li, Zuoshuai Xi, Guangtong Hai, Zhang Tao, and Ge Wang*

Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 10083, PR China

Corresponding authors
Email: xiubinghuang@ustb.edu.cn (X. Huang) and gewang@mater.ustb.edu.cn (G. Wang)
Figure S1. (a) XRD patterns of PEG and the prepared PEG/BPC ss-CPCM (b) FT-IR spectrums of PEG and the prepared PEG/BPC ss-CPCM.

Figure S2. The digital photograph of PEG and PEG/BPC-1000 before and after heating at 80°C. Fig. S2 shows the photographs of the PEG and PEG/BPC-1000 before and after being heating up to 80°C. After being heated to above its melting temperature, the PEG melted completely into liquid. At the same time, the surface of PEG/BPC-1000 was moist due to the melting of the PEG, but no liquid leakage from the composites was observed.
Figure S3. TGA curves of pure PEG and PEG/BPC-800 ss-CPCM and the corresponding DTG thermograms of PEG/BPC-800 ss-CPCM.

Figure S4. TGA curves of pure PEG and PEG/BPC-900 ss-CPCM and the corresponding DTG thermograms of PEG/BPC-900 ss-CPCM.
The absolute crystallinity (F_c) of the PCMs in the phase change composite materials can be calculated by the formula (1),

$$F_c = \frac{\Delta H_{PCM}}{\Delta H_{Pure} \beta}$$ \hspace{1cm} (1)

where ΔH_{Pure} and ΔH_{PCM} are the melting latent heat of the core material and the phase change composite material, respectively; β represents the contents of the PEG material in PEG/BPC ss-CPCMs. The crystallinity of PEG/BPC-800, and PEG/BPC-900, and PEG/BPC-1000 ss-CPCMs was calculated to be 87.24%, 96.07%, 100.27% in melting process, as shown in Figure S6.

Figure S5. Comparison of theoretical enthalpy and actual enthalpy during melting process.

Figure S6. The absolute crystallinity comparison diagram melting and solidify
processes.