Supplementary Information

Self-assembly of amphiphilic peptide nanoparticles for the efficient entrapment and delivery of 100 nucleotide DNA fragments

Shabnam Tarvirdipour^{a,b}, Cora-Ann Schoenenberger^a, Yaakov Benenson^{b*}, Cornelia G. Palivan^{a*}

^aDepartment of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland

^bDepartment of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland

*corresponding authors

	oligonucleotide sequence			
22nt ssDNA	5'-TAA CAG GAT TAG CAG AGC GAG G-3'			
	Atto550 conjugation to the 5' end			
22nt ssDNA complementary strand	5'-CCT CGC TCT GCT AAT CCT GTT A-3'			
100nt ssDNA	5'-AAA CTC CAA CCA AAA CCT CCT CCC CCA CCC			
	TAA CTC ATT ATC CCC CCT TAC CCA TTT ACC CCA			
	ACA CAC CAA CCT CCC AAC AAC CTC CCT CCA CCA			
	ACC A-3'			
	Atto550 conjugation to the 5' end			
100nt ssDNA complementary strand	5'-TGG TTG GTG GAG GGA GGT TGT TGG GAG GTT			
	GGT GTG TTG GGG TAA ATG GGT AAG GGG GGA			
	TAA TGA GTT AGG GTG GGG GAG GAG GTT TTG			
	GTT GGA GTT T-3'			

Table S1. Sequence of DNA fragments

Fig. S1: 5% MetaPhor agarose gel showing single stranded DNA fragments and annealing of complementary 22nt ssDNA and 100nt ssDNA. For annealing equimolar sense and antisense oligonucleotides in 10mM Tris-HCl/1mM EDTA, pH 8 supplemented with 50 mM NaCl were heated to 95°C and gradually cooled down to 10°C over 50min.

Fig. S2: MALDI-TOF mass spectra of H3gT (A) and (HR)3gT (B) peptides.

Fig. S3: TEM images of (HR)3gT MCM-NPs. (A) Scale bar=500nm, (B) Scale bar=100nm.

Solvent effect on self-assembly of (HR)3gT peptide and 22nt ssDNA

Fig. S4: (HR)3gT self-assembly process with 22nt ssDNA under different final ethanol concentrations, 20% (*A*), 35% (*B*), 50% (*C*), Scale bars=200nm.

Table S2: Characterization of DNA-free and DNA-loaded multicompartment micellar (MCM) H3gT peptide NPs in water, pH 7.

(HR)3gT MCM-NPs	PDI	D _H (nm) DLS	D _H (nm) NTA	D _H (nm) FCS	Zeta potential (mV)
H3gT NPs	0.32±0.024	211±46	236±57	NA*	3.42±3.62
22nt ssDNA loaded H3gT NPs	0.34±0.027	241±73	242±12	233±29	0.6±2.3

*not applicable

Fig. S5: Normalised FCS autocorrelation curves of free dye-Atto550, Atto550-labelled 22nt ssDNA, and 22nt ssDNA-loaded H3gT NPs.

Table S3: FCS characterization of singly and loaded DNA in to MCM H3gT NPs.

Fluorescent species	Diffusion time (µs)	DNA/NP
Atto550 fluorescent dye	48±3	N/A
Atto550-labelled 22nt ssDNA	139±5	N/A
22nt ssDNA-loaded H3gT NPs	5322±382	3.95 ± 2.39

Fig. S6: TEM micrograph of H3gT NPs (*A*) and 22nt ssDNA-loaded H3gT NPs (*B*) after 5h incubation at 37°C. Scale bars=200nm.

Fig. S7: HeLa cell viability (MTS assay). Cells treated for 24h with H3gT NPs (gray) and 22nt ssDNAloaded H3gT NPs (yellow). Cell viability was normalized to untreated HeLa cells (negative control, 100% viability). All data presented as the mean \pm SD (n=3).

Fig. S8: CLSM merged images (GFP and atto550) of H2B-GFP expressing HeLa cells treated with 22nt ssDNA-loaded H3gT and (HR)3gT MCM NPs after 48h. Scale bars=20µm.

Atto550-labelled 22nt ssDNA Atto550-labelled 22bp dsDNA Atto550-labelled 100nt ssDNA Atto550-labelled 100bp dsDNA

Fig. S9: CLSM merged images (GFP and Atto550) of H2B-GFP expressing HeLa cells treated with different free Atto550-labelled DNAs. Images are recorded under the same conditions as in Fig. 7. Scale bars= $20\mu m$.

Fig. S10: (A) TEM images of 100bp dsDNA-loaded (HR)3gT MCM-NPs after 1h (*left*) and 2h (*right*) incubation at 37°C. Scale bars: 200nm. (B) CLSM merged images (GFP and Atto550) of H2B-GFP expressing HeLa cells treated with 100bp dsDNA-loaded (HR)3gT MCM NPs for 1h (*left*) and 2h (*right*). Scale bars= 40μ m.