Supplementary Information for

Effects of Droplet Size and Surfactants on Anchoring in Liquid Crystal Nanodroplets

Zeynep Sumer and Alberto Striolo*

Department of Chemical Engineering, University College London
London WC1E 7JE, United Kingdom
*Corresponding author: a.striolo@ucl.ac.uk

In Figure S1 and S2, simulations were conducted for 3×10^6 steps and configurations were recorded for last 10^6 steps (last 0.149 μs). Within these 10^6 steps of simulation production, data are collected in every 10^4 steps and averages of 100 frames are used for quantitative analysis. Last frames of each simulations are used for visuals.

Figure S1. Snapshot of the simulation conducted at 1.0 $k_B T$ where repulsion coefficient between water/LC beads was 50 $k_B T/r_c$. Orientational order (S) was calculated as 0.01±0.01.

Figure S2. Snapshot of the simulation conducted at 0.62 $k_B T$ where repulsion coefficient between water/LC beads was 30 $k_B T/r_c$.
Figure S3. Orientational order of LC molecules for the droplets shown in Figure 3, shown as a function of the distance from the droplet core, within intervals of width 3 r_c.