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Gradients in temperature, concentration or electrostatic potential cannot exert forces on a bulk
fluid; they can, however, exert forces on a fluid in a microscopic boundary layer surrounding a
(nano)colloidal solute, resulting in so-called phoretic flow. Here we present a simulation study of
phoretic flow around a spherical colloid held fixed in a concentration gradient. We show that the
resulting flow velocity depends non-monotonically on the strength of the colloid-fluid interaction.
The reason for this non-monotonic dependence is that solute particles are effectively trapped in a
shell around the colloid and cannot contribute to diffusio-phoresis. We also observe that the flow
depends sensitively on the anisotropy of solute-colloid interaction.

1 Size effect
The dependence of fluid velocity vx on solute-colloid interaction
strength in a bigger box of N “ 7700 particles is shown in Fig. 1
below. For colloid with isotropic interaction, the increase of box
size slightly reduces the magnitude of fluid velocity. However,
for colloid with anisotropic interaction, the value of vx is barely
changed with the increase of N. This is because the asymmet-
ric distribution of excess solute is observed even for r ą rcut for
system with isotropic interaction, but for system with anisotropic
interaction the asymmetric distribution is observed locally within
the cut-off.

Fig. 1 The dependence of fluid velocity vx on (a) isotropic εB and (b)
anisotropic λB solute-colloid interaction strength, in simulation box con-
taining N “ 4836 or N “ 7700 particles.
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To further analyze the size effect on phoresis for system with
isotropic interactions, in Fig. 2 we present the dependence of vx

on N at εB “ 1.5 for slip and non-slip boundaries. We find the
magnitude of vx deceases monotonically with N, due to finite size
effect. vx for infinite system could thus be predicted by extrap-
olating the asymptotic vx–N curve. Since the computational effi-
ciency decreases significantly with the increase of N, in this work
a box containing N “ 4836 particles is chosen. Since the box size
in three dimensions are proportionally scaled, we also check the
scaling effect on a lgvx´ lgN plot in Fig. 2(b). The correlation
coefficient is determined as ζ “ 0.228 for slip, and ζ “ 0.225 for
non-slip boundaries.

Fig. 2 The dependence of fluid velocity vx on the number of particles
N for system with slip (black) and non-slip (red) boundaries, plotted on
linear (a) and double logarithmic scale (b).

2 The effect of εB on bound particles
We define Nbptq as the number of particles that are always bound
by the colloid (i.e. ric ă rcut) within t time-steps. Fig. 3 presents
the decrease of lnpNbptq{Nbp0qq with t at different εB for slip
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boundaries. It shows that Nb is always larger at larger εB at the
same t. For both (a-b) concentrated (ρβ “ 0.32, |∇ρβ | “ 0.04) and
(c-d) dilute (ρβ “ 0.05, |∇ρβ | “ 0.0063) system, the density gra-
dient (by applying ’color forces’) exerts very limited effect on the
decay rate of lnpNbptq{Nbp0qq. For εB ě 4.0, Nb is always larger for
dilute system at the same t. As lnpNbptq{Nbp0qq decreases linearly
with t, the characteristic time td for fluid particle bound by the
colloid can be measured by fitting the slope.

Fig. 3 lnpNbptq{Nbp0qq versus time t at (a-b) ρβ “ 0.32, |∇ρβ | “ 0.04 and
(c-d) ρβ “ 0.05, |∇ρβ | “ 0.0063 with slip boundaries. While (a) and (c) are
for equilibrium system without gradient, (b) and (d) are for non-equilibrium
system applying ’color’ forces.

To analyze the dynamics of fluid particles surrounding the col-
loid, in Fig. 4 we compare typical 2D trajectories in x´z plane for
permanently and temporarily bound particles within 2ˆ105 sim-
ulation steps at εB “ 10.0. Interestingly, while permanently bound
particles are localized at around z “ 0 (i.e. θ “ 0 or θ “ π), we
find partly bound particles are more likely to escape near x “ 0
(i.e. θ “ π{2).

Fig. 4 2D trajectories in x´z plane for (a) permanently and (b) temporar-
ily bound particles at εB “ 10.0.

To demonstrate the increase of effective size with the strength
of colloid-solute interaction εB, we define a fictitious sphere of
radius r f , within which all solute and solvent particles are frozen
(i.e. immobilized). In Fig. 5(a) below we calculate the depen-

dence of fluid velocity vx on r f . At εB “ 1.5 the magnitude of vx

for system with r f “ 3.0 is obviously smaller than that obtained
for system with r f “ 0.0 (i.e. system without fixed fluid particles,
represented by the black dashed line). However, at εB “ 4.0, we
find vx is almost equal to that obtained for system with r f “ 0.0.
This indicates that the first few layers of fluid particles (mainly
solutes) are tightly bound to the colloid at strong colloid-solute
interaction so that the effective size of the colloid is increased. At
both εB “ 1.5 and εB “ 4.0, the magnitude of vx decreases signifi-
cantly with r f , which indicates that fluids close to the colloid play
an important role in generating the phoresis. When r f ą 3.4, as
expected, the magnitude of vx for εB “ 4.0 becomes larger than
that for εB “ 1.5.

Fig. 5 The dependence of fluid velocity vx on (a) frozen radius r f and (b)
nonslip radius rns at εB “ 4.0 (red) and εB “ 1.5 (black). The dashed lines
indicate vx for system with slip boundaries (i.e. rns “ 0).

For system with non-slip boundaries, similar results are ob-
tained for vx´ rns relation shown in Fig. 5(b), where rns is the
radius of non-slip boundary. At εB “ 1.5 the magnitude of vx de-
creases almost linearly with rns, which is much faster than that
for εB “ 4.0. This also indicates that the first few layers of fluid
particles contribute less to phoresis at strong attraction.

To conclude, for concentrated system with large gradient
(|∇ρβ | “ 0.04), the solute particles surrounding the colloid are
not necessarily permanently bound in a shell due to solute-solute
depletion and gradient force, but at large εB the formation of the
symmetric solute shell do not contribute to phoretic flow. In ad-
dition, the magnitude of vx surrounding the colloid is not homo-
geneous, thus solute particles are more likely to be bound near
θ “ 0 or θ “ π.

3 Comparison with explicit gradient
We performed simulations with an explicit concentration gradient
generated by a source and a sink region with fixed solute densities
in a 36.17ˆ16.44ˆh box. Comparison with the implicit gradient
(color forces) results in Fig. 6 shows a aubstantially different de-
pendence of the phoretic velocity vx on the interaction strength
εB. We argue that this is partly due to the finite size effects and
partly due to the inherent problems within the explicit gradient
simulations when the concentration and the concentration gradi-
ent of solute particles are too large.

To illustrate this claim, we analyzed the density profile of so-
lutes from the explicit gradient simulations. In Fig. 7(a), we show
the density ρβ pxq along the direction of concentration gradient x.
We plot the densities averaged in bulk, i.e. far enough from the
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Fig. 6 Fluid velocity vx versus solute-colloid (isotropic) interaction
strength εB for implicit and explicit gradients, in system with ρβ “

0.32, |∇ρβ | “ 0.04.

colloidal particle, rβc ą 6.5. We choose a moderate magnitude
of the attraction between the solutes and the colloid (εB “ 2.0),
yet, for concentrated system at large gradient (black symbols,
ρβ “ 0.32 and |∇ρβ | “ 0.04), the presence of the colloid signifi-
cantly alters the profile even far away from the shaded area indi-
cating the interaction range. Sufficiently far away from the col-
loid, we expect two contributions to the flux in the direction of the
gradient Jβ of species β : the purely diffusive term jd “ ´D∇ρβ ,
and the convective term jc “ vxρβ , where vx is the phoretic veloc-
ity (in the absence of the colloid, this term vanishes). As the total
current has no source and sink, ∇Jβ “ ∇p jd` jcq “ 0. If D and
vx are constant, this leads to an exponential profile of the solute
density:

ρβ pxq “ ρ
source
β

´ l∇ρβ px0qe´px´x0q{l . (1)

with the decay length l ” D{}vx} (amounting to l “ 2.88 for
|∇ρβ | “ 0.04 and l1 “ 9.83 for |∇ρβ | “ 0.0063). In Fig. 7(b), we
plot the semi-log plot of the solute density from the explicit gra-
dient simulations. The decay lengths l1 fitted from this data (data
for x ą 0 are not included due to larger error) are l1 “ 2.79 for
|∇ρβ | “ 0.04, and l1 “ 6.76 for |∇ρβ | “ 0.0063. The fitted l1 are a
bit smaller than the theoretical prediction, which might be due to
finite size effect. The nonlinear effect indicates that explicit gradi-
ent method cannot be accurate especially at large Péclet number.
This also explains why Sharifi-Mood et. al.1 imposes a stepped
concentration profile instead for simulations of explicit gradient.

In a dilute system with ρβ “ 0.05 and |∇ρβ | “ 0.0063, as shown
in Fig. 8(a), we still find for εB ă 2.0 the magnitude of vx obtained
from explicit gradient is smaller due to size effect, and slightly
larger for εB ą 3.0. However, the results obtained from explicit
and implicit gradient agree well for system at even smaller gradi-
ent |∇ρβ | “ 0.002, shown in Fig. 8(b).

We define the scaled difference in phoretic velocity derived
from explicit and implicit gradient, δvx, as:

δvx “
vexp

x ´ vimp
x

ˇ

ˇvexp
x

ˇ

ˇ

, (2)

where vexp
x and vimp

x respectively represent velocity derived from
explicit and implicit gradient. Fig. 9(a) presents δvx for two

Fig. 7 Profile of (a) solute density in bulk ρβ pxq and (b) lnpρsource
β

´ρβ q,
in the direction of concentration gradient for concentrated (ρβ “ 0.32 and
|∇ρβ | “ 0.04, black) and dilute (ρβ “ 0.05 and |∇ρβ | “ 0.0063, red) system
at εB “ 2.0. Dashed curves with hollow points are the corresponding
profiles in the absence of the colloid. Shaded area represents the colloid-
solute interaction range.

Fig. 8 Fluid velocity vx versus solute-colloid (isotropic) interaction
strength εB for implicit and explicit gradients, in ρβ “ 0.05 dilute system
with gradient (a) |∇ρβ | “ 0.0063 and (b) |∇ρβ | “ 0.002.

different gradients, which indicates the difference is smaller for
smaller gradient, especially for εB ą 3.0.

Fig. 9 (a) the dependence of scaled difference in velocity δvx and (b)
Péclet number of fluids Pe on solute-colloid (isotropic) interaction strength
εB at different gradient.

In Fig. 9(b) we estimate the Péclet number of fluids Pe as:

Pe “
σcvx

Dc
, (3)

with Dc the diffusion coefficient of colloid determined from mean-
squared displacement, vx the phoretic flow rate and σc the diam-
eter of the colloid. For any given εB, Pe is larger for larger |∇ρβ |.
The peak value of Pe is obtained at εB “ 2.0 at which the magni-
tude of vx reaches its maximum. For εB ą 2.0, the convection term
decreases faster than the diffusion term.
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4 Determination of hydrodynamic radius
The generalised DA theory assumes a hard colloidal particle with
non-slip boundary conditions and no flow within the colloidal hy-
drodynamic radius Rh (i.e. neglecting any contribution of the
excess density for r ă Rh). The theoretical prediction for the
phoretic velocity is obtained by integrating the (excess) concen-
trations from Rh to infinity (Eq. 7 in the main text). We note
that due to the attractive interactions the solute particles accu-
mulate around the colloid and create a more or less immobile
layer around it. In order to apply the theory to our model sys-
tem, the original colloids (either with slip or non-slip boundaries)
with diameter σc are replaced with effective colloids of radius Rh

with non-slip boundary conditions. The magnitude of Rh is de-
termined from analysing the mean squared displacements (MSD)
of the colloid and applying the Stokes-Einstein relation. The MSD
curves as a function of the interaction strength εB are presented in
Fig. 10a) for colloids with (originally) slip boundary conditions.
We see that the colloidal diffusion constant increases monotoni-
cally with εB. The Stokes-Einstein relation that relates Rh to the
diffusion constant differs for the case of slip and non-slip bound-
aries. Since we know from the simulations that the DA assump-
tion of no flow inside Rh is not entirely correct, we can assume
that the real Rh is between both limits. However, already the
lower limit obtained with the expression for non-slip boundaries
leads to a sharp increase in Rh as a function of εB (see Fig. 10b).
For εB ą 3.0 we thus have Rh Ç 6 and since both the excess density
of solute and solvent are close to zero for Rh Ç 6, the generalised
DA prediction for the diffusio-phoretic velocity at strong attrac-
tion quickly approaches zero.

Fig. 10 (a) Mean-squared displacement of the colloid MSD(t) at solute-
colloid interaction strengths between 1.0ď εB ď 4.0. (b) the dependence
of hydrodynamic radius Rh on εB, as derived from the Stokes-Einstein
relation by assuming non-slip boundary conditions.

5 Distribution of excess solutes
The simulation snapshots for system with anisotropic solute-
colloid interaction of l “ 1 and l “ 2 are presented in Fig. 11.
There is a polar corona of the aligned solutes surrounding the par-
ticle for l “ 1, and symmetric distribution of solutes is observed
for system of l “ 2.

To quantitatively analyze the density distribution of solutes
close to the colloid, in Fig. 12 we compare the density distribu-
tions of reduced excess solutes for different solute-colloid interac-
tions on the r´θ plane, with r the radial distance to the colloid

Fig. 11 Simulation snapshots for system with solute-colloid interaction in
terms of (a) P1pcosθq symmetry at λB “ 2.0 and (b) P2pcosθq symmetry
at λB “ 2.0. For clarity only colloid and solute particles within ´2ă yă 2
region are shown.

and θ the opening angle over z axis (shown in Fig.1 of the main
article). For l “ 2, the distribution is almost symmetric for both
positive and negative λB For l “ 1, an excess of solutes is found
for θ ă π{4 while a lack of solutes is found for θ ą 3π{4. These
two effects cancel out so that the phoretic velocity becomes very
small (the angular density distribution is almost uniform of for
solvent particles). Although homogeneous density of solutes is
observed for r ą rcut for both l “ 1 and l “ 2, for system with
isotropic interactions (i.e. l “ 0), an excess of solutes is observed
for θ ą 3π{4 and rą rcut , as illustrated in Fig. 12(d).This explains
why the magnitude of phoretic velocity depends on the system
size for system with isotropic interactions, but not for system with
anisotropic interactions.

Fig. 12 The heat map plots of the fluid density in the r´ θ plane for
anisotropic solute-colloid interaction with symmetry P2pcosθq (a,b) and
P1pcosθq (c,d). The interaction strength is λB “ 2.0 (a,c) and λB “ ´2.0
(b,d).
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