Conformational behavior of a semiflexible dipolar chain with a variable relative size of charged groups via molecular dynamics simulations.

Supporting information.

Figure S1. Radius of gyration R_{gyr} (left) and persistence length l_p (right) as functions of rigidity k in the case of the ideal chain (gauss) and for uncharged chains in good solvent with different dipole length $d = 1.0$ and 1.5.
Figure S2. Distance map for backbone units with dipole length $d = 1$ for different $k = 8, 11, 12, 16$ at $\lambda = 10$.
Figure S3. Number of turns of the torus as function of λ at different k and $d = 1$.

Figure S4. The average cosine between dipoles as function of number along chain for different k at $\lambda = 10$ and $d = 1$.
Figure S5. The average cosine between dipoles neighboring along the chain along as function of distance in space for different k at $\lambda = 10$ and $d = 1$.
Figure S6. Radial distribution functions of backbone beads relative to each other, g_{mm}, as well as relative to side beads, g_{mc}, for different λ and k at $d = 1$
Figure S7. Radial distribution functions of backbone beads relative to the center of mass of the chain for different λ and k at $d = 1$.

Figure S8. Snapshots of dipolar chain of rigidity $7 \leq k \leq 14$ at $\lambda = 10$, $N = 32$. There are metastable states such as circle, hairpin and extended chain.
Figure S9. Snapshots of dipolar chain at \(\lambda = 20 \), \(N = 32 \). There are loose globule \((k = 15)\), knots with trefoil knot \((k = 26)\), hairpin with short-living torus \((k = 34)\) and rod \((k = 40)\).

Figure S10. Dynamic exchange between toroidal structure, hairpin and extended chain in a typical run, as seen in the trace of radius of gyration as a function of time for different rigidity at \(\lambda = 10 \). Top: \(N = 32 \) and \(k = 7, 10, 14 \). Bottom: \(N = 64 \) and \(k = 7, 14, 19 \).
Figure S11. Snapshots of dipolar chain of rigidity $k = 7, 14, 19$ at $\lambda = 10, N = 64$.

Figure S12. Radius of gyration R_{gyr} as function of rigidity k at $\lambda = 20, N = 64$.

Figure S13. Snapshots of dipolar chain of rigidity $k = 14, 19$ at $\lambda = 20, N = 64$. There are globule and torus.
Figure S14. Radius of gyration R_{gyr} as function of rigidity k at $\lambda = 10$, $N = 128$.

Figure S15. Snapshots of 128-chain for $11 \leq k \leq 20$, $\lambda = 10$, $d = 1$.
Figure S16. Radial distribution function (density) of backbone units from the center of mass of the chain for different \(k \) at \(\lambda = 10 \). From top to bottom: \(d = 0.6, 0.7, 1.1, 1.2 \).