Supplemental Material For:

Dynamics of Lubricous, Concentrated PMMA Brush Layers Studied by Surface Forces and Resonance Shear Measurements

Masashi Mizukamia, Masao Gen1, Shu-Yao Hsub, Yoshinobu Tsujiib and Kazue Kuriharaa,c,*

a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan

b Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

c New Industry Creation Hatchery Center, Tohoku University, Sendai, Sendai, Sendai, 980-8599, Japan
Fig. S1 Plots of force/radius (F/R) vs surface separation distance (D) between PMMA brush layers fabricated on silica surfaces. The force profiles were obtained with driving speeds of 8 nm/s (filled and open circle) and 0.5 nm/s (filled and open diamond). The D was obtained by measuring relative distance (D') from the dry contact of PMMA, and by adding the two PMMA layer thicknesses ($2L_D$).
Fig. S2 Plots of shear amplitudes vs load (L) obtained for PMMA-PMMA brush layers (blue filled circle) as well as for PMMA brush-silica surface (red filled triangle).
Fig. S3 (a) Plots of the elastic (k_2, filled circle) and damping (b_2, filled triangle) parameters (top), and distance (D) before (open square) and after (filled square) shear measurements (bottom) against the shear amplitude (A_{shear}) obtained at the applied loads of 0.85 mN. (b) Schematic illustration of PMMA brushes drawn based on the results at the shear amplitudes of (i) $A_{\text{shear}} = 20$ nm, (ii) $A_{\text{shear}} = 120$ nm, and (iii) $A_{\text{shear}} = 230$ nm.
Fig. S4 Plots of the elastic (k_2, filled circle) and damping (b_2, filled triangle) parameters (top), and distance (D) before shear (open square) and after (filled square) shear measurements (bottom) against the shear amplitude (A_{shear}) obtained at the applied loads of 0.79 mN for PMMA brush-silica.
Fig. S5 Plots of force/radius (F/R) vs surface separation distance (D) between a PMMA brush layer and a silica surfaces. The force profile was obtained with driving speeds of 8 nm/s (filled circle for approach and open circle for retraction). The D was obtained by measuring relative distance (D') from the dry contact of PMMA, and by adding a PMMA layer thickness (L_D).