Three-Dimensional Yielding in Anisotropic Materials: Validation of Hill Criterion

Manish Kaushal* and Yogesh M Joshi

Figure SI-1: For the Corn-starch suspension, (a) Normal force (F_N) experienced by the rheometer top plate and the corresponding rotational shear rate ($\dot{\gamma}$) is plotted as a function of rotational shear stress (τ_{0z}) till the yield point in the purely rotational experiment. For the same system, (b) Radial shear stress (τ_{rz}) is plotted as a function of rotational shear stress (τ_{0z}). In the inset of (b) $\tau_{rz}/\tau_{0z,y}$ is plotted with respect to $\tau_{0z}/\tau_{0z,y}$. All the above results are obtained at $E = 0.5$ kV/mm.
Figure SI-2: For the Corn-starch suspension (a) Normal force \(F_N \) experienced by the rheometer top plate and the corresponding rotational shear rate \(\dot{\gamma} \) is plotted as a function of rotational shear stress \(\tau_{0z} \) till the yield point in the purely rotational experiment. For the same system (b) Radial shear stress \(\tau_{rz} \) is plotted as a function of rotational shear stress \(\tau_{0z} \). In the inset of (b) \(\tau_{rz}/\tau_{rz,y} \) is plotted with respect to \(\tau_{0z}/\tau_{0z,y} \). All the above results are obtained at \(E = 1.0 \text{ kV/mm} \).