
Supplementary Online Material1

Assumptions2

• The lipid bilayer is a modeled as a thin elastic shell. We use the Helfrich energy [1] based on the assumption3

that the thickness of the bilayer is negligible compared to its radius of curvature. This allows us to neglect4

shear deformations and consider classical Kirchoff-Love shell kinematics for thin shell geometries. Further-5

more, we assume that the membrane is areally incompressible since the maximum elastic stretch is only 4 %6

[2]. This incompressibility constraint is numerically enforced using a Lagrange multiplier field. Addition-7

ally, we ignore any fluid [3] and friction [4] properties of the bilayer. Thus, the membrane is in mechanical8

equilibrium at all times.9

• The lack of resistance to shear deformation modes in the Helfrich energy formulation can result in rigid body10

(zero energy) modes of deformation. To circumvent this limitation, in the 3D numerical simulations, we11

add shear stabilization terms to the classical Helfrich energy functional [5]. These stabilization terms are of12

a smaller magnitude relative to the traditional bending energy terms, and restore stability to the numerical13

model without significantly effecting the kinematics of bending.14

• The membrane tubule is modeled both as an axisymmetric and 3D lipid bilayer. A pinching force is applied15

at different locations - ‘cap’, ‘tube’, and ‘base’ (Fig. 2). Since the tether is pulled from a membrane reservoir16

that can buffer changes in membrane tension [6, 7], we assume that elastic properties like membrane tension17

and bending rigidity are constant.18

• Since we do not consider the fluid properties of the membrane, we cannot consider scission explicitly. We19

assume that the large stresses at the neck can lead to the formation of a hemi-fission intermediate [8, 9].20

• The interaction of the constriction proteins and the membrane tubule can be numerically thought of as a21

contact model where the proteins apply a contact force of constriction on the tubule. Here, we do not22

consider a contact model but rather apply a follower load type collar pressure in the constriction region.23

Thin shell formulations: Axisymmetric and 3D models24

Equilibrium equations for the axisymmetric model25

First, we write the force balance on the membrane as26
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∇ · σ + pn = f, (1)

where σ is the stress tensor, p is the pressure difference between the inside and outside of the volume bounded by27

the membrane, and f is any externally applied force per unit area on the membrane. In our simulations, we assume28

that the tubule has equilibrated the pressure difference, and thus set p to 0. f includes both the axial and pinching29

forces applied on the membrane. By introducing the covariant derivative as ();α, the surface divergence in Eq. 130

can be rewritten as [10]31

∇ · σ = σα;α = (
√
a)−1(

√
aσα),α, (2)

where a is the determinant of the first fundamental form metric aαβ . The surface stresses in Eq. 1 can be split into32

normal and tangential component given by33

σα = T α + Sαn, (3)

where34

Tα = Tαβaβ, Tαβ = σαβ + bβµM
µα, Sα = −Mαβ

;β . (4)

The two tensors σαβ and Mαβ can be expressed by the derivative of F , the energy per unit mass, with respect to35

the coefficients of the first and second fundamental forms, aαβ , bαβ , respectively [3, 10]36

σαβ = ρ(
∂F (ρ,H,K;xα)

∂aαβ
+
∂F (ρ,H,K;xα)

∂aβα
), (5)

Mαβ =
ρ

2
(
∂F (ρ,H,K;xα)

∂bαβ
+
∂F (ρ,H,K;xα)

∂bβα
), (6)

where ρ is the surface mass density. H and K are mean and Gaussian curvatures given by37

H =
1

2
aαβbαβ, K =

1

2
εαβελµbαλbβµ. (7)
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Here (aαβ) = (aαβ) is the dual metric and εαβ is the permutation tensor defined by ε12 = −ε21 = 1√
a
, ε11 =38

ε22 = 0.39

A reasonable assumption to make is that the membrane tubule has a fixed area. We introduce an area incompress-40

ibility (J = 1) constraint using a general form of free energy density per unit mass given as41

F (ρ,H,K;xα) = F̃ (H,K;xα)− γ(xα, t)

ρ
. (8)

Here γ(xα, t) is a Lagrange multiplier field required to impose invariance of ρ on the whole of the surface (see [10]42

for full derivation). Substituting W = ρF̃ into Eq. 8 we get43

σαβ = (λ+W )aαβ − (2HWH + 2κWK)aαβ +WH b̃
αβ, (9)

Mαβ =
1

2
WHa

αβ +WK b̃
αβ, (10)

where44

λ = −(γ +W ). (11)

Combining Eqs. 10, 4, and 3 into Eq. 1 gives the equations in normal and tangential equations as45

p+ f · n = ∆
1

2
WH + (WK);αβ b̃

αβ +WH(2H2 −K)

+2H(KWK −W )− 2λH, (12)

and46

Nβα
;α − Sαbβα = −(γ,α +WKk,α +WHH,α)aβα

= (
∂W

∂xα|exp
+ λ,α)aβα = f · as. (13)

Here ∆(·) is the surface Laplacian and ()|exp denotes the explicit derivative respect to coordinate θα.47
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Axisymmetric model48

Using the axisymmetric parametrization49

r(s, θ) = r(s)er(θ) + z(s)k. (14)

we define ψ as the angle made by the tangent with respect to the horizontal (see Fig. 1). This gives r′(s) =50

cos(ψ), z′(s) = sin(ψ), which satisfies the identity (r′)2 + (z′)2 = 1. Using this, we define the normal to51

the surface as n = − sinψer(θ) + cosψk, the tangent to the surface in the direction of increasing arc length as52

as = cosψer(θ) + sinψk, and unit vector τ = eθ tangent to the boundary ∂ω in the direction of the surface of53

revolution. For more details, we refer the reader to [10, 11, 12].54

The expressions for tangential (κν), transverse (κτ ) and twist (τ) curvatures are simplified as55

κν = ψ
′
, κτ = r−1 sinψ, τ = 0. (15)

Further, we calculate the mean curvature (H) and Gaussian curvature (K) as56

H =
1

2
(κν + κτ ) =

1

2
(ψ

′
+ r−1 sinψ), K = κτκν =

ψ
′
sinψ

r
. (16)

We introduce a term L = 1
2κr(WH)′ in order to write a system of first order differential equations governing the57

problem [11] as ,58

r′ = cosψ, z′ = sinψ,

rψ′ = 2rH − sinψ, rH ′ = L+ rC ′,

L′

r
=
p

k
+

f · n
κ

+ 2H

[
(H − C)2 +

λ

κ

]
− 2 (H − C)

[
H2 +

(
H − r−1 sinψ

)2]
,

λ′ = 2κ (H − C)C ′ − f · as. (17)

Eq. 17 is a function of the arc length (s). This can be rewritten in terms of membrane area (a) using59

a(s) = 2π

∫ s

0
r(ξ)dξ → da

ds
= 2πr. (18)
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We choose to non-dimensionalize our system of equations using a length scale R0 and bending rigidity scale κ0 as60

α =
a

2πR2
0

, x =
r

R0
, y =

y

R0
, h = HR0, c = CR0, l = LR0,

λ∗ =
λR2

0

κ0
, p∗ =

pR3
0

κ0
, f∗ =

fR3
0

κ0
, κ∗ =

κ

κ0
,

(19)

where R0 is the radius of the flat patch of membrane in simulations of a membrane tubule (Fig. 2E), the radius of61

the hemisphere for simulations of the tubule cap (Fig. 2B), and the radius of the tube for simulations of the tube62

(Fig. 2C) and the base (Fig. 2D). κ0 is the bending rigidity of the bare membrane.63

Rewriting Eq. 17 using the dimensionless variables in Eq. 19, we get [11]64

xẋ = cosψ, xẏ = sinψ,

x2ψ̇ = 2xh− sinψ, x2ḣ = l + x2ċ,

l̇ =
p∗

κ∗
+

f∗ · n
κ∗

+ 2h

[
(h− c)2 +

λ∗

κ∗

]
− 2 (h− c)

[
h2 +

(
h− x−1 sinψ

)2]
,

λ̇∗ = 2κ∗ (h− c) ċ− f∗ · as
x

. (20)

We enforce a third boundary point for constriction simulations at the base (Fig. 2D) and the whole tube (Fig. 2E)65

by introducing an independent variable [13]66

ζ = αbp
α− αbp
αtot − αbp

, (21)

where αbp is the non-dimensional area of the first ‘phase’ and αtot is the total non-dimensional area of the mem-67

brane. α is the variable defining the non-dimensional area along the first ‘phase’ and ζ is the variable defining68

non-dimensional area along the second ‘phase’. Like α in the first interval, ζ ranges from o to αbp in the second69

interval. Thus we can redefine our system of equations (Eq. 20) for 2 phases as70
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x1
dx1

dα
= cosψ1, x1

dy1

dα
= sinψ1,

x2
1

dψ1

dα
= 2x1h1 − sinψ1, x2

1

dh1

dα
= l1 + x2

1ċ1,

dl1
dα

=
p∗

κ∗
+

f∗1 · n
κ∗

+ 2h1

[
(h1 − c)2 +

λ∗1
κ∗

]
− 2 (h1 − c1)

[
h2

1 +
(
h1 − x−1

1 sinψ1

)2]
,

dλ∗1
dα

= 2κ∗ (h1 − c1) ċ1 −
f∗1 · as
x

,

x2
dx2

dζ
= (

αtot − αbp
αbp

) cosψ2, x2
dy2

dζ
= (

αtot − αbp
αbp

) sinψ2,

x2
2

dψ2

dα
= (

αtot − αbp
αbp

)(2x2h2 − sinψ2),

x2
2

dh2

dζ
= (

αtot − αbp
αbp

)(l2 + x2
2)ċ2,

dl2
dζ

= (
αtot − αbp

αbp
)(
p∗

κ∗
+

f∗2 · n
κ∗

+ 2h2

[
(h2 − c2)2 +

λ∗2
κ∗

]
− 2 (h2 − c2)

[
h2

2 +
(
h2 − x−1

2 sinψ2

)2]
),

dλ∗2
dζ

= (
αtot − αbp

αbp
)(2κ∗ (h2 − c2) ċ2 −

f∗2 · as
x

), (22)

where 1 and 2 are the two phases represented by non-dimensional areas α and ζ, both of which are defined in the71

interval [0 αbp]. Applied forces are modeled as a smooth hyperbolic tangent function. For example, the axial force72

at the tip of the tubule and radial force at the interface are modeled as73

faxial = fax × (0.5(1− tanh(g ∗ (α− αaxial))))/αaxial, (23)

fpinch = fp × 0.5(tanh(g(α− (αbp − αradial)))

−0.5 tanh(g(α− αbp))), (24)

where faxial and fpinch are the distribution of axial and radial forces per unit area along the non-dimensional74

membrane area α, fax and fp are the magnitudes for force per unit area, and αaxial and αradial are the corresponding75

non-dimensional areas of applied force in the axial and radial direction respectively. g is a constant that ensures a76

sharp but smooth transition. In our simulations, we use g = 20 [11].77

Boundary conditions78

Eq 22 can be solved given a set of boundary conditions. All the axisymmetric simulations in this study were79

performed using the MATLAB bvp4c toolbox [13]. A useful feature of this toolbox is the estimation of unknown80
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parameters by providing additional boundary conditions [13]. The MATLAB subroutines used in this work are81

available on Github [14].82

• Whole tubule83

The tubule pinching simulations in Fig. 2E were performed using the following set of boundary conditions84

x1(0) = 0, x1(αbp) = xp, ψ1(0) = 0, ψ2(αbp) = 0,

y1(0) = yp, y2(αbp) = 0, , λ2(αbp) = λ0, l1(0) = 0,

x1(αbp) = x2(0), y1(αbp) = y2(0), ψ1(αbp) = ψ2(0),

h1(αbp) = h2(0), l1(αbp) = l2(0), λ1(αbp) = λ2(0). (25)

xp and yp are additional constraints for the radius at the interface and height of the tubule respectively.85

These additional constraints are used to estimate the axial force and pinching force required to obtain a86

solution to the system of equations in Eq. 22. λ0 is the boundary membrane tension. We note here that this87

now represents a system of 12 equations and 2 unknown parameters with 14 boundary conditions. The 288

unknown parameters are the axial and radial force. 6 of these boundary conditions are continuity conditions89

for every parameter at the interface (Eq. 25).90

• Base91

The half catenoid-like base pinching simulations in Fig. 2D were performed using the following set of92

boundary conditions93

x1(0) = x0, x1(αbp) = xp, ψ1(0) = π, ψ2(αbp) = π/2,

y1(0) = 0, , λ1(0) = λ0, l2(αbp) = 0,

x1(αbp) = x2(0), y1(αbp) = y2(0), ψ1(αbp) = ψ2(0),

h1(αbp) = h2(0), l1(αbp) = l2(0), λ1(αbp) = λ2(0). (26)

xp is the additional constraint for the radius at the interface. x0 is the radius at y = 0. The additional94

constraint is used to estimate the pinching force required to obtain a solution to the system of equations in95

Eq. 22. λ0 is the boundary membrane tension. We note here that this now represents a system of 12 equations96

and 1 unknown parameter with 13 boundary conditions.97

• Tube98
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The cylinder/tube pinching simulations in Fig. 2C were performed by solving the system of equations in Eq.99

20 for a single phase of membrane. The boundary conditions used were100

l(0) = 0, y(0) = 0, y(α) = Z0/R0, ψ(0) = π/2,

x(α) = 1, x(0) = xp, ψ(α) = π/2, (27)

where α is the non-dimensional area of the tube, xp is the additional constraint required for estimating101

the pinching force. This represents a system of 6 equations and 1 unknown parameter with 7 boundary102

conditions.103

• Cap104

The hemisphere/cap pinching simulations in figure 2B were performed by solving the system of equations in105

Eq. 20 for a single phase of membrane. The boundary conditions used were106

l(0) = 0, y(0) = 0, l(α) = 0, ψ(0) = π/2,

x(α) = 0, x(0) = xp, ψ(α) = π, (28)

where xp is the additional constraint required for estimating the pinching force. This represents a system of107

6 equations and 1 unknown parameter with 7 boundary conditions.108

3D model109

Thin shell formulation110

Considering the classical Helfrich formulation for biological membranes, the strain energy density of a membrane111

in the current configuration is given by:112

W = kB(H −H0)2 + kGκ (29)

where kB and kG are the bending modulus and the Gaussian modulus of the membrane, H is the mean curvature,113

κ is the Gaussian curvature and H0 represents the instantaneous curvature induced in the membrane.114

To enforce area-incompressibility, we consider the following Lagrange multiplier formulation:115

WLM = J(kB(H −H0)2 + kGκ) + q(J − 1) (30)
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where q is the point value of the Lagrange multiplier field, and J is the surface stretch (ratio of area in the current116

configuration to the area in the reference configuration).117

The governing equation for quasi-static mechanical equilibrium in 3D simulations is obtained by minimizing the118

Helfrich energy functional following standard variational arguments, and is given by [5]:119 ∫
∂Ω

1

2
δaijσ

ij da+

∫
∂Ω
δbijM

ij da−
∫
∂Ωcollar

δx · p da−
∫

Γ
δx · t ds = 0 (31)

where ∂Ω is the membrane surface and Γ is the membrane boundary on which surface tractions can be applied, as120

shown in Figure 1B. δaij and δbij are variations of the components of the metric tensor and the curvature tensor,121

respectively. σij are the components of the stress tensor, M ij are components of the moment tensor, p is the122

pressure applied along a collar on the membrane surface (to cause constriction), and t is the surface traction.123

For a hyperelastic material model, we can express the stress and moment components in terms of the strain energy124

density as [15]:125

σij =
2

J

∂W

∂aij
(32)

M ij =
1

J

∂W

∂bij
(33)

For the Helfrich type strain energy density, these take the form:

σij = (kB(H −H0)2 − kGκ)aij − 2kB(H −H0)bij (34)

M ij = (kB(H −H0) + 2kGH)aij − kGbij (35)

Computational implementation126

We solve the governing equation given by Eq.31 using a Isogeometric Analysis (IGA) based numerical frame-127

work for solving problems of membrane mechanics developed as part of this work. A companion manuscript (in128

preparation by the authors) describes the details of the mathematical methods and the numerical formulation. The129

computational implementation, along with the source code for solving the boundary value problems listed below,130

is available as a public code repository on GitHub [16].131

List of 3D simulations132

For each of the 3D simulations, we solve the governing equation given by Eq.31 using a force control or dis-133

placement control approach, with the relevant displacement, angle and traction boundary conditions. The dis-134

placement boundary conditions are applied on the components of the displacement vector, u, that is defined as135
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the change in position of a point on the membrane between its current and reference configuration (u(ξ1, ξ2) =136

x(ξ1, ξ2) − X(ξ1, ξ2)). The angle boundary conditions, where needed, are enforced through the weak formulation137

using a penalty approach and result in the normal vector (n) at the boundaries to align along the preferred direction.138

In all the simulations, we have two boundaries, and these are identified as the inner boundary (ΓI) and the outer139

boundary (ΓO) as indicated in the schematic in Figure 1B. The specific numerical simulations in this work using140

the 3D model are described below.141

• Tube pulling142

The tube pulling simulation shown in Figure S1(A) considers a reference circular plate geometry with an

outer radius of 20 nm, and an inner radius of 0.2 nm. The boundary value problem is solved as a force control

problem with a traction on the inner boundary (ΓI). The displacement and traction boundary conditions are

as follows:

ty = h on ΓI

ux = 0 & uz = 0 on ΓI

uy = 0 on ΓO

See Movie M12 in the supplementary information for the evolution of the membrane deformation.143

• Whole tubule144

The whole tubule simulations shown in Figure 4 consider pinching at three different locations, identified as

the cap, tube and base locations (Figure 2A). For the tubule geometry, shown in Figure 2A, the tubule radius

is 20 nm and height is 100 nm. The inner boundary (ΓI) at the top of the tubule has a radius of 0.2 nm and the

outer boundary (ΓO) at the base of the tubule has a radius of 40 nm. The boundary value problem is solved

as a force control problem with pressure applied on a collar (Ωcollar) located at the cap, tube or base location.

In addition, the displacement boundary conditions are as follows:

ux = 0 on ΓI

uy = 0 on ΓI

uz = 0 on ΓI

See Movies M1-M3 in the supplementary information for the evolution of the constriction process for the145

cap, tube and base locations.146

• Base147

The constriction simulation shown in Figure 5 considers pinching at the base location. The tube geometry

considered has a radius of 20 nm, and a height of 80 nm. The tube boundary on the top is identified as
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the inner boundary (ΓI) and the tube boundary at the bottom is identified as the outer boundary (ΓO). The

boundary value problem is solved as a force control problem with pressure applied on a collar (Ωcollar) located

at the base location. In addition, the displacement boundary conditions are as follows:

ux = 0 on ΓI

uy = 0 on ΓI

uz = 0 on ΓI

See Movie M3 in the supplementary information for the evolution of the constriction process for the base148

location.149

• Cap150

The constriction simulation shown in Figure S3 considers pinching at the cap location. The cap geometry is

a hemisphere with a radius of 20 nm. The cap boundary on the top, with a small radius of 1 nm, is identified

as the inner boundary (ΓI) and the cap boundary at the bottom is identified as the outer boundary (ΓO).

This boundary value problem is solved as a displacement control problem, as the force control problem

is numerically unstable due to the rigid body modes induced under the displacement boundary conditions

considered. As this problem is solved as a displacement control problem, this enforces axisymmetry of the

pinching profile. The displacement boundary conditions are as follows:

ux = g on ΓO

uy = 0 on ΓO

uz = g on ΓO

See Movie M13 in the supplementary information for the evolution of the constriction process for the cap151

location.152

• Tube153

The constriction simulation shown in Figure S4 considers pinching at the tube location. The tube geometry

is a cylinder with a radius of 20 nm. The tube boundary on the top is identified as the inner boundary (ΓI)

and the boundary at the bottom is identified as the outer boundary (ΓO). This boundary value problem is

solved as a displacement control problem. Like in the case of the cap simulation, as this problem is solved

as a displacement control problem, this enforces axisymmetry of the pinching profile. The displacement
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boundary conditions are as follows:

ux = g on ΓO

uz = g on ΓO

uy = 0 on ΓI

See Movie M14 in the supplementary information for the evolution of the constriction process with displace-154

ment control for the tube location.155

156

We also solve a force control equivalent of this problem, and this is shown in Figure S5. This case is discussed157

below in the simulation of the helical force collar at the tube location with a zero helical pitch. See Movie158

M15 in the supplementary information for the evolution of the constriction process with force control for the159

tube location.160

• Helical force collar at the tube location161

The constriction simulation shown in Figure 6 considers pinching at the tube location due to helical collar.

In Figure 6A we consider a single helical ring, and in Figure 6G we consider three helical rings. The tube

geometry considered for the single helical ring case has a radius of 20 nm, and a height of 40 nm. The

tube geometry considered for the three helical rings case has a radius of 20 nm, and a height of 200 nm.

For both cases, the tube boundary on the top is identified as the inner boundary (ΓI) and the tube boundary

at the bottom is identified as the outer boundary (ΓO). The boundary value problem is solved as a force

control problem with pressure applied on a helical collar (Ωcollar) located at the tube location. In addition,

the displacement boundary conditions are as follows:

ux = 0 on ΓI

uy = 0 on ΓI

uz = 0 on ΓI

ux = 0 on ΓO

uy = 0 on ΓO

uz = 0 on ΓO

See Movies M4-M6 in the supplementary information for the evolution of the constriction process due to a162

helical force collar at the tube location with a non-dimensional pitch of zero, two and four, respectively, and163

movie M7 for the corresponding evolution of the constriction process due to a force collar with three helical164

rings.165
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• Helical force collar at the base location166

The constriction simulation shown in Figure 7 considers pinching at the base location due to helical collar.

In Figure 7A we consider a single helical ring, and in Figure 7G we consider three helical rings. The tube

geometry considered for the single helical ring case has a radius of 20 nm, and a height of 40 nm. The

tube geometry considered for the three helical rings case has a radius of 20 nm, and a height of 200 nm.

For both cases, the tube boundary on the top is identified as the inner boundary (ΓI) and the tube boundary

at the bottom is identified as the outer boundary (ΓO). The boundary value problem is solved as a force

control problem with pressure applied on a helical collar (Ωcollar) located at the base location. In addition,

the displacement boundary conditions are as follows:

ux = 0 on ΓI

uy = 0 on ΓI

uz = 0 on ΓI

See Movies M8-M10 in the supplementary information for the evolution of the constriction process due to167

a helical force collar at the base location with a non-dimensional pitch of zero, two and four, respectively,168

and movie M11 for the corresponding evolution of the constriction process due to a force collar with three169

helical rings.170

Analytical solution for tube pulling simulation171

The equilibrium values of R0 and f0 for a membrane tube are defined as172

R0 =
√
κ/(2σ), (36)

f0 = 2π
√

(2σκ), (37)

where κ is the bending rigidity, σ is the membrane tension. For bending rigidity of 20 pN·nm and membrane173

tension 0.1 pN/nm, we get174

f0 = 12.5664 pN, (38)

which is the equilibrium value of force obtained in Fig. S1.175

13



List of movies176

• Movie M1: Evolution of the constriction process for the cap location for the whole tubule geometry.177

• Movie M2: Evolution of the constriction process for the tube location for the whole tubule geometry.178

• Movie M3: Evolution of the constriction process for the base location for the whole tubule geometry.179

• Movie M4: Evolution of the constriction process due to a single helical force collar at the tube location with180

a non-dimensional pitch of zero.181

• Movie M5: Evolution of the constriction process due to a single helical force collar at the tube location with182

a non-dimensional pitch of two.183

• Movie M6: Evolution of the constriction process due to a single helical force collar at the tube location with184

a non-dimensional pitch of four.185

• Movie M7: Evolution of the constriction process due to a force collar with three helical rings at the tube186

location.187

• Movie M8: Evolution of the constriction process due to a single helical force collar at the base location with188

a non-dimensional pitch of zero.189

• Movie M9: Evolution of the constriction process due to a single helical force collar at the base location with190

a non-dimensional pitch of two.191

• Movie M10: Evolution of the constriction process due to a single helical force collar at the base location192

with a non-dimensional pitch of four.193

• Movie M11: Evolution of the constriction process due to a force collar with three helical rings at the base194

location.195

• Movie M12: Evolution of membrane deformation for pulling of a tubule from a flat membrane.196

• Movie M13: Evolution of a axisymmetric constriction profile due to a displacement control approach of197

constriction at the cap location.198

• Movie M14: Evolution of a axisymmetric constriction profile due to a displacement control approach of199

constriction at the tube location.200

• Movie M15: Evolution of a non-axisymmetric constriction profile due to a force control approach of con-201

striction at the tube location.202
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Figure S1: Comparison of the axial force required to deform a flat membrane patch up to a height of 10 nm.

Bending rigidity is 20 pN·nm and membrane tension is 0.1 pN/nm. The results obtained from the axisymmetric

model and the 3D framework are compared. The analytical solution for the equilibrium value of force is 12.5664

pN. (A) Membrane shape at a deformation of 10 nm. Colorbar indicates the height (nm). (B) Axial force vs height

of membrane in axisymmetry and 3D. See Movie M12 in the supplementary information for the evolution of the

membrane deformation.
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Figure S2: No snap-through instability is observed for constriction at the base of a tubule without the fixed height

boundary condition. Membrane tension is 0.2 pN/nm, bending rigidity is 320 pN·nm. (A) Schematic depicting

the boundary conditions used. The difference with the B.Cs in Eq. 25 is that the height is no longer constrained.

This implies that the axial force is fixed. Thus, this simulation represents a system of 12 equations with 1 unknown

parameter and 13 boundary conditions (Eq. 22). (B) Initial and final membrane shapes obtained for constriction at

the base of the tubule. (C) Collar pressure vs radius at the break point. Pressure is negligible (order of magnitude

is 10−4.)

18



2
1.25

h
(A)

3D symmetric pinching

-1
-0.25

2
1.25
0.5

h

-1
-0.25

2
1.25
0.5

h

-1
-0.25

2
1.25
0.5

h

-1
-0.25

0.5

0 5 10 15 20
Constriction (nm)

0

50

100

150

200

C
ol

la
r p

re
ss

ur
e 

(p
N

/n
m

)

Axisymmetry
3D

0 5 10 15 20
Constriction (nm)

-150

-100

-50

0

50

100

150

200

St
iff

ne
ss

 (p
N

/n
m

2 )

Axisymmetry
3D

0 5 10 15 20
Constriction (nm)

1500

2000

2500

3000

3500

4000

B
en

di
ng

 e
ne

rg
y 

(p
N

nm
) Axisymmetry

3D

(B) (C) (D)

Figure S3: Comparison of collar pressure, stiffness and bending energy during constriction of a membrane cap

using the axisymmetric and 3D framework. Axisymmetry is enforced in the 3D simulation by solving as a dis-

placement control problem. Boundary conditions used are shown in Fig. 1, case 1. Bending rigidity is 320 pN/nm,

Radius is 20 nm. (A) Membrane shapes during constriction of spherical membrane in 3D. Colorbar is the nor-

malized mean curvature. (B) Collar pressure vs constriction in 3D and axisymmetry. (C) Stiffness vs constriction

in 3D and in axisymmetry. (D) Bending energy vs constriction in 3D and axisymmetry. See Movie M13 in the

supplementary information for the evolution of the constriction process.
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Figure S4: Comparison of collar pressure, stiffness and bending energy during constriction of a membrane cylinder

using the axisymmetric and 3D framework. Axisymmetry is enforced in the 3D simulation by solving as a displace-

ment control problem. Boundary conditions used are those shown in Fig. 1, case 2. Bending rigidity is 320 pN ·

nm, length scale R0 is 20 nm. (A) Membrane shapes during constriction of cylindrical membrane in 3D. Colorbar

is the normalized mean curvature. (B) Collar pressure vs constriction in 3D and axisymmetry. (C) Stiffness vs

constriction in 3D and in axisymmetry. (D) Bending energy vs constriction in 3D and axisymmetry. See Movie

M14 in the supplementary information for the evolution of the constriction process.
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Figure S5: Comparison of collar pressure, stiffness and bending energy during constriction of a membrane cylinder

using the axisymmetric and 3D framework. Bending rigidity is 320 pN/nm, Radius is 20 nm. (A) Membrane shapes

during constriction of cylindrical membrane in 3D. Colorbar is the normalized mean curvature. (B) Collar pressure

vs constriction in 3D and axisymmetry. (C) Stiffness vs constriction in 3D and in axisymmetry. (D) Bending

energy constriction in 3D and axisymmetry. See Movie M15 in the supplementary information for the evolution of

the constriction process.
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Figure S6: The snap-through instability for constriction at the base is regulated by a variation in local tension.

Membrane tension at the boundary is 0.2 pN/nm, bending rigidity is 320 pNnm, Radius is 20 nm, area of applied

force is 1/200th of the membrane area. z is the non-dimensional height at a given location along the membrane

from the bottom. Shown are the (A) Mean curvature distribution (non-dimensional) and the location of the local

minimal surface (dotted line at y = 0.39) where the mean curvature vanishes (h = 0), (B) Collar pressure, (C)

Tubule stiffness to pinching, (D) Bending energy and (E) Tension work as a function of the constriction.
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